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Abstract

Transonic aeroelastic analysis at the design level
relies on linear panel methods, such as the Dou-
blet Lattice approach, usually after application
of transonic corrections. The results from these
calculations cannot predict shock motion, shock-
boundary layer interactions and the effects of
such phenomena on flutter behavior, even after
corrections are applied, since the latter are gener-
ally quasi-steady. This paper proposes a higher-
fidelity approach that involves the solutions of
the flow equations in order to obtain the unsteady
flow response to relatively small amplitude pe-
riodic deformations of a structure over a large
range of oscillation frequencies. The main idea
is to perform a few high-fidelity CFD simula-
tions, such as Euler or RANS simulations, with
an imposed structural deformation at selected os-
cillation frequencies so as to capture the most
dominant nonlinear dynamic modes of the flow
response. These fluid dynamic modes are then
interpolated to estimate the flow response for
any other oscillation frequency. The method-
ology can then be used to obtain a frequency-
domain generalized aerodynamic force matrix,
and stability analysis can be performed using
standard flutter calculation methods such as the
p-k method. The present methodology provides
a very good estimate of the flutter boundary
for the 2D Isogai airfoil validation case, but at
much lower computational cost than the tradi-
tional higher-fidelity Fluid-Structure Interaction
(FSI) simulations.

1 Introduction

The prediction of transonic flutter is of great
importance to aircraft design as modern aircraft
commonly fly at transonic conditions. However,
the computation of the aeroelastic response of
aircraft wings or control surfaces is challenging
in this regime because unsteady transonic flows
are characterized by aerodynamic nonlinearities
such as moving shocks, shock-boundary layer
interaction, and flow separation. These com-
plex nonlinear phenomena can result in unwanted
aeroelastic effects and limit the performance of
aircraft [1, 2].

This paper presents a novel unsteady aero-
dynamic modeling methodology with higher fi-
delity than the linear panel methods that are com-
monly used in preliminary design, especially at
transonic conditions where it takes into account
complex aerodynamic nonlinearities (e.g., mov-
ing shocks and their interactions with the viscous
boundary layer). Furthermore, the computational
cost of the new methodology is low enough to be
applied to aeroelastic calculations. It relies only
on a limited number of reference fluid dynamic
modes, which are extracted from a few unsteady
RANS (or Euler) simulations. These fluid dy-
namic modes can also be obtained directly and
at lower cost by Harmonic Balance (HB) simula-
tions [3, 4]. Another advantage is that the present
methodology can be used with standard flutter
analysis techniques such as the p-k method [5] to
find the flutter speed of a system and characterize
its subcritical behavior.
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The paper is organized as follows. Section 2
describes the proposed methodology. Each step
of the methodology is illustrated in the case of
a pitching airfoil in the transonic flow regime in
Section 3. The present approach is then used
to calculate the transonic flutter characteristics of
the 2D Isogai airfoil validation case in Section 4.
Finally, the main results are summarized and dis-
cussed in Section 5.

2 Methodology

The goal of the methodology is to provide the
flow response to small amplitude periodic de-
formations of a structure as a function of the
oscillation frequency for given flow conditions
(Reynolds number Re and Mach number M).

The main practical steps of the methodology
are summarized as follows:

1. The first step is to carry out a few unsteady
high-fidelity simulations (Euler or RANS) in or-
der to obtain the flow response to an imposed
small amplitude periodic structural deformation
at two nearby oscillation frequencies and for
given flow conditions. These reference frequen-
cies are chosen knowing that flutter typically oc-
curs at non-dimensional reduced frequencies of
the order of 0.1 in most transonic flutter prob-
lems encountered in aircraft wings or control sur-
faces [1]. Additionally, the methodology has to
accurately capture the unsteady nonlinear aero-
dynamic effects over a certain range of frequen-
cies. The choice of the reference frequencies can
be verified a posteriori based on the analysis re-
sults. This aspect is discussed in more details in
Güner et al. [6]

2. The resulting unsteady flow fields are pro-
cessed using the Dynamic Mode Decomposition
(DMD) [7, 8] in order to extract the most relevant
dynamic modes of the flow response at the refer-
ence frequencies. The first fluid dynamic modes
are usually sufficient to capture the flow dynam-
ics with good accuracy for attached inviscid flows
as explained in Güner et al. [9, 6]. This assump-

tion will be tested in the case of viscous flows in
Section 3.

3. The present methodology proposes to inter-
polate these reference fluid dynamic modes in or-
der to compute the entire flow fields to an im-
posed periodic deformation of the structure at any
oscillation frequency.

