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Abstract

This work deals with the characterization of the
control of convective wavepackets, typical of
the initial stages of transition to turbulence, usi-
ng the Kuramoto-Sivashinsky equation [I] as a
model problem representative of the transitional
2D boundary layer. Its simplified structure and
reduced order provide a manageable framework
for the study of fundamental concepts involving
the control of linear wavepackets. The objective
of this paper is to explore how the sensor-actuator
placement interferes in the control problem. This
is carried out by evaluating errors of the optimal
estimator at positions where control gains are sig-
nificant. Results show, in quantitative manner,
why some choices of sensor/actuator placement
are more effective than others for flow control.

1 Introduction

Flow control is a research field that combines
the open-loop dynamics of the governing equa-
tions given by stability theory, and the input-
output approach of control theory, aiming at the
manipulation of the system behavior [2]. One
of its most prominent objective is the control of
instabilities in an airplane wing to delay transi-
tion to turbulence and thus reduce the skin fric-
tion drag. Several studies regarding control tech-
niques and fundamental concepts have been de-
veloped [3, 4], broadening the understanding and
the possible exploration areas.

Despite the amount of results available, most
studies fix a sensor-actuator structure (placement

and shape) and disturbance type and move from
this point on. When these parameters are fixed,
the specific control problem that is being dealt
with does not correspond entirely to the main
control objective. As the goal is to achieve the
best possible way to control the instabilities, the
sensor-actuator structure is in itself a project vari-
able, even considering that in practical applica-
tions there is more flexibility to manipulate the
placement than the shapes of the sensors and ac-
tuators.

Besides the trial-and-error approach of fixing
the structure and the disturbance, simulating and
comparing the results, a systematic method that
helps to treat the sensors and actuators as vari-
ables to the problem, explaining in physical terms
the reason one given structure provides different
results from another, is lacking.

The objective of this work is to provide con-
cepts that help to understand the performance of
a specific sensor-actuator placement. This will
be done first for the Kuramoto-Sivashinsky equa-
tion, a 1D model problem with dynamics similar
to transitional boundary layers. The procedure
will then be extended for the Blasius boundary
layer.

2  Framework

The framework is provided by the Kuramoto-
Sivashinsky equation, given by ([1])
ov ov 1, 9*>v oty
—=-V——=Pz=—+== 1
o~ Va rfaeta) s @
linearized around an operating point given by the
parameters V, R and P, setas V = 0.4, R = 0.25
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and P = 0.05. Here, x and ¢ refer to space and
time coordinates, Vv is the velocity and f is an ex-
ternal forcing. Supposing an external forcing of
the form

f(x,t) =bg(x)d(t) + by(x)u(r) (2)

The linearized model is represented by the linear
time-invariant state-space equation (3).

q(t) = Aq(t) +Byu(t) +Bad(t)
z(t) = Cq(2) 3)
y(t) = Cyq(t) +n(r)

where the A matrix includes a discretised diffe-

rentiation matrix to account for the x-derivatives
in (1).
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Fig. 1 : An example of the spatial support of the
inputs (disturbance B;(A) and control B, (A)) and
outputs (sensor Cy(V) and objective C,()).

In this framework, d is an external distur-
bance, y is the output of the sensor Cy, with mea-
surement noise n, z is the performance variable
and B,, the actuator (Fig. 1).

Assuming solutions of the form

v =V el e) 4)

where o0 € R and ® = o, +iw; € C, the stabi-
lity analysis of (1) using (4) (f = 0) provides the
dispersion relation

m:VoH-i(gocz—%oc“) (5)

Its convective and amplifying properties
(Fig. 2) make it a good model for the 2D Blasius
boundary layer flow. It should be highlighted that
the system is globally stable; disturbance growth
is seen in a convective frame of reference, but
fluctuations eventually leave the computational
domain, leading to an overall decay of pertur-
bation energy. Hence, the linear system in (3)
is stable. The mentioned convective amplifica-
tion leads to high amplitude of transfer functions
between d and z. Reducing the magnitude of
such transfer functions would be the objective of
a controller in this framework.
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Fig. 2 : The real frequency ®, and its imaginary
part ®; as a function of the spatial frequency o
Positive values of m; characterize unstable waves.
Adapted from [1].

3 %5 Optimization

The objective in the flow control of convective
instabilities is to minimize the energy of the li-
near convective wavepacket in order to delay the
transition to turbulence it induces. As the perfor-
mance variable z in (3) serve as the representation
of the disturbance downstream, the objective is to
minimize the energy of z.

