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Abstract

In the present work, we investigate efficient
placement of sensors and actuators for closed-
loop control of boundary-layer flows. The fo-
cus of this work is on the transitional flow cases
where perturbation field is dominated by streaks.
This is done using a reduced-order model based
on resolvent analysis, an approach that also al-
lows us to analyse the sensitivity of the flow re-
sponse to control. A numerical sensitivity anal-
ysis was performed in this first approach, lead-
ing to conclusions about best choices of veloc-
ity components to be sensed and directions to
be forced. Afterwards, we compared the perfor-
mance between gaussian and shear sensors at the
wall, focusing on the damping of the first resol-
vent gain using these devices. We close the work
with the analysis of a plasma actuator, a configu-
ration closer to standard choices for this kind of
problem in both simulations and experiments.

1 Introduction

The presence of streamwise elongated structures
in the near wall region of wall-bounded flows has
been detected since the 70’s. These structures,
called streaks, are regions where the streamwise
velocity of the flow alternates between values
higher and lower than the spanwise average, and
are governed by linear growth mechanisms as de-
scribed by [1]. Streaks were found to be relevant
for flow stability analysis, and shown to be re-

sponsible for subcritical transition to turbulence
in some cases, such as transition of boundary lay-
ers subject to significant free-stream turbulence
[2]. Streaks are also present in fully turbulent
flows, showing their robustness and importance
as a fundamental part of the flow dynamics, as
shown in [3, 4].

In parallel with this, many efforts were made
to delay transition to turbulence in boundary lay-
ers, which could reduce substantially the friction
drag of wings. Many strategies have been tested
in the last few years, but one of the main obsta-
cles for applying them in aircraft is sensor and ac-
tuator placement, including the question of how
many sensors and actuators are necessary to de-
lay transition [5, 6]. Efficient choices of sensors
and actuators is crucial to obtain energy savings
by closed-loop control [7].

This is one of the main challenges of new
concepts for control in boundary layers. The lin-
ear quadratic Gaussian (LQG) strategy allows op-
timal control for a given sensor/actuator configu-
ration [8], but new setups would represent a new
system with different matrices, which requires a
new optimization for each case. Therefore, it is
not obvious to determine efficient positions for
sensors and actuators, and this is the objective of
this work. For that, we will analyse this problem
using resolvent analysis, focusing on boundary-
layer transition by elongated streaks, as in [9],
now with the inclusion of a proportional control.

The paper is organised as follows: first, we
present the closed-loop resolvent operator as a
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function of the control matrix Kc; this formula-
tion allows us to evaluate the effect of different
actuator and sensor shapes in the optimal resol-
vent gain, which can be interpreted as a measure
of the efficiency of the control regarding the most
responsive structures in the flow. Afterwards, we
present the shapes of sensors and actuators cho-
sen for the study, followed by the results for each
configuration. A discrete numerical sensitivity of
the gains is performed by including small control
amplitudes and narrow Gaussian sensors and ac-
tuators, which turned out to be an important tool
to analyse the results of more complex configura-
tions, such as plasma actuators and shear sensors.

2 Mathematical Model

We follow here the same formulation from [10],
now for a Blasius boundary layer taken as a base
flow. From the linearised Navier-Stokes and con-
tinuity equations, we can obtain the linear sys-
tem, in operator notation,

iωψ = Aψ+B f , (1)

where all variables are Fourier transformed in
time, axial and spanwise directions (t, x and z
transformed to frequency ω and wavenumbers kx
and kz, respectively), so ψ = ψ(kx,y,kz,ω), with
y being the wall-normal coordinate, and the form
of the matrices can be seen in Appendix A. In this
formulation, f is a tridimensional body force and
ψ = [v η]T , where v and η are wall normal veloc-
ity and vorticity, respectively. Writing the system
in terms of the velocity components, we have:

φ = Cψ (2)

where φ = [u v w]T denotes the three components
of velocity fluctuations in Cartesian coordinates.
If the A operator is stable, from equations (1) and
(2), we can write a transfer function relating forc-
ing f to response φ,

φ =
[
C(iω−A)−1 B

]
f ⇒ φ = R f (3)

With the system written as equation (3), we
can perform a singular value decomposition such

that R = UΣVH , where the columns of U form
an orthogonal basis of response modes and the
lines of VH form an orthogonal basis of forcing
modes, with these matrices linked by gains σi in
the diagonal matrix Σ. Thus, the analysis can be
used to project every disturbance and response in
the (U,Σ,V) space, meaning that the forcing and
response related to the maximum gain σi will be
the most relevant ones in the domain.

