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Abstract

There is a consensus in the aerospace research
community that future aircraft will be more flex-
ible and their wings will be more highly loaded.
While this development is likely to increase air-
craft efficiency, it poses several aeroelastic ques-
tions. Current aeroelastic tailoring practice for
early preliminary aircraft design relies on linear
aerodynamic modeling, which is unable to pre-
dict shocks and boundary layers. The objective of
this research is to enhance the linear aerodynamic
modeling methodology, thus allowing fast and re-
liable aerodynamic loads prediction for aeroelas-
tic computations. First, the different levels of fi-
delity of aerodynamic modeling that can be used
in aircraft design are reviewed and compared on
benchmark test cases. A Field Panel Method is
subsequently developed and implemented. Pre-
liminary results are presented and possible future
enhancements are detailed.

1 Introduction

In the on-going effort to build more efficient air-
craft, the minimization of the structural weight
and the maximization of the aerodynamic effi-
ciency usually lead to the design of very flexi-
ble and highly loaded composite wings. Aeroe-
lasticity thus plays an increasingly important role
in preliminary aircraft design. Since aeroelastic
computations are performed early in the design
process and involve the coupling of both aero-
dynamics and structural mechanics, the compu-

tational cost of the solution techniques must be
kept as low as possible. The most widely used
aerodynamic solver is thus the panel method,
which relies on the linear potential equation. It
is therefore unable to predict shocks appearing in
the transonic flight regime. The objective of this
research is to find a suitable aerodynamic model
and develop a numerical tool to solve it. The
different levels of fidelity used in aerodynamic
modeling will first be briefly reviewed and com-
pared on benchmark cases, showing that the non-
linear potential model is suitable for preliminary
aircraft design computations. An implementation
of the Field Panel Method will then be presented
and its reliability, accuracy and current limita-
tions will be assessed on test cases. Finally, pos-
sible enhancement will be discussed.

2 Levels of fidelity and methods

In this section, the different models for steady
compressible flows commonly used in industry
will be briefly explained.

2.1 Models

The highest level of fidelity considered in this re-
search is the Reynolds-Averaged Navier-Stokes
(RANS) equations:
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where ρ is the density, ū the mean velocity, ũ the
fluctuation velocity, p the pressure and µ, the dy-
namic viscosity.
The unclosed Reynolds stress in Eq. 1 is com-
puted using the Spalart-Allmaras turbulence
model [1], which is commonly used for aeronau-
tical flows.
The Euler equations are the inviscid version of
the Navier-Stokes equations. They are obtained
by neglecting the shear stress term,
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where E is the total energy, e is the specific en-
ergy, T is the temperature and cv is the specific
heat capacity at constant volume.
The Full Potential Equation (FPE) assumes that
the flow is inviscid, isentropic and irrotational.
Since the entropy produced across a shockwave
is proportional to (M− 1)3, the isentropicity as-
sumption is usually considered valid as long as
the maximum Mach number in front of a shock-
wave is less than 1.3. The FPE is obtained by
representing the irrotational velocity field as the
gradient of a scalar potential, φ,

∂i(ρ∂iφ) = 0
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[
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2

M2
∞

(
1− (∂iφ)

2)] 1
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.
(3)

The Linear Potential Equation (LPE) further as-
sumes that the flow is smooth and is obtained by
linearizing the Full Potential Equation,

(1−M2
∞)

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0, (4)

where M∞ is the (subsonic) freestream Mach
number.

The Boundary Layer Equations (BLE) are a
particularization of the Navier-Stokes equations.
They are usually solved in integral form and used
in conjunction with the LPE, FPE or Euler equa-
tions to account for the viscosity and model the
boundary layer. More details about the formula-
tion can be found in Drela’s paper [2].
The Flat Plate Analogy (FPA) is an empirical for-
mula assuming that the friction drag of a wing
equals the drag of a flat plate of similar wetted
area in an equivalent flow. In this work, the fric-
tion coefficient C f was computed assuming that
the flow was fully turbulent around the wing (Re
is the Reynolds number),

C f =
0.074
Re0.2 . (5)

2.2 Methodologies

The Euler and RANS solutions were computed
by su2, an open-source finite-volume solver de-
veloped at Stanford University by Palacios et
al. [3]. The related meshes were created in
ANSYS ICEM. The full potential solutions, in-
viscid or coupled to the BLE, were computed
by TRANAIR, a finite-element code developed
in 1992 by Johnson et al. [4] at Boeing and
currently owned by Calmar Research. Finally,
the linear potential solution was obtained by
PANAIR, a higher-order panel method also de-
veloped at Boeing by Carmichael & Erickson [5]
in 19811.