The control approach that fits this objective is
the #6 optimization. Given the exogenous input
w and the control objective z, the controller H (s)
internally stabilizes the plant G(s) and optimally
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minimize the transfer function 7,(s), i.e., from
w to z, according to the #5 norm (Fig. 3). This
is equivalent to minimize the energy of z when w
is a stochastic white-noise forcing, as usually is
assumed in flow control problems.

Suppose d and n in (3) are white-noise distur-
bances with spectral densities W and V, respec-
tively. Define the performance z as

0iC, 0 ] [q(t)} ©

) =
20) 0 R

with positive-definite weight matrices Q and R.
Despite not being present in (3), the inclusion of
the actuation energy in the objective variable z
has a precise physical implication. As the ac-
tuator has limitations in the input forcing it can
provide and it is desirable to minimize the energy
spent by the controller, this is in fact a necessary
project variable.

w ——-—
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Fig. 3 : General control configuration.

The system’s equation (3) is then rewritten

as [5]

A |Bwz 0 B,

0:C,| 0 0:0
G(s) = ! 7
) 0 o o.r]|

where w(r) = [d(¢t) n(t)]. The #, norm of the
transfer function T, is given by

2 e
17 = {jim 1 [ 20t} @)
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This is the LQG problem put in the #5 op-
timization framework. The solution to this pro-
blem is subject to the separation theorem [6],
which states that the optimal control strategy can
be separated in two parts: one state estimator
which provides the optimal estimation of the sys-
tem states from the observed outputs, know as the
Linear Quadratic Estimator (LQE), and a linear
feedback law which gives the control signal as a
linear function of the estimated state, known as
Linear Quadratic Regulator (LQR) (Fig. 4).
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Fig. 4 : LQG control.

4 Full Information

Considering the full information problem, i.e., all
the states values are available, the system equa-
tion becomes

{40220 )+ 5ud)

2(1) = Cq(1)

As the goal is to minimize the energy of z, the
first question to be answered is if the system is
disturbance decoupled by state feedback [7, &],
i.e., if there is a linear map F : X — U, where
X 1is the subspace of admissible states and U the
subspace of admissible inputs, such that

Toa(s) =C,(sI —A—BF)"'B4=0  (10)

where T,4(s) is the closed-loop transfer function
from d to z subjected to the control law u(r) =
Fq(t). The expression in (10) can be satisfied if
and only if
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im(By) C V*(ker(C,)) (11)

where V* is the largest controlled invariant sub-
space [7, 8] contained in the subspace ker(C;).

The control mechanism in convective insta-
bility is the generation of a similar wave with op-
posite phase, i.e., wave cancellation [9]. Distur-
bance decoupling is then equivalent to the the-
oretical possibility of the actuator exactly re-
produce the incoming wave with opposite phase
through state feedback, which would provide the
null transfer function in (10).

From this and the intrinsic structural insta-
bililty in operating with subspaces, necessary to
the calculation of 7* through the ISA algorithm
[7], the matrix C, was chosen as shown in Fig.
5, providing equivalent and more reliable results
than operating with a single output gaussian C, as
in Fig. 1.

0 200 400 600 800 1000 1200

Fig. 5 : Spatial characterization for the ISA al-
gorithm. The red triangle (A) indicates the dis-
turbance position. In blue is the space available
for the actuator placement. In yellow the states
expected to be made simultaneously zero, repre-
sented by an multiple output C,.

The condition in (11) is not met for any posi-
tion available for the actuator (Fig. 5). As the dis-
turbance input is unknown in practice, it is safe
to assume perfect control is not achievable even
with full state information, once this is not pos-
sible when the disturbance is created through a
shape similar to the actuator.

In Fig. 6a it is shown that the actuation e-
nergy increases as the actuator is moved down-
stream, as expected given the disturbance is am-
plified as it moves downstream.

In Fig. 6b it is shown that the LQR perfor-
mance degrades as the actuator is moved down-
stream. This result suggests, together with the
fact that this system is not disturbance decoupled,

10*

Energy

-1 I I I I I I I

10

200 300 400 500 600 700 800 900 1000
Ty

(a) Actuation energy for actuator at position x;,.
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(b) Energy attenuation at z (9) for actuation at position
X, normalized by the uncontrolled energy.

Fig. 6 : LQR control.

that the further the disturbance has developed, the
ability of the actuator to reproduce its waveform
degrades.

Both results indicates the actuator should be
placed as upstream as possible, keeping in mind
any unmodelled disturbance that acts in the flow
downstream of the actuator will not be controlled.

5 Estimated State

5.1 Motivation

When the states values are not available, as usu-
ally is the case, they must be estimated. In Fig. 7
we exemplify the LQE performance by showing
the estimated states and associated error for the
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system subject to an impulse in d. Results show
that the states a particular sensor are able to esti-
mate are those downstream of its position.
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(a) Estimation error energy normalized by the distur-
bance energy.
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(b) State and estimation for t = 550 and t = 700.