The inclusion of active control in this prob-
lem is made by including a term Bc fc in the right
hand side of equation (1). The control strategy
used in this first analysis is proportional, leading
to fc =Kcφ. This leads to a closed-loop resolvent
given by

φ =
[
C(iωI−A−BcKcC)−1 B

]
f ⇒ φ = Rc f

(4)
We perform the resolvent analysis with the

modified system shown in equation (4). The ma-
trix Kc is used to link the sensing components (u,
v or w) with the actuation directions x, y and z
such that:

 fcx

fcy

fcz

=

Kxu Kxv Kxw
Kyu Kyv Kyw
Kzu Kzv Kzw

u
v
w

 . (5)

Each component of this matrix is a submatrix that
selects the region that will be sensed and where
the forcing will act.

For this analysis, we chose kx = ω = 0, kz =
1.5 and Re= 1000 as a representative case, focus-
ing on control of streaks. The base-flow is taken
as the Blasius boundary layer, normalised by the
displacement thickness δ∗.

3 Choices of Sensor and Actuators

The formulation as written in equation (4) gives
us freedom to choose any shape of sensors and
actuators for the problem. The ones chosen for
the present study are defined in the following sec-
tions.
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Fig. 1 Boundary layer profile, the derivatives and
the actuator shape.

3.1 Gaussian Sensor and Gaussian Actuator

Firstly, we start with a Gaussian shape for both
sensor and actuator, such that each component of
the control matrix takes the form:

Kxu = Ace−(
ym−ys

Ls )2
e−(

yn−ya
La )2

(6)

where Ac is the control gain, ym, yn are the spa-
tial coordinates related respectively to the sen-
sor and actuator, ys, ya are the center of sens-
ing and actuation and Ls, La are Gaussian widths.
This approach is useful to explore the sensitivity
of the resolvent gains with the wall-normal posi-
tion of the actuator/sensor, providing information
about the spatial support of efficient sensors and
actuators. The variation of the gain with these
positions will be closer to a continuous sensitiv-
ity analysis for pointwise sensors and actuators if
the Gaussian width is small, in comparison with
δ∗, and if the amplitude of the forcing is close
to infinitesimal. Thus, we set Ls = La = 0.2 and
|Ac|= 10−4 in this analysis. The profile shape, its
derivatives and the actuation shape can be seen in
Figure 1.

3.2 Shear Sensor and Gaussian Actuator

Going one step closer to a real application, we
chose a different kind of sensor: now, instead of
sensing one velocity component for the feedback,
we will sense the shear stress ∂u/∂y at the wall
(y = 0) and perform the same analysis made for

the previous case. For this case, the axial com-
ponent of the forcing term, for instance, can be
written as:  fcxy=0

...
fcxy=H

= [A ][S ]

uy=0
...

uy=H

 (7)

where [A ] defines the actuation shape and [S ] is
related to what is sensed inside the flow. For this
case, we set [S ] = D, where D is the wall-normal
derivation matrix and

[A ] = Ace−(
yn−ya

La )2
. (8)

Since the actuator is kept exactly the same as
in the previous approach, this analysis confirms
and summarises the trends identified using the
previous combination of sensors and actuators.
More importantly, the comparison between this
case and the previous one will show if sensing
shear would lead to a better efficiency.

3.3 Shear Sensor and Plasma Actuator

The previous formulation was further developed
in order to consider an actuator with a different
shape, even closer to real applications. In this
particular case, we chose to use the same actua-
tor shape used by [11] (which is now considered
in the matrix [A ]), with sensors for shear stress
at the wall. In this analysis, we chose to vary a
stretching parameter h, which changes the peak
of atuation and also increases the region of influ-
ence of the actuator, as can be seen in Figure 2.
The magnitude of actuation was kept constant in
|Ac|= 10−4.