1The code is now open-source.
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3 Aerodynamic predictions on benchmark
cases

In this section, the aforementioned models and
methods will be compared on benchmark cases.

3.1 Onera M6 wing

The Onera M6 is a wing featuring a low aspect
ratio of 3.8, a moderate sweep of 30◦ and a taper
ratio of 0.56. The wing has been simulated at
Mach 0.84 and an angle of attack α of 3◦.
Figure 1 shows the pressure distributions ob-
tained with the different models as well as ex-
perimental data gathered by Schmitt & Charpin
[6], along the chord at two different spanwise sta-
tions. The first one is located near the mean aero-
dynamic chord while the second is located out-
board and features a double shock.
Figure 1a confirms that the linear potential model
does not represent the actual physics of transonic
flows since it is unable to predict shocks. The
inviscid models such as the Euler and the full
potential equations are found to correctly repre-
sent the physics even though they predict stronger
shocks. Finally, the viscous models give an ac-
curate prediction, although a small difference in
the shock location and strength is still observed.
When the physics is more complex, as depicted
in Figure 1b, the FPE, corrected by the BLE or
not, is not as accurate as higher-fidelity compu-
tations. In particular, the first shock is signifi-
cantly smeared. However, even the RANS so-
lution shows a significant difference in the first
shock location.
Figure 2 shows the spanwise lift and moment
distributions obtained with the different models
compared to experimental data [6]. The quarter-
chord of each wing section has been chosen as
the reference point for the moment computation.
Figure 2a shows that every model predicts a sim-
ilar lift curve, with small differences in magni-
tude. This result is not surprising as the geom-
etry of the wing is simple. On the other hand,
Figure 2b shows that the linear potential equa-
tion fails to predict the correct trend of twisting
moment across the wing span.
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Fig. 1 : Pressure distribution along the chord at
two different spanwise locations for the Onera
M6 wing at M = 0.84 and α = 3◦ obtained from
different numerical approaches and compared to
the experimental data [6].

The surface pressure and friction drag compo-
nents of the Onera M6 wing are shown in Fig-
ure 3. The pressure drag components given by
the different models are similar, except for the
linear potential equation which misses the shock
and the associated wave drag production. The
small differences in the pressure drag predictions
between the other four models are due to the dif-
ferences in lift (which give different lift-induced
drag components) and to the difference in bound-
ary layer modeling. Furthermore, the Flat Plate
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Fig. 2 : Sectional lift and quarter-chord moment
coefficients along the span for the Onera M6
wing at M = 0.84 and α = 3◦ obtained from dif-
ferent numerical approaches and compared to the
experimental data [6].

Analogy predicts the same amount of friction
drag as the BLE and the RANS equations. In
cruise conditions (low angle of attack and moder-
ate lift production), where the boundary layer re-
mains mostly attached, the FPA can thus be used
to predict the friction drag.
Finally, the computational times, noted as
number of CPU core times time per CPU cores,
needed by the different codes are: a) LPE: 1×5s,
b) FPE: 1× 600s, c) FPE+BLE: 1× 900s, d)
Euler: 6×3h, e) RANS: 32×24h.
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Fig. 3 : Comparison of the predicted friction and
pressure drag contributions between the different
numerical approaches for the Onera M6 at M =
0.84 and α = 3◦.

3.2 Embraer Benchmark Wing

The comparison of the different numerical ap-
proaches is repeated for the Embraer Benchmark
wing (EBW2) that is more representative of an
actual aircraft wing. Unfortunately, no experi-
mental data is available for this case. The EBW2
is a double planform, large aspect ratio, swept,
twisted and tapered wing. The wing has been
simulated at typical cruise condition: Mach 0.78
and altitude of 35000ft. For each calculation, the
angle of attack is adjusted such that the resulting
lift coefficient is equal to CL = 0.47.
At cruise speed, the flow is supercritical, i.e. a
supersonic region is embedded in the subsonic
flow and terminated by a shock. In this case, the
shock is weak and located at ∼ 60% of the local
chord, as depicted in Figure 4. The linear po-
tential model again fails to properly represent the
flow, since it does not capture the shock. Higher-
fidelity but inviscid models, such as the full po-
tential and the Euler equations, properly capture
the physics of the flow, but tend to predict the
shock location too far downstream. When the
models take the viscous effects into account, the
shock location moves forward.
At this moderate freestream Mach numbers, all
models give approximately the same lift distribu-
tion as shown in Figure 5a. Small differences can
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Fig. 4 : Comparison of the predicted pressure
distributions between the different numerical ap-
proaches along the mean aerodynamic chord of
the EBW2 at M = 0.78 and CL = 0.47 (y/b =
0.406).