The following section illustrates each step of
the methodology for the case of a 2D NACA air-
foil. The dynamic mode interpolation methodol-
ogy can be extended to three-dimensional cases
as described in Güner et al. [6].

3 Turbulent transonic flow over a pitching
airfoil

The 2D transonic flow over a NACA 64A010
airfoil pitching around its quarter-chord point is
used as a test case, based on the experiment by
Davis [10]. This configuration has been chosen
as it also enables the study of shocks that move
due to structural oscillations. In the experimental
conditions, the Reynolds number Re based on the
chord c is 12.56×106 and the free-stream Mach
number M is 0.796. The pitching motion is spec-
ified as

α(τ) = ᾱ+ α̂sin(kτ), (1)

where α(τ) is the variation of the angle of at-
tack with non-dimensional time τ = tU∞/b, U∞

is the free-stream velocity, b = c/2, ᾱ is the
mean angle of attack, α̂ is the pitching ampli-
tude, and the forcing non-dimensional reduced
frequency is defined as k = ωb/U∞ with ω the
angular frequency. Unless otherwise specifically
mentioned, all following results are obtained for
ᾱ = 0◦, α̂ = 1.01◦ and k = 0.202. Massive flow
separation does not occur as the mean angle of
attack and pitching amplitude are small.

In the following, each step of the methodol-
ogy is described:

1. An unsteady simulation is carried out by
solving the unsteady RANS equations with the
one-equation Spalart-Allmaras (SA) turbulence
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model, in which the transported quantity is di-
rectly linked to the turbulent eddy viscosity. The
SA turbulence model is convenient for external
aerodynamic flows such as the flow around an
airfoil [11]. The open-source CFD code SU2 [12,
13, 14] is used in this work.

The structured C-type mesh shown in Fig. 1
consists of 46224 quadrilateral elements with 300
points around the airfoil and 109 points in the
normal direction. The flow is turbulent and a
boundary layer develops over the surface of the
airfoil. The spacing at the wall is set so that y+ is
less than 1 in order to properly capture the bound-
ary layer. The time-accurate simulation uses 25
time steps per period of oscillation to capture the
relevant time scales, and the calculation is run un-
til a periodic state has been reached to eliminate
transient effects.

Fig. 1 : Close-up view of the CFD mesh around
the airfoil.

The flow has two strong shocks that move on
the upper and lower surfaces of the airfoil. Fig. 2
shows that the variations of the lift coefficient cl
and the chordwise position of the shock on the
upper surface xs obtained by the unsteady RANS
simulation are in agreement with the experimen-
tal measurements. The turbulence model predicts
the flow accurately as there is no massive separa-
tion or other more complex flow phenomena.

2. Fig. 3 and 4 show respectively the variation
of the aerodynamic lift and moment coefficients,
cl and cm, obtained using the mean flow and the
first fluid dynamic mode corresponding to the
pitching frequency extracted by a Dynamic Mode
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Fig. 2 : Comparison of the unsteady RANS
solution (blue line) with the experimental data
of Davis [10] (black symbols) for the pitch-
ing NACA 64A010 case at reduced frequency
k = 0.202.

Decomposition (DMD) of the unsteady RANS
flow fields. The lift and moment coefficients cal-
culated using a single flow dynamic mode are al-
ready in very good agreement with the unsteady
RANS solutions even at forcing frequencies that
can be considered high in the context of flutter
problems.
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Fig. 3 : Comparison of the lift coefficient cl be-
tween the unsteady RANS solution (blue line)
and the one-mode DMD representation (dashed
red line) for the pitching NACA 64A010 case at
three values of the reduced frequency k.
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Fig. 4 : Comparison of the moment coefficient cm
between the unsteady RANS solution (blue line)
and the one-mode DMD representation (dashed
red line) for the pitching NACA 64A010 case at
three values of the reduced frequency k.
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3. The proposed methodology computes the
first flow dynamic modes at two nearby reduced
frequencies, and then estimates the modes cor-
responding to other reduced frequencies through
linear interpolation. This allows to account for
the progressive changes in the mode shape with
k at a limited cost. As an example, in Fig. 5,
the lift and moment coefficients for k = 0.202 es-
timated by the dynamic mode interpolation ap-
proach based on the first dynamic modes at k =
0.1 and 0.3 are compared to the corresponding re-
sults using the exact modes at k = 0.202 and the
unsteady RANS solution. The dynamic mode in-
terpolation approach provides good results, even
with a single dynamic mode.

