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Abstract  

Unmanned Aerial Vehicles (UAVs) can 
significantly make use of wind shear to extract 
energy by the flight technique named dynamic 
soaring. Wind shear in the field is the necessary 
condition for dynamic soaring and has a 
significant impact on the performance of 
dynamic soaring. Thus, it is important for the 
on-board auto-pilot of UAV to obtain the 
estimates of wind shear in real-time. In order to 
achieve this aim, a method to estimate the wind 
field is proposed from a new perspective in this 
paper: the parameters of wind field can be 
treated as unknown parameters in the flight 
model of UAVs, and then, the problem to 
estimate the wind field can be transformed to 
estimate the unknown parameters in the flight 
model. For the problem to estimate the unknown 
parameters in the nonlinear flight model 
exhibiting Gaussian behavior, a particle filter is 
developed, and evaluated through its 
application on dynamic soaring. The results 
show that the proposed particle filter framework 
can estimate the unknown parameters in wind 
field more accurately, reliably and robustly than 
that of extended Kalman filter. 

1  Introduction 

In recent years, Unmanned Aerial Vehicles 
(UAVs) represent one of the most interesting 
technologies in aeronautics [1]. Meanwhile, the 
major handicap associated with UAVs is the 
limited on-board energy capacity [2, 3], and the 
energy supplement has already been the crucial 

constraint for the development of UAVs [4, 5]. 
However, albatrosses can fly long distances 
even around the world almost without flapping 
their wings, which means that they are flying 
nearly at no mechanical cost [6]. After long time 
observations, people gradually find that 
albatrosses are particularly adept at exploiting a 
special maneuver when they are flying in wind 
shear. This maneuver is named as dynamic 
soaring, which is defined as a flying technique 
used to gain kinetic energy without effort by 
repeatedly crossing the wind shear [7].  

Like albatrosses, UAVs may be 
programmed to perform dynamic soaring 
autonomously to extract energy from wind shear. 
If the knowledge of wind field is assumed to be 
already known, then the energy extraction 
process can be cast as a trajectory optimization 
problem [8], such as the works of Deittert et al. 
[9, 10] and Sachs et al. [11, 12]. However, this 
assumption will not be available during flight. 
Moreover, there are currently no sensors that 
can be carried on a small UAVs to measure the 
3D wind field ahead of the UAVs [13], thus it is 
important for the on-board auto-pilot of UAVs 
to be able to map or estimate the wind field in 
real-time using only on-board measurements.  

In order to achieve this goal, many scholars 
have paid great efforts to the on-line estimation 
method of the wind field. Lawrance et al. [14-16] 
have described a method for wind field 
estimation based on Gaussian Process 
Regression. Langelaan et al. [8, 13] seek to 
develop a method for wind field estimation that 
uses known structure to simplify estimation, and 
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the parameter estimation can be implemented by 
linear Kalman filter.  

Based on their pioneering works, in this 
paper, an estimator based on the flight model of 
UAVs is proposed to estimate the wind field in 
dynamic soaring. The parameter of wind field is 
treated as the unknown parameter in the model. 
The particle filter (PF) framework that estimates 
the unknown parameter of wind field with both 
constant and time-varying parameter is 
evaluated through its application in dynamic 
soaring, and the results of the extended Kalman 
filter (EKF) are presented for comparison.  

2  Models for Wind Estimation 

2.1 Wind Shear Model 

In order to describe the wind shear above the 
water surface and at ridges, the exponential 
model, which has been adopted by Sachs et al. 
[12, 17], is simply formulated as 

    W /
p

R RV h V h H   (1) 

where h is the altitude, Vw is the speed of wind 
which is the function of altitude, HR is the 
reference height, VR is the wind speed at 
reference height, p is the unknown parameter, 
which denotes the reference value that is used to 
indicate the strength of wind shear and to take 
the properties of the surface into account.  

