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Abstract

Unstable flows can be classified as absolutely un-
stable, when perturbations grow throughout the
domain, and convectively unstable, where am-
plified perturbations are convected downstream,
the flow locally returning to its equilibrium posi-
tion. Absolute instabilities can be understood as
a feedback loop, which can be long-ranged, as in
impinging jets, or local, as in wakes and hot jets.

Local feed-back mechanism involves an
upstream- and a downstream-traveling mode. It
is well know in the literature that in sheared flows
the latter is typically a Kelvin-Helmholtz mode;
however little is found on the former. Inspired by
recent findings in high Mach subsonic jets, that
identified trapped acoustic waves in the jet core,
we examine the role of such acoustic modes on
the stability of jets and wakes.

Using a Double Vortex-Sheet (DVS) model,
we derive conditions for which these flows be-
have as wave-guides, emulating acoustic ducts.
We show that the upstream-traveling mode that
leads to absolute instability is acoustic in essence,
explaining differences in hot jets (symmetric) and
cold wakes (antisymmetric) instabilities. More-
over, to evaluate the occurrence of such acoustic
modes in turbulent flows, two-point correlations
for a 0.4 Mach jet LES are constructed, highlight-
ing that upstream influence in the flow is due to
an acoustic mode.

This novel way to understand jet and wake
instabilities can lead to novel control methods
which can be used, for instance, to reduce aircraft
noise and drag, and minimize cyclic loads in civil

and maritime structures, and might be expanded
as to explain other jet/wake behaviors, as insta-
bility trends with compressibility and with insta-
bility modes other then than Kelvin-Helmoltz.

1 Introduction

Sheared flows have been studied for decades,
both due to their importance in applications such
as on aeronautical, automotive, nautical and civil
industries, as due to the diversity of behaviors
that these flows exhibit. Instability waves known
as Kelvin-Helmholtz (KH) modes are a key in-
gredient in understanding these behaviors, char-
acterized by an amplification that is convected
downstream, with growth rate and length scale
of the perturbations scaling with the shear layers
thickness.

The parallel flows assumption is widely used
in order to simplify these problems, while keep-
ing the key physical ingredients, as in Michalke’s
study of shear layer KH modes [1, 2] and Tam’s
study on three family of modes in supersonic jets
[3].

In some non-parallel flows these unstable
waves can be reflected by boundaries into an up-
stream mode, in some circumstances creating a
feedback loop which leads to a general amplifi-
cation of flow perturbations. Tonal noise in im-
pinging jets [4, 5, 6, 7], is explained by KH waves
being reflected as an acoustic wave by the plate.
These waves travel upstream and are reflected
again by the nozzle, re-exciting KH waves. A
similar mechanism is also found on cavity flows
[8, 9]. These “long-range” interactions are not
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the only path to tonal noise or, as will be defined
shortly, global instability.

Parallel flows can also exhibit local perturba-
tion growth, created by short-range interactions.
Huerre & Monkewitz [10] laid the framework for
calculating and understanding these behaviors.
He characterized the difference between abso-
lute and convective stability, initially for parallel
flows, and later for slowly divergent flows. The
local, long time behavior of these flows are given
by the dominant saddle point of the dispersion re-
lation, where dω/dα = 0 at α0 and ω0 = ω(α0),
where ω and α refer to frequency and streamwise
wavenumber, respectively. If ω0,i > 0 the pertur-
bations grow locally, and the flow is absolutely
unstable. Otherwise the flow is either convective
unstable, when perturbations grow but are con-
vected downstream, and eventually all the flow
returns to the equilibrium state, or stable, if there
is no long term perturbation growth. The saddle
point is marked by a “pinching” of upstream- and
downstream-branches.

Absolute instability refers to the instability
of parallel flows, or to the analysis of flow sec-
tions as if their where parallel, while global in-
stability refers to the instability of general flows.
An asymptotic analysis shows that a region with
absolute instability is a necessary condition for
global instabilities when the flow is slowly di-
vergent [11], showing the usefulness of studding
parallel flows in order to understand more com-
plex configurations.