Fig. 7 : LQE for a impulse disturbance for a sen-
sor placed at x, = 300.

For the LQG compensator, the control law is

q(r) =q(1) —e(t)
where K is the linear quadratic regulator (LQR),
q(t) the state, §(¢) the state estimation and e(r)
the error in the estimation. When a single control
input u is considered, (12) shows that K should
be a matrix with dimension equal to the transpose
of the state. Hence, the operation u(t) = —K§(t)
can be seen as the determination of the control

INSTABILITIES

by the projection of the estimated state onto the
control gains K. Since the state § corresponds
to fluctuations v(x, ) in the Kuramoto-Sivashinky
system, the gains K also have an implicit spatial
dependence and can be evaluated to determine
which x positions require an accurate estimation
of the state. The shape of the gains of the linear
quadratic regulator (Fig. 8) implies that a sensor
placed downstream to the actuator is not a wise
choice, as the controller will use the estimation
of states that the estimator cannot properly esti-
mate.

The equation for the closed-loop system with
LQG control can be written as

MKC?(I) +de(l)
«Kq(t)+ B,Ke(t) + Byd(t)
(13)

—B
—B
where the estimation error satisfiese

é(t) = (A+LCy)e(t) +Byd(1) (14)

The estimation error, then, acts as a dis-
turbance that deviates the LQG controlled sys-
tem behavior from the LQR controlled (full-
information) system behavior (Fig. 6b); this
can be seen by the additional term B,Ke(r)
in (13) when compared to the full-information
control (9). To minimise this deviation, the actu-
ator (which determines K) and the sensor (which
determines L) should be placed such that

~+oo
Yonw) = [ K@) [3dr - (15)

is as small as possible.

As shown in Fig. 9, 7y achives high values
for the actuator upstream to the sensor, and keeps
a slowly varying value as the actuator is placed
downstream to the sensor. This result, together
with the result in Fig. 7, suggests that for high
values of vy, Ke(t) — Kq(t), i.e., the estimator is
unable to make any estimation of the states used
by the LQR controller, making the system ap-
proach the uncontrolled performance (See (13)).
For small values of y, Ke(1) — 0, making the sys-
tem approach the LQR controlled system perfor-
mance in Fig. 6.
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Fig. 8 : Linear quadratic regulator for an actuator
at x,, = 300(A).
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Fig. 9 : yvalue for the LQG controlled system for
a sensor placed at x, = 600.

Another way to see (15) is representing it as

V(xu, xy) =[5 || Ke(r) ||% dt = trace(KP,K*)
(16)
where P,, the covariance of the error, is the solu-
tion of the Lyapunov equation

(A+LCy)P,+ P.(A+LCy)" +ByB; =0 (17)

Performing the singular value decomposition
in the matrix P,

Oev

Pe:[... |¢*ev| ...:| GCeV
(18)
the expression (16) can be rewritten as
Y(xuaxy) = Zvccev < ¢ev’K* >2 (19)

The value of Yy can be regarded as a measure
to the extent the modes ¢, are projected on the
LQR gain K, weighted by the singular values G,
(Fig. 10). In Fig. 10 (a) we see a case where the
gains K and the estimation error modes 0., have
completely distinct spatial support; in this case,
Y — 0 and the LQG performance approaches full-
information control. As the actuator is moved up-
stream (Fig. 10 (b) and (c)) we start to have over-
lap between the spatial support of K and ., until
we reach the critical condition shown in Fig. 10
(c), where estimation error is significant precisely
at positions where the state should be estimated
accurately; in this condition, we expect a poor
control performance, close to the open-loop con-
dition.

200 300 400 500 600 700 800 900 1000

I I I
200 300 400 500 600 700 800 900 1000

200 300 400 500 600 700 800 900 1000

Fig. 10 : Spatial support of the LQR K gain for
a) x, = 650, b) x, = 500, ¢) x,, = 400 and the ¢,
modes for x, = 600 (Fig. 9).
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LQR
LQG(x,=200)
201 LQG(x,=300) | ]
LQG(x,=400)
LQG(x,=500) | |
LQG(x,=600)

-40 F

Attenuation(dB)

1120 I I I I I I I
200 300 400 500 600 700 800 900 1000

Fig. 11 : Energy attenuation at z normalized by
the uncontrolled energy.

5.2 Control Performance

The performances of various control systems are
summarised in Fig. 11. The results indicate as
the actuator is placed downstream to the sensor,
the performance improves dramatically. As the
actuator is moved further downstream, the perfor-
mance is dominated by the effect of vy, which then
remains almost constant until the degradation of
the actuator’s ability to reproduce the incoming
waveform (as decribed in Sec. 4) becomes more
prominent and dominates the controlled system
performance.