More generally, for the present case, inter-
polating from the solutions at k = 0.1 and 0.3
provides good estimations of the most dominant
modes, and hence of the complete flow dynamics,
over a large range of oscillation frequencies given
that the frequency is not too far from the cho-
sen reference frequencies. From a computational
point of view, only two unsteady simulations are
sufficient here for given flow conditions.
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Fig. 5 : Comparison of the unsteady RANS
solution (blue line), the one-mode DMD rep-
resentation (dashed red line), and the present
dynamic mode interpolation approach (dash-dot
green line) based on the first dynamic modes at
k = 0.1 and 0.3 for the pitching NACA 64A010
case at reduced frequency k = 0.202.
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4 Application to a 2D transonic flutter calcu-
lation

In this section, the methodology is applied to the
stability analysis of a 2D airfoil model in order
to test its performance for predicting the onset of
transonic flutter.

As illustrated in Fig. 6, the Isogai wing sec-
tion model [15] consists in a 2D airfoil with two
degrees of freedom; it can undergo a combina-
tion of pitching (α) and plunging (h) motion. The
aeroelatic equation for the system is given by

M
(

ḧ(t)
α̈(t)

)
+K

(
h(t)
α(t)

)
=

(
−l(t)
m(t)

)
, (2)

where M and K are the mass and stiffness matri-
ces of the structure, respectively, l is the aero-
dynamic lift, and m is the aerodynamic mo-
ment about the elastic axis. The geometry is a
NACA 64A010 airfoil, which is the same as for
the pitching airfoil test case studied in Section 3.
All the structural parameters shown in Fig. 6, on
which the mass and stiffness matrices directly de-
pend, are known from Isogai [15].

xf b cxCG

CG
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Ch

Kα

Kh
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x
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Fig. 6 : Typical two-degree-of-freedom air-
foil aeroelastic model. (Adapted from Refer-
ence [16].)

The aerodynamic forces depend on the dy-
namics of the system and are not explicitly
known because of the nonlinearity of the prob-
lem. Assuming a sinusoidal motion of the system
and a resulting sinusoidal lift and moment, and
decoupling the plunging and pitching motion for
constant small amplitudes, the aeroelastic equa-
tion in the frequency domain for the system can

be written in the general form [6, 17, 18]:(
−
(

kU∞

b

)2

M+K− 1
2

ρU2
∞Q1(k)

)
r(k)

=
1
2

ρU2
∞Q0, (3)

where

• U∞ is the free-stream velocity.

• ρ is the air density.

• The components of the frequency-domain
generalized aerodynamic force matrix are
Q(k) = 1/2ρU2

∞ (Q0(0)+Q1(k)):

Q1(k) =

−c ĉlplunge(k)

ĥ

−c ĉlpitch(k)
α̂

c2 ĉmplunge(k)

ĥ

c2 ĉmpitch(k)
α̂

 (4)

Q0 =

(
−c c̄lplunge −c c̄lpitch

c2 c̄mplunge c2 c̄mpitch

)
, (5)

where ĉlplunge and ĉmplunge denote the lift
and moment coefficient amplitudes due to
a plunging motion of amplitude ĥ, ĉlpitch

and ĉmpitch represent those due to a pitch-
ing motion of amplitude α̂, and c̄lplunge ,
c̄mplunge , c̄lpitch , and c̄mpitch denote the asso-
ciated mean values. Matrix Q is complex
and depends on k.

• The vector of generalized coordinates in
the frequency domain is

r(k) =
(

ĥ
α̂

)
eikτ. (6)

The dynamic mode interpolation approach is
used for the aerodynamic loads. The aerody-
namic parameters ĉlpitch , ĉmpitch , c̄lpitch , and c̄mpitch

are calculated using the same steps:

1. For given flow conditions (Reynolds number
Re and Mach number M), two unsteady RANS
or Euler simulations are carried out for a forced
pitching motion at two reference reduced fre-
quencies k = 0.1 and 0.3. A small pitching ampli-
tude is sufficient for flutter analysis. The pitching
amplitude α̂ is set to 1◦ here.
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2. The next step consists in obtaining the first
dynamic modes through DMD of the unsteady
RANS or Euler flow fields.

3. The first dynamic pressure mode is then ob-
tained at any other frequency through interpo-
lation between the two reference frequencies.
From the interpolated pressure modes, the lift
and moment coefficients are calculated at any fre-
quency and normalized by the amplitude α̂ of the
imposed pitching motion.

The entire procedure can be repeated for the
plunging motion. The plunging amplitude ĥ is
set to 0.1c here. Finally, matrix Q can thus be
computed for a given Mach number using only
four unsteady RANS simulations.