Towne et al. [12] used locally parallel analy-
sis to explain the mechanisms behind Schimidt
et al.’s [13] trapped jet modes as acoustic res-
onances in these flows. More recently, Jordan
et al. [14] identified resonances conditions for
jet-edge noise by studying which pairs of modes
could be reflected by nozzle and edge forming a
resonance.

A similar analysis can be performed for flows
where “short-range” interactions lead to global
instabilities. Both for wakes and hot jets, the
downstream branch forming the saddle instabil-
ity is identified as a KH mode. However the liter-
ature lacks an exploration of the upstream mode,
even thought it is a necessary component of the

instability. This paper comprises a study on the
nature of these modes, and on their identifica-
tion. We show that their essence is acoustic, and
explore the necessary conditions for the occur-
rence of trapped acoustic waves within jets and
wakes, which are then related to the flow stabil-
ity. The different boundary conditions imposed
by the vortex sheet on these modes explain the
different symmetries found on cold wakes, with
an antisymmetric pressure distribution, and hot
jets, with a symmetric pressure distribution.

The article is organized as follows: Section 2
details the flow model, shows the solution of the
linearized Euler equations and defines the Vortex-
Sheet impedance. The conditions for which the
flow behaves as a acoustic duct are explored in
section 3 by analysis of vortex-sheet impedances.
Limits for which hard- and soft-walled duct-like
modes are present are identified, and their con-
nection with global instabilities of incompress-
ible jets and wakes demonstrated. Section 4 con-
cludes the study by showing that acoustic-like
modes are found on realistic flows, by identifying
them on a 0.4 Mach LES database, described in
[15], showing that the results previously obtained
are not an artifact of the model used. Section 5
summarizes the results presented.

2 Acoustic Modes in the Double Vortex-
Sheet Model

In order to capture the basic physical mechanisms
of the flow, a double vortex sheet model (DVS) is
used. The model consists of inner (|y| < 1) and
outer (|y|> 1) regions.

In each domain an uniform flow is consid-
ered, with its own mean velocity (Uin,out), density
(ρin,out), temperature (Tin,out) and sound speed
(ain,out). The flow profile is given by

U(y) =

{
Uout , |y|> 1
Uin , |y|< 1

, (1)

with a similar expression for the other parame-
ters. The model is illustrated in figure 1. The
linearized Euler equations in each domain are
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Fig. 1 Double Vortex-Sheet Model Illustration.

(
∂

∂t
+Uin,out

∂

∂x

)2

p′ = a2
in,out

(
∂2

∂x2 +
∂2

∂y2

)
p′,

(2)
where p′ = p′(x,y, t), with the corresponding
mean flow and sound speed of each region.

As the problem is homogeneous in x and t,
the ansatz p′(x,y, t) = p̂(y)ei(αx−ωt) is used. The
solutions in each domain are

p̂(y) =

{
Ain eξin y +Bin e−ξin y , |y|< 1
Aouteξouty +Boute−ξouty , |y|> 1

(3)

with

ξin,out =

√√√√α2

(
1−
(

Uin,out− c
ain,out

)2
)
, (4)

where c = ω/α is the horizontal phase velocity,
and branch cuts are chosen such that −π/2 ≤
arg(ξin,out)< π/2.

The exponentials on the inner and outer re-
gions are then connected by interface conditions,
which are given by the kinematic conditions and
pressure continuity,

(−iω+ iUin α)2
η̂± =− 1

ρin

∂p̂in

∂y
(±1), (5)

(−iω+ iUoutα)
2

η̂± =− 1
ρout

∂p̂out

∂y
(±1), (6)

p̂in(±1) =p̂out(±1), (7)

where η± is the displacement of the vortex sheet
at y =±1.