2.2 Flight Model of UAVs 

The same as Deittert’s model [10], a 6 degree of 
freedom (DOF) model of UAVs is adopted in 
this paper, and it is supposed that a linear wind 
shear is always blowing along x-axis. The 
definitions of the forces and angles used in this 
model are shown in Fig.1 where VXY represents 
the projection of velocity of aircraft on XY-
plane, Ψ is the azimuth measured clockwise 
from Y-axis and γ is flight path pitch angle. 

The 6 DOF equations of motion for UAVs 
are given as follows, where the speed of an 
aircraft is modeled in a wind relative reference 
frame and the position of aircraft is modeled in 
an earth fixed frame, which is defined as the 
inertial reference frame. V is airspeed, x and y 

Fig. 1. Forces Acting on UAVs. 

are positions, μ is bank angle, L is lift force, D is 
drag force, T is the thrust. 

sin cos sinWmV T D mg mV        (2) 

 cos sin cosWmV L mV       (3) 

cos cos sin sinWmV L mg mV        (4) 

 sinh V   (5) 

  cos sin Wx V V h    (6) 

 cos cosy V    (7) 

The lift and drag force are expressed as 
follows 

  21

2 W LL S C V 　 　 (8) 

　　  21

2 W DD S C V   (9) 

The drag coefficient CD depends on the lift 
coefficient CL, yielding 

 2
0D D LC C KC   (10) 

where CD0 is the zero-lift drag coefficient, K is 
the induced drag factor. As described in [10], a 
fictitious force FDYN appears in equations (2)-(7) 
since the wind relative frame is not inertial: 

    1
/ / sin

DYN W

p

R R R

F mV

m pV H h H V 

 

 


(11) 

It can be seen clearly from equation (11) 
that the magnitude of FDYN is completely 
decided by the parameters and states of UAVs, 
as well as the parameters of wind field. From 
this viewpoint, the parameters of wind field can 
be treated as the unknown parameters in the 
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flight model of UAVs, consequently, the 
problem to estimate the wind field can be 
transformed to estimate the unknown 
parameters in the flight model of UAVs. 

3 Augmented Particle Filter 

3.1 Augmented System Formulation  

It can be known from equations (2)-(7) that the 
dynamic equation of aircraft is affected by the 
wind shear. As such, it is possible to estimate 
the parameter of wind shear through the sensor 
measurements of aircraft, such as airspeed meter, 
inertial navigation system (INS), Global 
Position System (GPS) and so on. In this work, 
the nonlinear dynamic equations (2)-(7) can be 
described by the ordinary differential equation 

        , ,t t t t t   x f x u w  (12) 

where the vector f is a nonlinear function of the 
state x, control input u and time t.  

The discrete form of equation (12) can be 
expressed as 

   1 1 1 1, , 1k k k k kT k       x x f x u w (13) 

where ΔT is the discrete time, and then the state 
is defined as 

  Tk k k k k k k kV h x y p x  (14) 

where the parameter pk has been augmented as 
states to the dynamic system, and then the 
procedure can be reduced to a pure states 
estimation problem [18]. 

The control input is defined as 

  Tk Lk kC u  (15) 

The disturbance input w is a white, zero-
mean Gaussian random process, i.e. 

    0, T
k k jE E k j    w w w Q  (16) 

where E denotes the expected value of the 
function, and Q is the spectral density matrix, δ 
is the Dirac delta function.  

The expected values of the initial state and 
its covariance are assumed known: 

      0 0 0 0 0 0 0ˆ ˆ ˆ,
T

E E      x x x x x x P (17) 

The relevant measurements of aircraft are 
the local airspeed V measured by the airspeed 
meter and the position vector by the GPS in 
inertial frame, [x y h]T

. Considered here is the 
discrete measurement of the form, the 
measurement equation can be expressed as  

      ,
T

k k k k k k k kV x y h  z h x n h x  (18) 

The measurement noise n is assumed to be 
a white, zero mean Gaussian random process 
that is uncorrected with the disturbance input: 

      0, , 0T T
k k k k kE E E t    n n n R w n  (19) 

where Rk is the spectral density matrix of 
measurement noise.  