be observed near the kink, located at y/b = 0.36,
where the wing planform changes. Regarding the
quarter-chord moment coefficient (Fig. 5b), the
models predict the same trend, except the linear
potential equation which misses the local mini-
mum at the kink. Inviscid models tend to predict
lower moment coefficients than viscous models
because they do not take into account the bound-
ary layer (which causes a change in lift produc-
tion and thus, in angle of attack required to pro-
duce the same amount of lift). The angles of at-
tack given by the different models are: a) LPE:
−1.6◦, b) FPE: −1.8◦, c) FPE+BLE: −0.7◦, d)
Euler: −1.7◦, e) RANS: 0.3◦.
The surface pressure and friction drag compo-
nents of the EBW2 wing are shown in Figure 6.
The FPA gives again a good estimation of the
friction drag. Furthermore, the pressure drag
components obtained by the different methods
are comparable. The small differences are due
to the solvers or to the different boundary layer
modeling techniques.
Finally, the computational time, noted as number
of CPU core times time per CPU core, needed by
the different codes are: a) LPE: 1× 5s, b) FPE:
1× 400s, c) FPE+BLE: 1× 900s, d) Euler: 6×
3h, e) RANS: 32×24h.
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Fig. 5 : Comparison of the predicted sectional lift
and quarter-chord moment coefficients between
the different numerical approaches along the span
of the EBW2 at M = 0.78 and CL = 0.47.

3.3 Discussion

The flow around two wings, the Onera M6 and
the Embraer Benchmark Wing, was modeled us-
ing several levels of fidelity. At typical cruise
flight conditions, the flow is supercritical and
weak shocks appear on the wing surface. Con-
sequently, the LPE fails to predict the pressure
distribution and the wave drag. On the other
hand, the Euler and RANS equations give accu-
rate solutions but at a high computational cost.
Since the FPE+BLE gives predictions compa-
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Fig. 6 : Comparison of the predicted friction and
pressure drag contributions between the different
numerical approaches for the EBW2 at M = 0.78
and CL = 0.47.

rable to the RANS equations for a fraction of
the computational cost, it can be regarded as
the most efficient model for aeroelastic compu-
tation in preliminary aircraft design. In an op-
timization process, such as aeroelastic tailoring,
which involves the repeated computation of the
aerodynamic loads as the structure is being opti-
mized, the fast inviscid FPE could be used for a
fixed number of aeroelastic iterations before be-
ing recalibrated by one more accurate viscous
FPE+BLE solution.

4 Field Panel Method

Different ways of solving the promising Full Po-
tential Equation have been investigated. The
Field Panel Method (FPM) has been chosen over
traditional Finite Element/Volume methods be-
cause the FPM is a direct extension of the panel
method, and is able to directly provide the Aero-
dynamic Influence Coefficients needed for opti-
mization processes. Moreover, it does not re-
quire a body-fitted mesh and can be easily cou-
pled to the BLE. The FPM (and the underlying
panel method) has been implemented following
the ideas of Katz and Plotkin [7] and Gebhardt et
al. [8].

4.1 Theory

The main idea behind the Field Panel Method is
to rewrite the nonlinear Full Potential Equation
as a Poisson equation containing a linear part and
a nonlinear term,

∇ · (∇φ) = σ,

σ = ∇ ·
[
(1− ρ

ρ∞

)∇φ

]
,

ρ = ρ∞

[
1+

γ−1
2

M2
∞

(
1− (∇φ)2)] 1

γ−1

.