Equations 4–7, with boundary condition
p̂(±∞)→ 0, lead to the dispersion relations for
antisymmetric and symmetric modes,

tanh(ξin ) =−ρin

ρout

ξout

ξin

(
c−Uin

c−Uout

)2

, (8)

coth(ξin ) =−ρin

ρout

ξout

ξin

(
c−Uin

c−Uout

)2

. (9)

Other flow perturbation components can be
obtained as function of the pressure using

û(y) =
p̂(y)

(c−U)ρ
, v̂(y) =

∂ p̂
∂y (y)

iα(c−U)ρ
. (10)

A parametrization that allows for a continu-
ous transition between jets and wakes is used,

Uin =−Vre f ,Uout =1−Vre f ,

Tin =1 ,Tout =
1
Tr
,

ain =
1
M

,aout =
1

M
√

T r
,

ρin =1 ,ρout =ρrTr.

(11)

Varying Vre f from 0 to 1, the parametrization
transitions between right pointing wakes and left
pointing jets. Examples of velocity profiles are
illustrated in figure 2.

Figure 3 shows a low frequency spatial spec-
trum for incompressible, isothermal flows, both
jets and wakes exhibiting modes matching acous-
tic duct modes. For low Mach number, acous-
tic modes become evanescent waves or pseudo-
sound, with exponential decay of pressure distur-
bances [17].
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Fig. 2 DVS flows obtained with the parametrization given by equation 11, giving a continuous transition
from wakes to left pointing jets.
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Fig. 3 Comparison between spatial spectrum and mode support of DVS and acoustic duct modes. Re-
sults for an ideal jet (Vre f = 1, left), and wake (Vre f = 0, right) are compared to soft- and hard-walled
ducts, respectively. Circles and solid lines indicate DVS roots and modes (α≈−iπ/2 and α≈−iπ) sup-
port. Black diamonds mark acoustic-duct modes roots and their spatial support. Red and blue indicate
antisymmetric and symmetric modes. Results for a incompressible (M = 0.01), isothermal (Tr = 1) flow
with ω = 0.2.

From equations 8 and 9, low frequencies lead
to c = ω/α ≈ 0, making the right hand sides
small on wakes (c ≈Uin) and large for jets (c ≈
Uout). The hyperbolic functions on the right
will then match the spectrum of acoustic modes,
whose modes are separated by iπ/2, with corre-
sponding matching on the modal shapes.

By increasing the frequency, discrepancies
between the DVS and acoustic modes are found,
as seen Figure 4. These are more pronounced
for lower harmonics: as higher harmonics have
larger wave-numbers, their phase velocities are
smaller, thus satisfying c ≈ 0 at higher frequen-
cies then lower harmonics.

This result is analogous to Towne at al.’s
trapped upstream acoustic waves for M = 0.9 jets
[12], where total internal reflections were iden-
tified as the mechanism behind wave trapping.

This mechanism is not present in incompressible
flows, and therefore the behavior here discussed
must be of a different nature.

The observation that modes for jets and
wakes, seen in figure 4, have a qualitative
differences, resembling soft- and hard-walled
duct modes, respectively, motivates the study of
vortex-sheet impedance. As the difference be-
tween these ducts lies in the their wall stiffness,
vortex sheet impedance, which is a generalized
stiffness, can highlight the mechanisms involved
in the duct-like behavior of these flows, and their
differences.

The vortex-sheet impedance is derived from
its definition: the ratio of the inner pressure ( p̂in)
and vertical velocity (v̂in), at the interface. For
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Fig. 4 Spacial Spectrum (on left) and corresponding modes (on right). Blue and red modes correspond
to symmetric and antisymmetric DVS modes. Black diamonds represent a soft duct mode. On the left,
colored diamonds, upper and lower triangles represents the spatial spectrum for ω = 0.2,0.4 and 0.8,
respectively, with corresponding modes on the right from top to bottom. Parameters used M = 0.01,
Tr = 1. Similar results are found for wakes.

the upper vortex-sheet, using equation 10,

ZV S =
p̂in(1)
v̂in(1)

= iα(c−Uin)
p̂in(1)

d p̂in/dy(1)
. (12)

With equations 5–7 an explicit expression is ob-
tained as

ZV S = ρout
α

iξout

(c−Uout)
2

c−Uin
, (13)

with an identical expression is found for the
lower vortex-sheet.