Following the same strategy of the previous
analysis, our focus was to evaluate the influence
of the variation of the stretching parameter h in
the gains σ from the resolvent analysis, differing
from the previous study mainly by the length of
actuation; now the actuator is considered to be at
the wall, with different regions of influence. Even
though plasma actuators are mounted on the wall,
they generate a corresponding body force with
some support inside the flow [12], and we here
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Fig. 2 Shape of actuation for several values of
stretching factor h.

evaluate how such support may affect control ef-
ficiency.

4 Results

With the configurations defined, we proceed to
the evaluation of optimal forcing and responses
for the closed-loop resolvent operator. In each
calculation, we investigate the reduction of the
maximum resolvent gain (σ1) compared with the
uncontrolled case (σ0), which will give an idea of
the efficency of each control strategy.

4.1 Gaussian Sensor and Gaussian Actuator

For the first case, we varied the position of the
center of actuation and sensing, exploring the in-
fluence of the spatial support of sensors and ac-
tuators in the resolvent gains for the controlled
problem. This simulation were made isolating
the influence of each component of the control
matrix; doing that, we could also evaluate which
components of velocity are more efficient for
sensing and which directions of forcing would
lead to higher reductions in the gains. These re-
sults can be seen in Figures 3 - 5, where ∆σ =
σ1−σ0.

Fig. 3 Sensitivity of the first resolvent gain with
change of actuator and sensor position. Sensor
placed for streamwise velocity and actuation in
each cartesian direction.

There are two main characteristics that stand
out from Figures 3 - 5. The first one comes from
the levels of reduction/increase in each contour
plot: looking at Figures 4 and 5 one can see that
the variation of the gains are rather small, except
when the control forcing is in the same direction
as the velocity component sensed (components
Kyv,Kzw of the control matrix); in other words,
the components Kxv,Kxw,Kyw,Kzv do not affect
the magnitude of the gains substantially. On the
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other hand, the opposite trend happens when the
streamwise velocity component is sensed: al-
though the Kxu is related to variation with am-
plitudes comparable with the Kyv,Kzw compo-
nents, the other ones shown in Figure 3 have
much higher amplitudes than any other combina-
tion of actuator and sensor, meaning that sensing
streamwise velocity is more efficient than sensing
any other velocity component, and acting in the
wall-normal/spanwise direction should also lead
to higher reduction of gains by closed-loop con-
trol.

The second characteristic is related to the
positon where the sensor and actuators work bet-
ter. In all plots of Figures 3 - 5 a “hot spot” can
be identified, a well defined region of the sens-
ing/acting space where one could obtain higher
reductions of the gains. For example, this region
is located around ya = 1 and ys = 2 for the com-
ponent Kyu, varying slightly for the other compo-
nents. From that, one can conclude that, in order
to design efficient actuator/sensor combinations,
it would be better if the spatial support of these
devices reach those positions.

This result is closely related to the under-
lying physics of the problem. For the cho-
sen wavenumbers, the Blasius boundary layer
is dominated by the lift-up phenomenon [1, 3],
with optimal forcing shaping as streamwise vor-
tices, which generates streaks as optimal re-
sponse. Consequently, in order to mitigate this
phenomenon, one should act to damp these vor-
tices, or in other words, the actuation should be
in the wall-normal/spanwise directions. More-
over, since the most responsive structure in the
flow is a streak leading to fluctuations in stream-
wise velocity, the velocity component that will
have higher amplitudes in the flow will be u; that
explains why sensing this component is more ef-
ficient than sensing any other.