For the given dynamic equation (13) and 
measurement equation (18), the problem to 
estimate the wind shear can be formulated as the 
problem of sequentially estimating the states xk 
and unknown parameter p in equation (1) when 
the new observation zk is obtained.  

3.2 Overview of Particle Filtering Algorithm 

The PF estimates the state of the aircraft using 
available observations expressed in equation 
(18). It approximates a posteriori probability 
density function (PDF) by a set of particles, xk

i, 
and their associated weights, ωk

i≥0 and 

1 1
iN

i k  ω , in a discrete summation form [19]: 

    1:
1

ˆ
N

i i
k k k k k

i

p 


 x z ω x x  (20) 

where N is the number of particles. The weights 
ω are defined to be as follows: 

 
   

 
1

1

1 ,

i i i
k k k ki i

k k i i
k k k

p p

q








z x x x

ω ω
x x z

 (21) 

where  1 ,i i
k k kq x x z is a proposal distribution 

called as the importance density. The 

 1 ,i i
k k kq x x z  plays an important role in the 

performance of PF, and ideally it should be 
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equivalent with the true posterior 

distribution  1:ˆ k kp x z . However, it is not 

known in general, and this will be further 
discussed below. 

With these particles i
kx and associated 

weights, the estimated state vector ˆ kx  can be 

calculated as follows 

  1:
1 1

ˆ ˆ
N N

i i i
k k k k k k

i i

p
 

  x x x z ω x  (22) 

As discussed above, the optimal 
importance density function that minimizes the 
variance of importance weights is 

    1 1:ˆ,i i
k k k k kq p x x z x z  (23) 

This optimal importance density is not 
known in general, one popular suboptimal 
choice is the transitional prior [18]: 

    1 1,i i
k k k k kq p x x z x x  (24) 

If it is furthermore assumed that the 
process noise is additive zero-mean Gaussian 
noise, then the PF can propagate the state 
estimate using the system model: 

   1 1 1~ , ,i i
k k k kf   x x u Q  (25) 

Taking equation (24) into equation (21), 
the new measurements can be combined with 
the propagated estimate of state in equation (25) 
to generate the updated estimate of state via the 
weights: 

  1
i i i
k k k kpω ω z x  (26) 

 
1

ˆ
N

i i
k k k

i

x ω x  (27) 

In fact, the role of the weights ω in PF is 
similar to the gain in Kalman Filter. The weight 
is defined in the way that it minimizes the 
estimation error covariance after the update, and 
it can be used to combine the propagated 
estimate with the new measurement. After 
above discussing, the process of PF to estimate 
the state in equation (12) can be summarized as 

 Step1. Initialization： 
At time k = 0, generating initial particles 

 0 1

Ni

i
x  from the priori distribution  0p x , and 

set 0
iω = 1/N, k = 1. 

 Step2. Importance sampling: 
The value of each particle is estimated by 

the propagation of system model alone, i.e., it is 
estimated before the observation is considered 

     1 1 11
~ , ,

Ni i
k k k ki

f   
x x u Q  (28) 

 Step3. Weighting: 
The weight of each particle is evaluated by 

equation (26) when the new measurement is 
available, and normalize the weight as 

 
1

/
Ni i j

k k kj
 ω ω ω  (29) 

 Step4. Re-sampling: 
The estimation of each particle is corrected 

based on weighting information in equation (29) 
and re-sampling strategy. Then, set 0

iω = 1/N. 

 Step5. Output: 
The estimation of state is calculated by 

equation (22), set k = k+1 and go back to Step 2. 