From the dispersion relations (eq. 8 and 9)
we define a reference impedance

Zre f = ρin
α

iξin
(c−Uin), (14)

such that the dispersion relations can be written
as

tanh(ξin ) =− ZV S

Zre f
, coth(ξin ) =− ZV S

Zre f
.

The vortex-sheet impedance is large to the
reference impedance when c ≈ Uin and small
when c ≈Uout , explaining why in each of these
limits the DVS modes resemble acoustic modes
of hard- and soft-walled ducts. The reference

impedance, which depends only on the inner
region parameters, can be understood as the
"strength" of the inner fluid perturbations, to
which the "wall" stiffness need to be compared
to.

3 Acoustic Modes and Global Instability

To study the relation between the acoustic modes
in jets and wakes with the development of abso-
lute instabilities, we use a self-consistency pro-
cedure: we assume that acoustic duct modes are
present in the flow, calculate the impedance ra-
tio and check if the value obtained is compatible
with the duct-like assumption. Noticing that, as
seen in figure 4, lower harmonics show larger de-
viations from the duct-like behavior, we focus the
analysis to the first upstream-traveling harmonic
on incompressible flows, for which

ξin =−iπ/2. (15)

Figure 5 shows an impedance map for differ-
ent values of frequency and Vre f , exploring the
transition between wakes and jets. At low fre-
quencies, high impedances are found in the wake
regime (Vre f ≈ 0) and low impedances on the jet
regime (Vre f ≈ 1). Finite values are found in the
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transition between these limits and for higher fre-
quencies.

Temperature ratios effects are mapped in fig-
ure 6, showing a overall increase in impedance
with Tr, improving the duct-like behavior of
modes in wakes, while degrading it for jets. This
behavior is coincident with the trends obtained
by Monkewitz [16]: heating being a instability
source for jets, and cooling for wakes. This sug-
gests that the degradation of duct-like behavior
might be related to the onset of global instability.

In order to explore this connection we trace
the DVS root locus for real frequencies of jets
(Vre f = 1) and wakes (Vre f = 0) for different tem-
perature rations. Figure 7 shows the formation
a saddle point when Tr is varied, formed by a
pinching of the KH and acoustic branches, indi-
cating the onset of global instability.

From figure 2, a similar behavior is expected
when Vre f is varied . By tracing the root locus for
different Vre f , as seen in figure 8, a similar picture
as in 7 is found. The self-consistency condition
for the duct-like behavior, is directly related to
global instability: its deterioration being a neces-
sary condition to absolute instability, by allowing
interactions between acoustic and KH modes.

This results provides an insight on the under-
pinning instability mechanisms in jets and wakes.
Although both systems have been extensively
studied in the past decades, to the best of the
authors knowledge no clear connection between
them has been traced. Monkewitz et al. [11] ob-
served that dispersion is invariant if Uin,out and
symmetries are exchanged. This results predicts
opposite symmetries in their instabilities, but of-
fers little insight on the physical mechanism be-
hind them.

4 Identification of Acoustic Modes in M=0.4
Jet

Once the role of acoustic modes in DVS flows
was established, we explore a realistic flow at
subsonic Mach number, showing that the results
obtained for the incompressible DVS are not an
artifact of the model used. Focusing on lower
Mach numbers, we bridge Towne et al.’s [12]
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Fig. 5 Impedance ratio (ZV S/Zre f ), as a func-
tion of frequency and Vre f , on a logarithmic color
scale, and values indicated by contour lines. Re-
sults for the first upstream-traveling acoustic har-
monic for a isothermal (Tr = 1) and incompress-
ible (M = 0.01) flow.