The regions for efficient sensing and acting
are also related to optimal forcing and responses
coming from the open-loop resolvent analysis.
Figure 6 shows velocity and forcing components
for both controlled and uncontrolled cases us-
ing Kyu, ya = 1.5 and ys = 0.5. As can be seen
for the uncontrolled case, both optimal forcing

Fig. 4 Sensitivity of the first resolvent gain with
change of actuator and sensor position. Sensor
placed for wall-normal velocity and actuation in
each cartesian direction.
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Fig. 5 Sensitivity of the first resolvent gain with
change of actuator and sensor position. Sen-
sor placed for spanwise velocity and actuation in
each cartesian direction.
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Fig. 6 Real part of forcing and response of the
first mode for both controlled and uncontrolled
cases (gaussian sensors and actuators placed at
ya = 1.5 and ys = 0.5).

and response have peak around y = 1.5, close to
the optimal region for sensing and acting. Sim-
ilarly to the previous analysis, in order to damp
the strutures more efficiently, the actuator should
reach the region where the optimal forcing has
a peak, so it could act in the opposite direc-
tion. Furthermore, Figure 6 shows that the con-
trol does not change substantially the shape of the
forcing/response modes, mainly due to the small
amplitude of the actuation. Nevertheless, some
damping in the streamwise velocity at the near-
wall region can be seen for the controlled case.
Even with a small amplitude of actuation, drag
reduction could still be obtained using this ap-
proach. This can also be induced by analysing
the influence of this small amplitude control in
the gains, as shown in Figure 7. As can be seen,
the effect of the control term is mainly in the prin-
cipal gain (a reduction of approximately 40% in
σ1), with negligible effect on the other modes for
this case.

4.2 Shear Sensor and Gaussian Actuator

Using a different choice of sensor, we performed
the resolvent analysis (keeping the same shape of
actuator, with |Ac|= 10−4, La = 0.2) and several
values of ya, we obtain the results shown in Fig-
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Fig. 7 Gains from the resolvent for both con-
trolled and uncontrolled cases (Gaussian actua-
tors and sensors placed at ya = 1.5 and ys = 0.5).

ure 8, for each component of the forcing. As can
be seen, the trend identified in the previous sec-
tion for the efficiency of each actuation compo-
nent remains in this case: actuating in the wall-
normal and spanwise directions is much more ef-
ficient than doing it in the streamwise direction,
with the wall-normal being the preferred actua-
tion direction in this case.

This results can also be compared with the
previous ones in order to evaluate which kind of
sensor is more suitable for this problem. The
comparison between the previous sensor and the
present one for Kyu can be seen in Figure 9, where
the center of the Gaussian sensor is set at y= 0. It
is clear that, for all positions of actuation, the ap-
proach with shear sensors is more efficient than
the one with velocity sensors, with the results
for the shear case reaching reductions up to 10
times larger than the previous case. Moreover,
the reduction for shear sensors are present for a
wider region of ya, which can lead to more flexi-
ble choice of actuators.

4.3 Shear Sensor and Plasma Actuator

Following the same strategy of the previous anal-
ysis, we focus on evaluating the influence of the
variation of the stretching parameter h in the first
resolvent gain σ1. The present study differs from
the previous one mainly by the length of actua-
tion: now the device is considered to be at the
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Fig. 8 Sensitivity of the first resolvent gain with
change of actuator position for shear sensor at the
wall.
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Fig. 9 Comparison of the performance of control
between sensing streamwise velocity (ys = 0) or
shear at the wall.
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Fig. 10 Variation of first resolvent gain for sev-
eral values of stretching factor h, considering
each of the three components of forcing.

wall with different regions of influence. The re-
sults for each component of the control matrix
can be seen in Figure 10.

The results show that an actuation without a
reasonable spatial support is not as efficient as
one extending to upper regions, meaning that a
good actuator should reach at least y = 1 (with a
δ∗ normalisation), with better results for higher
values of h. This can be explained by the previ-
ous analysis: if the actuator has reasonable am-
plitudes in the regions where the localised actua-
tion is more efficient (for example, in the interval
1 < y < 2.5, using the information from Figure
9), a higher efficiency will also be obtained for
this actuator. If we consider the previous analysis
as a numerically approximated impulse response
for the actuation, one can see the present case as
a convolution between this impulse response and
the present shape of actuator, explaining why an
actuator with larger spatial support should have
better performance. This approach also explains

the plateau reached for the Kxu and Kyu plots:
since we are stretching the actuation region, the
amplitudes of actuation at the optimal interval
mentioned are not reduced substantially, meaning
that the reduction of the gains should not change
much for increasing values of h. Moreover, since
the actuator has a larger spatial support than the
Gaussian one, its overall efficiency is also higher.
Differently from the other ones, the plot for Kzu
has a peak and a decay for higher values of h,
mainly due to the behaviour identified with the
narrow gaussian actuator: since it has a region
with positive and negative efficiency (from Fig-
ure 9), it is expected that both contributions can-
cel each other with increase of h.