4 Wind Shear Parameter Estimation 

4.1 Dynamic Soaring Simulation 

The trajectory patterns of dynamic soaring are 
decided by the different terminal constraints. 
Zhao [20] has classified the trajectories of 
dynamic soaring into two patterns: loiter pattern 
and traveling pattern. Taking the loiter pattern 
and its constrains as the example, the 
trajectories of dynamic soaring can be 
calculated according to the direct collocation 
approach with the software program AMPL and 
IPOPT [21, 22] and the the flight model’s 
parameters in equation (2)-(7) are given in 
Table 1. The trajectory is then tracked by a 
UAV model using the LQR-based controller in 
the flight simulation performed in 
Matlab/Simulink. By Introducing the process 
noise and measurement noise into dynamic 
soaring flight, Monte Carlo simulation is 
performed to get simulative sensor 
measurements. Then the sensor measurements 
are used for wind field estimation. 
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Table 1. The Flight Model’s Parameters 

Parameter Value Unit Explanation 
m 81.7 kg Mass 
Sw 4.2 m2 Wing area 
K 0.045 - Lift induced drag factor 

CD0 0.00873 - Parasitic drag coefficient
n max 5 - Max load factor 
μmax 75 o Max bank angle 
γmax 70 ° Max flight-path angle 

CLmax 1.5 - Max lift coefficient 
HR 10 m Reference altitude 
VR 0.637 m /s Wind speed at HR 

4.2 Constant Unknown Parameter 
Estimation 

In the simulated dynamic soaring process of this 
section, the true value of parameter p is assumed 
to be a constant and equal to 1. The covariance 
matrix of measurement noise in equation (18) is 
set as follows: 

 
   

 

2 2 2 2diag

diag 1 5 5 5

T
V h x yE n n n n



nn
 (30) 

The simulated measurements are shown in 
Figs. 2 and 3. The covariance matrix of process 
noise in equation (16) is set as follows: 

 
   

 

2 2 2 2 2 2 2diag             

= diag 2  0.17  0.17  5  5  5  0.2

T
V h x y pE w w w w w w www

(31) 

During the estimation process the initial 
parameter in equation (1) is assumed unknown: 

    0 0 0 00, pE p E p p Q   (32) 

The Qp0 in equation (32) is the covariance 
of the initial parameter p0, and the Qp0 equals to 
10 in the simulation, which indicates there are 
less confidence to believe that the E(p0) in 
equation (32) is the true initial value of the 
parameter.  

To undertake a fair comparison, both the 
EKF and PF are implemented in recursive form. 
The estimation results for parameter p in Fig.4 
and the relevant results of wind speed in Fig. 5 
indicate that the PF converges to the actual 
value after about 2s. However, the slow 
convergence of EKF results in a poor 
performance in estimating the wind field. 
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Fig. 2. The Measurement of the Airspeed with 
Constant Parameter. 
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Fig. 3. The Measurement of the Position with Constant 
Parameter. 

In order to quantitatively analyze the 
performance of PF and EKF, the estimated 
parameter’s mean value and σ bound of root 
mean square error (RMSE) is defined as:  

       2

1

ˆRMSE
n

j j
j

t p t p t


   (33) 

  
1

1
RMSE

M

RMSE i
i

M t
M 

    (34) 

     
1

1
RMSE

1

M

RMSE i RMSE
i

t M
M




 
    (35) 

where n is the dimension of parameter p, here n 
= 1; M is the times of realizations, here M = 40. 

The mean value of RMSE(t) in Fig. 6 
shows that, with an incorrect initial value of p0, 
the PF can achieve significantly more accurate 
estimates of p than the EKF. The 1σ bounds for 
the RMSE(t), based on 40 realizations, also 
indicate that the PF is more reliable and robust 
than the EKF.  
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Fig. 4. The Estimated Wind Speed with Constant 
Parameter. 
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Fig. 5. The Estimated p Value with Constant 
Parameter. 
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Fig. 6.  The Mean Value of RMSE Based on 40 
Realizations. 

The other issue with the PF applied to the 
wind field estimation is to decide on the number 
of particles. The appropriate number of particles 

is normally determined by the state dimensions, 
the non-linearity of the system, and the 
properties of the unknown parameters [23]. In 
general, the more particles, the better estimation 
performance can be achieved such that a lower 
MRMSE with a tighter σ bound. However, the 
more particles, the more computational load is 
required. Thus, it is important to keep a balance 
between the performance and computational 
load for the application of PF. In order to do so, 
instead to directly compare the computational 
load of algorithms by their consumed CPU time, 
the RMSE, the times of divergence based on 40 
realizations, and the ratio of required CPU time 
by EKF to that by PF with different number of 
particles are summarized in Table 2, where the 
RMSE is defined as equation (36), and can be 
used to indicate the estimation performance of 
each filter. 