Fig. 6 Same as figure 5, but with ω = 0.8 fixed
and varying Tr.

findings for 0.9 Mach jets to the incompressible
results presented earlier in this paper. As jets with
Mach numbers bellow 0.82 do not sustain total
internal reflections, we explore a different flow
regime.

We use a Mach 0.4 Jet LES database, de-
tailed in [15], whose mean flow is shown in figure
9. Pressure fluctuations, p(x,r,φ, t), were decom-
posed into their azimuthal components

p(x,r,φ, t) = ∑
n

pn(x,r, t)einπφ. (16)

Unlike Towne et al. [12] and Schmidt et al.
[13], there is no visible indications of upstream-
traveling modes inside the potential core for the
decomposed perturbations. The identification of
acoustic modes is then performed via empiri-
cal transfer functions [18]. If upstream-traveling
acoustic modes are present in the flow, then they
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Fig. 7 Spacial spectrum for incompressible (M = 0.01) DVS flows, showing the transition from con-
vective to absolute instability, marked by a pinching of KH and acoustic branches. On the left: solid,
dotted and dashed lines correspond to Tr = 1,0.80/0.76 and 0.6. Reciprocal ratios (1,1.25/1,28,1.68)
are used for the jets on right. Blue/red lines represent antisymmetric/symmetric modes. Diamonds and
upper triangles indicate duct and single vortex-sheet modes. The pentagram marks the saddle location in
the α plane. Locus for ω ∈ [0,1.5π].
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Fig. 8 Same as figure 7, but with solid,
dotted and dashed lines representing Vre f =
1,0.94/0.93,0.90.

should be reflected in the transfer function be-
tween downstream (input) and upstream (output)
points inside the potential core. As these modes
are clearly not dominant in jet dynamics, they
will only be visible after spurious signals from
downstream-traveling modes are filtered out.

The frequency domain transfer function be-
tween pressures at x = 2.0 and r = 0 and the re-
maining flow field is computed by

T̃f ,n(x,y,ω) =
〈p̃+n (2,0,ω)p̃n(x,r,ω)〉〈
p̃+n (2,0,ω)p̃n(2,0,ω)

〉 , (17)

where 〈·〉 denotes averaging and tilde denotes
time Fourier transformed quantities and + com-
plex conjugation.

This procedure does not distinguish between
causal and non-causal sources: it also contains
information of downstream-traveling structures
moving from the output to the input positions.
We enforce causality from the reference, input,
to the output flow fluctuations, which preserves
the upstream-traveling acoustic modes and filters
out downstream-traveling components, by com-
puting the time domain transfer function,

Tf ,n(x,y, t) =
∫

e−iωt T̃f ,n(x,y,ω)dω, (18)

and extracting its causal component (T c
f ,n),

T c
f ,n(x,y, t) = Tf ,n(x,y, t)H(t), (19)

where H(t) = 1 for t > 0 and zero otherwise.
Afterwards the causal frequency domain transfer
function is obtained,

T̃ c
f ,n(x,y,ω) =

1
2π

∫
eiωtT c

f ,n(x,y, t)dt. (20)
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Fig. 9 Mean flow profile for the jet at 0.4 Mach. Color scale indicate axial velocity, white lines indicate
velocities equal to 0.1 and 0.9 of the jet velocity.

The transfer function was calculated with a
total of 10000 snapshots, with propagative time
step of 0.2 between samples. Blocks of 128
snapshots, with 75% overlap were windowed
by a Hann function and used for estimating
T̃f ,n(x,y,ω).