Despite the exponential growth of the actua-
tion energy as the actuator is moved downstream,
the performance gain is minimal in the relatively
flat portion of the performance curve. This leads
to a similar placement rule to the one proposed in
Sec. 4: the actuator should be placed downstream
of the sensor, upstream enough to reach the rela-
tively flat performance curve (in the y-dominated
zone) or to achieve the best performance (in the
actuator’s degradation-dominated zone).

The actuation energy for LQG controlled sys-
tem with the actuator downstream to the sensor
is similar to the LQR controlled system actuation
energy (Fig. 12), as described in Sec. 5.1.

INSTABILITIES

LQR
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Fig. 12 : LQG actuation energy for actuator at
position x;,.

5.3 <y-dominated Region

The space available for the sensor-actuator place-
ment is divided in two regions: the y-dominated
and the actuator’s degradation-dominated re-
gions. The LQR performance curve (Fig. 6a)
provides the actuator’s degradation effect.

The proposed approach is to describe the es-
timation error effect through the 7y function. It
is calculated for the sensor-actuator placements
described in the end of Sec. 5.2, i.e., downstream
of the sensor, but sufficiently upstream. This dis-
tance will be assumed to be x, —x, = 10. As the
actuator’s degradation is in its lowest level for the
actuator’s furthest upstream position (x,, = 210),
it is assumed that the performance variation is de-
fined by the v variation. To see this, the y curve is
shifted by

Ejgr(x, = 210)

E, * Y (20)

where w is the LQR controlled system

performanceo for x,, = 210. This is the proposed
curve representative of the 7y effect on the LQG
performance(Fig. 13). Here we see that attenu-
ation by control is dictated either by the LQR
performance (for a downstream sensor-actuator
pair) or by estimation error (for an upstream pair,
where the v effect on performance becomes more
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Fig. 13 : Dominated regions and the LQG perfor-
mance for x,, — x, = 10.

6 Model Reduction Effect

A major limitation faced in flow control is the
high order of the systems under study. In this
sense, it is not feasable to obtain any of the curves
in Fig. 13 directly, once it would be necessary
to calculate the full-order optimal state feedback
matrix (Fig. 8) and perform the full-order simu-
lation to each point (or a reasonable amount of
points).

This limitation imposes the need to work with
a reduced order model flow. From this reduced
order model a reduced order controller is cal-
culated and applied to the system. Obtaining
a reduced order model through balanced trun-
cation [10], the reduced order controller perfor-
mance is depicted in Fig. 14.

It can be seen that the need for a reduced or-
der controller is an important source of error. Er-
rors due to model reduction are often larger than
the those shown in Fig. 13, and, when the order
is too low, it dominates the system performance.

7 2D Boundary Layer Example

The simulation of a controlled 2D Blasius bo-
undary layer was carried out with the SIMSON
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Fig. 14 : LQG controlled system performance
with reduced order controllers.

pseudo-spectral solver [11]. The reduced order
model was calculated through the eigensystem
realisation algorithm (ERA) [12] (Fig. 15).
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Fig. 15 : 2D Blasius boundary layer controlled
with LQG reduced order controllers. The sensor
is at the fixed position x, = 300 and the objective
at x; = 500.

For the controller with order k = 65, the
performance resembles what is seen in Fig. 11.
The performance oscillates when the actuator
is closer to the sensor, and when downstream
enough, it reachs a relatively flat performance
zone. For lower order controllers, the order re-
duction error dominates the performance and no
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explicit pattern is detectable.

-20

=22 1

24 F

-26 [

-28 1

Attenuation(dB)

-30"

-32

34 I I I
280 290 300 310

Ty

I I
320 325 340

Fig. 16 : 2D Blasius boundary layer controlled
with LQG controllers of order k = 65. The dis-
tance x, — xy, = 110 is fixed and x,; = 500.

In Fig. 15, the flat performance zone is
achieved when x, —x, ~ 110. Keeping this dis-
tance fixed, the energy attenuation is as shown
in Fig. 16. The performance resembles what is
shown in Fig. 13. It can be seen that for a bo-
undary layer around 12 dB in performance can
be won or lost by changing the positioning of the
sensor and actuator, using the same control stra-

tegy.
8 Conclusion

The role of the sensor-actuator placement as a
project variable cannot be neglected, as implied
by the model problem and shown in a bounda-
ry layer simulation. An attempt to explain in
physical terms the reasons for good and bad per-
formance was presented. Further developments,
applying the balanced POD [13] model reduc-
tion method, will possibly enable a more clear
understanding for boundary-layer control, as the
physical interpretation of the reduced state can be
retrieved.
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