The flutter boundary at Re = 6 × 106 ob-
tained by applying the p-k method in conjunc-
tion with the proposed dynamic mode interpola-
tion methodology is represented by the blue cir-
cles in Fig. 7. Comparison with results from
the literature based on unsteady RANS simula-
tions of the full Fluid-Structure Interaction (FSI)
problem [19] demonstrates that the present ap-
proach provides a very good estimate of the flut-
ter boundary. In particular, the transonic dip is
well captured. Very good predictions are also ob-
tained for the inviscid case (based on Euler sim-
ulations), for which more reference data is avail-
able for comparison, as shown in Fig. 8. Similar
accuracy is achieved as with higher-fidelity meth-
ods, but at a much lower computational cost.
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Fig. 7 : Flutter boundary (flutter speed index Vf
as a function of the Mach number M) for the Iso-
gai case obtained by the present approach based
on viscous flow modeling at Re = 6× 106 (blue
circles) and compared to the time-accurate aeroe-
lastic simulations using the RANS equations of
Timme et al. [19] (black line).
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Fig. 8 : Flutter boundary (flutter speed index Vf
as a function of the Mach number M) for the
Isogai case obtained with the present approach
based on inviscid flow modeling (red triangles)
and compared to time-accurate aeroelastic sim-
ulations using the Euler equations: Timme and
Badcock [19] (dots), Yang et al. [20] (squares),
Hall et al. [21] (diamonds), Alonso et al. [16]
(downward-pointing triangles).
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Fig. 9 compares the viscous and inviscid flut-
ter boundaries predicted by the p-k method using
the proposed methodology. It can be seen that
viscosity reduces the transonic dip, suppresses
the fold in the flutter boundary and the higher-
frequency flutter mode present in the inviscid
case. If the Reynolds number of the flow is re-
duced, it can be seen that the transonic dip is
shifted to higher flutter speed. To further high-
light the advantage of the method, the results ob-
tained with a typical linear panel method are also
shown for comparison in Fig. 9. Although such
methods are very fast, they fail to capture the
transonic dip because they do not model the crit-
ical unsteady phenomena charaterizing transonic
flows (e.g., shock oscillations).
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Fig. 9 : Flutter boundary (flutter speed index Vf
as a function of the Mach number M) for the
Isogai case obtained with the present approach
based on viscous flow modeling at Re = 6× 106

(blue circles), Re = 1× 106 (magenta squares),
Re = 1×105 (black diamonds) and inviscid flow
modeling (red triangles). The green line repre-
sents the results from the linear thin-airfoil the-
ory [1].

Fig. 10 shows the evolution of the system
damping ratios for M = 0.85, which allows the
characterisation of the subcritical behavior of the
system. There are significant differences between
the viscous and inviscid cases. In the viscous
case, only the plunging mode becomes unstable
and the flutter mechanism is less abrupt com-

pared to the inviscid case: the damping drops less
quickly to zero. Moreover, the flutter speed in-
dex obtained with viscous flow modeling is much
higher than the first flutter point present in the in-
viscid case.
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Fig. 10 : Evolution of the damping ratios ζi asso-
ciated with the plunge (continuous line) and pitch
(dashed line) degrees of freedom obtained by the
present approach for M = 0.85. The blue curves
are the viscous flow results at Re = 6× 106 and
the red curves are the inviscid flow results.
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5 Conclusions

The proposed unsteady aerodynamic modeling
methodology based on dominant fluid dynamic
mode interpolation has been demonstrated on
the Isogai wing, using both inviscid and vis-
cous calculations. The methodology is able to
properly predict the flow response to small peri-
odic harmonic oscillations of the structure for a
large range of reduced frequencies through the
interpolation of the first fluid dynamic modes
computed at two nearby oscillation frequencies.
The methodology takes into account the mov-
ing shocks and their interactions with the viscous
boundary layer.

The proposed methodology can be used with
the p-k flutter solution method. It provides a
very good estimate of the flutter boundary for the
2D Isogai airfoil validation case, but at a lower
computational cost than the traditional higher-
fidelity Fluid-Structure Interaction (FSI) simula-
tions. Only four simulations are required per
Mach number to determine the flutter speed.
The methodology being relatively fast, sensitiv-
ity analysis (e.g., effect of Reynolds number vari-
ation) is feasible. The methodology may also
use the same reference aerodynamic solutions
for slightly different mass and stiffness matrices,
which is an important advantage to study the flut-
ter characteristics of slightly different configura-
tions.
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