Figure 10 shows the asymmetric transfer
function (n = 0) amplitude across the jet cen-
ter line, T̃ c

f ,0(x,0,ω), for three different frequen-
cies. For these frequencies the decay in ampli-
tude of the transfer function matches the decay of
evanescent, upstream-traveling, duct-like acous-
tic waves, which are given by eαix, where αi is
the imaginary part of the cylindrical acoustic duct
wave number, given by

α =−
Mω±

√
ω2−4β2

0(1−M2)

1−M2 , (21)

where β0 = 2.4048 is the first zero of the Bessel
function of the first kind, J0(β0) = 0.

Figure 11 shows the transfer function radial
support. The acoustic trend found on the center
line is not well recovered around the shear layer,
with its radial support showing significant devia-
tions from the expected duct mode counterparts.
This deviations are probably due the large differ-
ence in amplitude of KH and acoustic modes in
the flow, the first being a dominant component
of it. The evanescence of acoustic modes makes
their signal exponentially small, and spurious KH
components modes contaminate the results. This
effect is stronger around the shear layer, where

acoustic modes have small pressure signals. The
increasing dominance of vortex-sheet pressure on
points distant from the reference supports this hy-
pothesis.

In spite the feebleness of evanescent acous-
tic modes in this turbulent flow, the matching be-
tween duct acoustic modes decay rate and of the
transfer function on the jet centerline indicates
that even on absolutely stable flows, non-linear
interactions can excite linear acoustic modes in
the jet core. Further studies might lead to better
ways of filtering out spurious signals.

5 Conclusion

We show that soft-walled duct-like acoustic
modes can be found not only in subsonic jets
with high Mach number, but also for intermedi-
ary Machs and for incompressible flows. The role
of these modes in the transition from convective
to absolute instability on incompressible flows is
presented, showing that the dominant saddle is
formed by a pinching of the Kelvin-Helmholtz
and upstream-traveling acoustic branches.

Results for incompressible wakes also indi-
cate the presence of acoustic modes, with identi-
cal instability role as the incompressible jet. On
wakes however, they resemble acoustic modes
in hard-walled ducts. The difference in the first
acoustic mode harmonics on jets and wakes re-
flects, and possibly explains, the difference in
these flows unstable modes.

The physical mechanism behind the emu-
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Fig. 10 Transfer function axial support for the first azimuthal pressure distribution along the jet axis.
Dashed lines represent transfer function using half of the available data, dotted lines indicate the expected
acoustic mode decay, which match the transfer function after a transient distance, possibly related to
other faster-decaying modes.
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Fig. 11 Transfer function radial support for the first azimuthal pressure distribution, normalized by the
transfer function at the centerline, and expected acoustic duct in black. Deviations, particularly around
the shear layer (r = 0.5), increase for points distant from the reference, indicating bad signal to noise
ratios, particularly between acoustic and KH modes.

lation of acoustic duct modes is explained by
analyzing the vortex sheet impedance, which
shows clear trends of small and large values for
low frequency modes of jets and wakes, respec-
tively. These limits explain the symmetry dif-
ference of the first harmonic, and a deviation
from these limits appears to be a necessary con-
dition for global instability: this deterioration al-
lowing acoustic modes to interact with Kelvin-
Helmholtz modes. This condition was observed
when the impedance was disturbed by either
back-flow or temperature ratio, indicating robust-
ness of the proposition.

With further exploration the concepts detailed
in this article, it is possible to explain a larger
range of phenomena, which were previously un-
connected, with a single framework: the presence

of acoustic modes in double sheared flows. Be-
yond the opposite symmetries of unstable modes
on jets and wakes, and destabilization due to
back-flow and temperature ratio, it is possible
that the different effects of compressibility on
jet and wakes instabilities and the appearance
of supersonic unstable modes on jets with Mach
higher than 2, be explained with similar reason-
ings. Insights on the mechanisms involved in the
destabilization of wakes, but not of jets, due to fi-
nite shear layers might be obtained. These possi-
bilities, and possible role of these modes in non-
linear jet dynamics, are currently under study.
Understanding the mechanisms behind upstream-
traveling modes responsible for global instabili-
ties, might lead to novel passive and active con-
trol approaches.
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