(6)

The linear part, which is essentially the incom-
pressible Linear Potential Equation, is solved by
the panel method and iteratively corrected by the
nonlinear source term. The first equation of (6)
can be transformed using Green’s theorem into,

φ(x,y,z) = φ∞−
1

4π

∫
SB

[
τ

1
r
−µn ·∇(

1
r
)

]
dS︸ ︷︷ ︸

ϕb

− 1
4π

∫
V

[
σ

1
r

]
dV︸ ︷︷ ︸

ϕf

,

(7)
where r is the distance defined by

√
x2 + y2 + z2,

φ∞ is the freestream potential given by
Ux,∞x +Uy,∞y +Uz,∞z, τ are the surface source
singularities, µ are the doublet surface singulari-
ties, σ are the volume source singularities, and n
is the surface unit normal vector.

Equation 7 shows that the total potential can be
written as a superposition of a linear potential ϕb
and a nonlinear source term σ. The panel method
is used to obtain the linear potential. The body
is discretized into panels on which doublet and
source singularities are superimposed. These sin-
gularities are then computed by enforcing the im-
permeability boundary condition (Eq. 9) at the
surface of the body. To represent the source
term, a rectangular parallelepipedic volume en-
closing the nonlinearities in the flow around the
geometry is defined. This volume is then di-
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vided into uniform cells to form a Cartesian, non-
body-conforming, grid. Each cell is treated as a
field panel containing a constant source singular-
ity distribution of strength σ. These singularities
are iteratively computed according to the second
equation in 6, in which the perturbation potential
in the field ϕf is computed by the AIC matrices
derived from Equation 7,

ϕf = Afµ+Bfτ+Cσ, (8)

where the vector of surface singularities µ and τ

are updated by the panel method. To close the it-
erative procedure and to respect the impermeabil-
ity boundary condition, the surface source singu-
larities must include the normal component of the
freestream velocity as well as the normal compo-
nent of the velocity induced by the field sources.
The new boundary condition reads,

∇ϕb ·n =−∇(φ∞ +ϕf) ·n. (9)

When the flow is supersonic, the information
travels at the speed of sound in the fluid and thus
cannot propagate upstream. Consequently, the
equation, elliptic in a a subsonic flow, becomes
hyperbolic in a supersonic flow. In the finite dif-
ference/element/volume methods, this change of
physics should be reflected by a change in the
discretization scheme for the derivatives. In the
present work, three techniques have been tested:
derivative upwinding, artificial density and arti-
ficial viscosity. Since they all gave similar re-
sults the artificial viscosity technique has been
retained due to its simplicity. As shown by Rot-
tegermann and Wagner [9], it consists in adding
a term directly to the field sources,

σ̃ = σ+λ
∂σ

∂s
∆s, (10)

where λ is a switching function depending on the
local Mach number, s is the local flow direction
and ∆s is the local mesh size.

4.2 Full solution procedure

This section describes the solution procedure cur-
rently implemented. To setup a simulation solely

depending on the Mach number and angle of at-
tack, the field variables have been normalized by
setting the magnitude of the freestream velocity
to V∞ = 1.

Initialization

After the geometry preprocessing, the matrices
containing the influence coefficients are com-
puted: body to body (A and B), field to field (C),
body to field (Af and Bf) and field to body (Cx,b,
Cy,b, Cz,b). All the relevant variables (like the
field sources σ̃ and the velocity induced by the
field sources un,σ) are also initialized to zero.

Step 1 - Surface sources

The first step of the iterative process consists
in setting the surface source singularities τ to
−(V∞ · n + un,σ) so that they include the non-
lifting normal velocity component, according to
Eq. 9.

Step 2 - Surface doublets

The next step consists in solving the linear system
of equations Aµ+Bτ = 0 to obtain the surface
doublet singularities, µ.

Step 3 - Field variables

The next step consists in computing the different
field variables. The total potential in the field is
computed from φf = φ∞ +Afµ+Bfτ+Cσ̃, and
differentiated with finite differences to obtain the
total velocity in the field Vf. The speed of sound
a, the Mach number M and the density ratio ρ

ρ∞

are then computed using the isentropic relations
(γ is the specific heat ratio for air):

a2 = a2
∞ +

γ−1
2
− γ−1

2
Vf

2,

M =
Vf

a
,

ρ

ρ∞

=

[
1+

γ−1
2

M2
∞

(
1−Vf

2)] 1
γ−1

.

(11)

Step 4 - Field sources

The next step consists in updating the field source
singularities according to σ = ∇

(
ρ

ρ∞

)
·Vf. The
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artificial viscosity is then added using Eq. 10.