The influence of this kind of actuation in the
gains, response and forcing modes of the resol-
vent can be seen in Figures 11 and 12 for Kyu and
h = 4. The behaviour follows the trend identi-
fied in the first approach, with a reduction of the
gains and a change of the peak response, which is
moved further away from the wall. The main dif-
ference is in the magnitude of reduction (which
is approximatelly 60% in σ1), and in the opti-
mal forcing mode, which presents a new oscila-
tion in the wall-normal direction and a peak in
the near wall region for the streamwise forcing.
For the optimal response, the results are similar
to the ones obtained in the previous analysis, with
a decrease of amplitudes in the near wall region,
which would potentially delay transition to tur-
bulence due to streaks.

5 Conclusion

We have studied efficient placement of sensors
and actuators for closed-loop control of a Blasius
boundary layer in a locally parallel framework.
For that, we introduce a closed-loop resolvent op-
erator, where the shapes of sensors and actuators
are included in a control matrix, which can be
changed freely in the formulation.

The Gaussian shape for sensors and actuators
was used as a preliminary analysis, since both
devices could move to any position in the flow.
Still, important conclusions about which compo-
nent to sense and which direction to act could
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Fig. 12 Forcing and response of the principal
mode for both controlled and uncontrolled cases
for plasma actuator and shear sensor at the wall
(h = 4).

be drawn with that approach. Results show that
sensing the streamwise component and acting in
the wall-normal/spanwise directions is the most
efficient way of decreasing the resolvent gains,
which would lead to a damping of the most am-
plified structures in the flow. This conclusion is a
consequence of the underlying physics that dom-
inates the studied cases: since we have chosen
kx = ω = 0 and kz 6= 0, the lift-up effect drives the
dynamics, where streaks are forced by stream-
wise vortices.

Going to more realistic configurations, we
compared the behaviour of Gaussian sensors and
shear sensors, obtaining a considerably higher
performance for the latter ones. Finally, we stud-
ied the influence of changing the actuator shape,
analysing how the spatial support of a given actu-
ator at the wall would change the resolvent gains
and the shape of the optimal response. Results
show that, as the spatial extent crosses a given
threshold in the wall-normal direction, the effi-
ciency does not increase substantially by further
increase of that parameter. That result can be use-
ful for actuator design since energetic expense is
also a concern in this kind of problem.

Further steps of this work will consider an
analytical sensitivity of the resolvent gains with
variation of the control matrix, which would give
a better idea of best sensor/actuator placement.
Furthermore, a method to evaluate the problem in
a global resolvent framework, accounting for the
divergence of the base flow, is in development,
which will lead to conclusions that could be di-
rectly applied in experiments.
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A The Linearised Navier-Stokes Operators

The operators A,B,C for the locally parallel
framework are defined below:

9



PETRÔNIO A. S. NOGUEIRA , ANDRÉ V. G. CAVALIERI , ARDESHIR HANIFI , DAN S. HENNINGSON

A =

−ikx∆−1U∆+ ikx∆−1U ′′+(1/Re)∆−1∆2

−ikzU ′

0

−ikxU +(1/Re)∆

]
(9)

B =

∆−1 0

0 I

−ikx∂y −(k2
x + k2

z ) −ikz∂y

ikz 0 −ikx


(10)

C =
1

k2
x + k2

z


ikx∂y −ikz

k2
x + k2

z 0

ikz∂y ikx

 (11)

where U ′ = dU
dy (y) and ∆ = ∂yy − k2

x − k2
z . We

keep the non-slip boundary conditions (ψ =
[0 0],∂yv = 0 at the boundaries). In summary,
the formulation described above can be reduced
to the well known Orr-Sommerfeld - Squire sys-
tem.
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