  
0

1
RMSE RMSE

T
t dt

T
   (36) 

The results in Table 2 are obtained on an 
Intel®Core™, i3-2100 UP@3.10GHz computer 
running under Windows XP. They show that the 
RMSE of PF is inversely-proportional with the 
number of particles and the CPU time is 
proportional with the number of particles. When 
the number of particles is N = 200, the RMSE 
and CPU time of PF is almost equivalent to that 
of EKF. The RMSE of PF is greatly reduced 
compared to EKF when N = 1000, however, the 
ratio of PF’s CPU time to that of EKF will 
increase to 3.866. As the period of dynamic 
soaring is about 20 seconds, and the 
computational ability of on-board computer in 
UAVs is less than that of the personal computer, 
how to reduce the computational load of PF and 
make it suited for the application on the on-
board computer still need further research. 

 
Table 2.  The Estimation Performance 

Filters EKF

PF 

N=100 
 N

=200 
 N

=500 
 N=

1000 

RMSE 0.410 1.210 0.359 0.333 0.129 

CPU time 1 0.676 1.134 2.279 3.866 
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4.3 Variable Unknown Parameter Estimation  

During dynamic soaring process, the unknown 
parameter p may vary over time, owing to the 
specific correlation of the p at a particular 
location and environment. The factors affecting 
the variation of parameter p have been studied 
in [24, 25], the research results show that, the 
heating and cooling cycle of the air adjacent to 
the earth during the 24 hours of the day 
influences the parameter p significantly, on a 
diurnal basis, wind speeds are higher during the 
daylight hours and drop to below-average 
values at night.  

Thus, the following study considers an 
unknown, time-varying parameter p in wind 
field. To simulate the time-varying effect, the 
actual value of p is assumed to follow a linear 
decreasing trend, i.e.: 

  1k k Tp p T Ak     (37) 

where kT is the time index. The initial value of p 
is also set as shown in equation (32) whilst the 
true values in equation (37) are p0 = 1 and A = 
1/48. 

The covariance matrix of measurement 
noise is the same as that in equation (30).The 
covariance matrix of process and the initial 
parameter are the same as those in equation (31). 

 The estimation results for time-varying 
parameter in Figs. 7 and 8 clearly indicate that the 
superior results are attained for the PF. At the 
beginning of estimation, the oscillations present 
in the PF are mainly due to the large initial 
covariance of parameter p0, which allows the 
methodology to search over large regions for 
areas of high probability for the true value of the 
parameter. Although both the EKF and PF can 
obtain satisfactory estimates at the end of 
dynamic soaring, the PF follows the trend of 
parameter p more quickly and precisely. 

5 Conclusions 

The method to estimate the wind field is 
proposed from a new perspective in this paper. 
The parameters of wind field are treated as the 
unknown parameters in the flight model of 
Unmanned Aerial Vehicles (UAVs), and then, 
the problem to estimate the wind field is 

transformed to estimate the unknown 
parameters in the flight model. The application 
of particle filter (PF) for the on-line wind field 
estimation in dynamic soaring is then 
introduced. The unknown parameter is treated 
as a state and incorporated into the flight model 
of UAVs to obtain robust estimates. The 
proposed PF framework is evaluated on the 
wind field with both constant and time-varying 
parameters. The results show that the PF 
framework can estimate the unknown 
parameters in wind field more accurately, 
reliably and robustly than that of Extended 
Kalman Filter. The implications of this study 
are that particle filters are particularly attractive 
for applications requiring on-line parameter 
estimation. Further improvements of the 
importance density for PF and how to reduce 
the computational load to be suitable for the 
application on the on-board computer of UAVs 
are also under investigation. 
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Fig. 7. The Estimated p Value with Variable 
Parameter. 
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