Step 5 - Boundary condition update

The normal component of the velocity induced
by the field sources can now be recomputed as
un,σ = [Cx,bσ̃,Cy,bσ̃,Cz,bσ̃] ·n

Step 6 - Stopping criterion

Steps 1 to 5 are repeated until convergence.
The stopping criterion is defined as, max |σ̃n−
σ̃n−1| < ε, where n is the iteration counter and ε

is a user-defined tolerance, typically 10−6.

Finalization

The last step is to compute the surface velocity
and the pressure coefficient. The surface veloc-
ity is the sum of the freestream velocity V∞, the
surface perturbation velocity ub and the field per-
turbation velocity uf. The latter has already been
calculated to update the boundary condition. The
surface perturbation velocity can be computed by
differentiating the potential on the surface with fi-
nite differences. If l, m and n are the axes of the
frame attached to a panel, then

ul,b =−
∂µ
∂l

um,b =−
∂µ
∂m

un,b = σ̃.

(12)

The resulting velocity vector is then rotated to the
global axis and used to compute the total surface
velocity,

Vb = V∞ +ub +uf. (13)

The pressure coefficient can subsequently be
computed from,

Cp =
2

γM2
∞

{[
1+

γ−1
2

M2
∞(1−V 2

b )

] γ

γ−1

−1

}
.

(14)

5 Results

This section illustrates flow solutions obtained by
the implement Field Panel Method.

5.1 Subcritical flow

The compressible flows around a rectangular
NACA0012 (aspect ratio of 10) and the Onera
M6 wings are first analyzed. The angle of attack
of the NACA0012 is set to 0◦ to obtain a nonlift-
ing flow while the angle of attack of the M6 is
set to 2◦. The Mach number is chosen so that the
flow remains subcritical for both wings.
Figure 7 shows the pressure distribution around
the mean aerodynamic chord (MAC), which is
measured at the aerodynamic center of an half
wing, of both wings. Globally, the FPM shows
excellent agreement with TRANAIR except near
the suction peak, which is underestimated. The
FPM solution is more accurate than the result ob-
tained using the linearized potential flow equa-
tion (PANAIR).

5.2 Supercritical flow

The Mach number is now chosen so that the flow
becomes supercritical for same two wings. The
angle of attack of the NACA0012 is set to 0◦ to
obtain a nonlifting flow while the angle of attack
of the M6 is set to 3◦.
Figure 8 shows the pressure distribution around
both wings. When the flow exhibits a shock, the
accuracy of the method is degraded. Figs. 8a and
8b both show that the present implementation of
the FPM tends to predict a shock that is smeared
and displaced upstream compared to TRANAIR’s
full potential solution. Fig. 8b also shows that
the present solution follows the same trend as the
solution obtained by Gebhardt et al. [8]. Even
if the FPM solution shows significant improve-
ment over the linear potential solution predicted
by PANAIR, this is at the cost of the computa-
tional time and memory required to compute and
store the AICs. A Fast Multipole Method could
be implemented to reduce the computational re-
quirements for N2 to N, where N is the degree
of freedom. The FPM would then be possibly
faster than existing Finite Element/Volume meth-
ods, even for transonic flow computations.
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Fig. 7 : Pressure distribution around the MAC of
NACA0012 and Onera M6 at subcritical speed.

6 Conclusion

In the context of fast aeroelstic computations for
preliminary aircraft design, different levels of fi-
delity commonly used in the aerospace industry
have been compared on two benchmark wings.
A Field Panel Method was subsequently devel-
oped and implemented to solve the Full Poten-
tial Equation, and quickly model transonic flows.
For a subcritical flow, the agreement between the
different solutions is excellent, except near the
pressure peak, where the pressure tends to be un-
derestimated by the Field Panel Method. This
could be due to insufficient local grid refinement.

x/c
0 0.5 1

C
p

-1

0

2.5

Tranair

FPM

Panair

(a) NACA0012: α = 0◦, M = 0.8.
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(b) Onera M6: α = 3◦, M = 0.84.

Fig. 8 : Pressure distribution around the MAC of
NACA0012 and Onera M6 at supercritical speed.

When the flow is supercritical, the solution is im-
proved compared to the linear potential predic-
tion but the captured shock tends to be displaced
upstream and smeared. In order to reduce the
computational requirements for transonic flows,
a Fast Multipole Method could be implemented.
This would enable the FPM to remain compet-
itive with the Panel Method and allow it to be
used in aeroelastic tailoring for preliminary air-
craft design.
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