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Abstract

Turbulent flow over a NACA 4412 airfoil with
an angle of attack AoA = 5◦ was analysed us-
ing an incompressible direct numerical simula-
tion (DNS) at chord Reynolds number of Rec =
4 · 105. Snapshots of the flow field were anal-
ysed using the method of Spectral Proper Orthog-
onal Decomposition (SPOD) in frequency do-
main, in order to extract the dominant coherent
structures of the flow. Focus is given to two-
dimensional disturbances, known to be most rele-
vant for aeroacoustics. The leading SPOD modes
show coherent structures forming a wavepacket,
with significant amplitudes in the trailing-edge
boundary layer and in the wake. To model co-
herent structures in the turbulent boundary layer,
the optimal harmonic forcing and the associated
linear response of the flow were obtained using
the singular value decomposition of the linear re-
solvent operator. The resolvent analysis shows
that the leading SPOD modes can be associated
to most amplified, linearised flow responses. Fur-
thermore, coherent structures in the wake are
modelled as the Kelvin-Helmholtz mode from
linear stability theory (LST).

1 General Introduction

Coherent structures play an important role in tur-
bulent flows, for both drag and noise generation.
The modelling of the said structures using a lin-
earisation of the Navier-Stokes system, for flows

such as jets, boundary layers and wakes, has been
attempted recently by McKeon & Sharma [1],
Cavalieri et al. [2], Abreu et al. [3], Towne et
al. [4], to cite a few examples. Usually such
linearised models lead to a definition of a set of
modes that together describe coherent turbulent
structures. Some of these may play an important
role for aeroacoustics [3]. When one considers
sound radiation by airfoils, wings and blades at
low angles of attack, the dominant aeroacoustic
mechanism is referred to as trailing-edge noise.
In that case turbulent fluctuations are scattered
into acoustic waves by the edge, in a mechanism
with high acoustic efficiency at low Mach num-
bers [5]. It is thus natural to use the cited lin-
earised models to study how coherent turbulent
structures may be associated with trailing-edge
noise noise.

For that matter, a useful, data-driven ap-
proach is Proper Orthogonal Decomposition,
most commonly called POD, [6] is a quantitative
method, or a signal post-processing approach, of-
ten applied to instantaneous fields from experi-
mental, PIV for example [7], or numerical data,
such as DNS or LES [3] in order to identify
the most relevant coherent structures in turbulent
flows. POD generates a set of basis functions
for the modal decomposition, called POD modes.
The leading POD modes captures the most ener-
getic structures, in terms of energy. Nonetheless
if the flow dynamics has predominant structures
the data can often be well represented using just a
few first modes, which will then reflect the dom-
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inant coherent flow structures.
More recently, POD in frequency domain,

also labeled as spectral POD, or SPOD [8], has
been used to obtain coherent structures in tur-
bulent airfoil flows [3]; its success in the educ-
tion of coherent structures can be attributed to
its relationship with the modal decomposition ob-
tained in resolvent analysis, also SPOD is better
suited for identifying physically meaningful co-
herent structures [4]. For this reason, SPOD will
be used in this work to study turbulent structures.

In the present study, a DNS of the incom-
pressible flow over a NACA 4412 airfoil with
an angle of attack of AoA = 5◦ with a Reynolds
number based on the aerodynamic profile chord
Rec = 400000 [9] is studied using a signal post-
processing method SPOD. In terms to use a re-
duced order model to analyse those wavepackets,
the turbulent boundary layer mean flow is used as
a basis for the computation of linearised flow re-
sponse to harmonic forcing, obtained by singular
modes of the resolvent operator at a specific fre-
quencie and wavenumber. This allows an identi-
fication of the optimal harmonic forcing and cor-
responding flow response, and verify if resolvent
modes can be related to observed relevant struc-
tures obtained by SPOD. This approach follows
closely that of Abreu et al. [3]. To analyse the
wake region locally parallel resolvent analysis is
unsuitable, since an unstable Kelvin-Helmholz
mode appears, so the numerical solutions of Orr-
Sommerfeld equation are used, called linear sta-
bility theory (LST) in this paper. The Kelvin-
Helmholtz mode of the wake is obtained as the
only unstable mode in the eigenspectrum.

Results of the present study show wavepack-
ets on the airfoil surface that can me modeled us-
ing a reduced order model, where the boundary
layer is turbulent. This knowledge can be used
to better understand mechanisms of trailing-edge
noise, which can lead to wing modifications so
as to reduce sound radiation. Understanding and
modelling such wavepackets can point to novel
approaches in order to design more silent air-
crafts.

The paper is organized as follows: in Sec. 2 is
described some details about the numerical setup

used in the present analysis. In Sec. 3 is provided
details about the SPOD method, and some results
of the SPOD eigenvalues and convergence anal-
ysis. The resolvent formulation is described in
Sec. 4. In Sec. 5 is presented the mean veloc-
ity profiles used to compute the resolvent analy-
sis. In Sec. 6 the results are presented and dis-
cussed in the following order: in Sec. 6.1 it is
shown the SPOD results, in Sec. 6.2 the com-
parison between locally parallel resolvent anal-
ysis and SPOD for the boundary layer profiles
are presented, and finally it is shown in Sec. 6.3
the comparison between Kelvin-Helmholtz mode
from linear stability theory (LST) and SPOD for
the wake profiles.

2 Numerical Setup

The database analised in this work is described
by Hosseini et al. [9]. In this study, a DNS was
performed to analyse the turbulent flow around
a NACA 4412 profile at a chord Reynolds num-
ber of Rec = 400000, with an angle of attack
AoA= 5◦. An unsteady volume force was used to
force transition to turbulence at 10% of the chord
on both top and bottom sides of the wing. The
mesh was optimized to properly resolve all rele-
vant scales in the flow, and comprises around 3.2
billion grid points. The incompressible spectral-
element Navier-Stokes solver Nek5000 [10] was
used to carry out the simulation. Fig. 1 shows
a visualization of turbulent structures in a flow
snapshot.

3 Spectral Proper Orthogonal Decomposi-
tion

In the present study, POD in the frequency do-
main, or SPOD [8], was employed to analyze
the numerical DNS data, following the procedure
outlined by Towne et al. [4]. Prior to the SPOD
a spanwise average of the fluctuations is per-
formed to focus on the two-dimensional mode,
so all the flow quantities now have no longer a
z-dependence.

SPOD is applied to velocity components u
and v to extract the turbulent kinetic energy.
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Fig. 1 Instantaneous visualization of the DNS
results showing coherent vortices identified by
means of the λ2 criterion.

Before to proceed with the SPOD, a Fourier
transform is applied to the velocity and pres-
sure fields in time to obtain a specifc frequency
of interest ω. So the the transformed quantities
becomes q̂(x,y,ω), where hats denote Fourier-
transformed.

Once the fields are transformed, the SPOD is
applied, by solving the following integral equa-
tion, also used by Abreu et al. [3]:

∫
R(x,x′,ω)Φ(x′,ω)dx′ = λ(ω)Φ(x,ω), (1)

where Φ is the SPOD mode, λ is the corre-
sponding eigenvalue and R is the two-point cross-
spectral density. The matrix R is Hermitian, and
thus eigenvalues are real and eigenfunctions are
orthogonal. Since the number of grid points
is high, it is more efficient to use the snapshot
method [4].

The short-time FFTs required for SPOD to
extract the frequency ω have been taken consid-
ering blocks of 64 snapshots with 75% overlap,
leading to a total number of blocks Nb = 66, so R
is a 66 x 66 matrix. SPOD is calculated numer-
ically using the approach described by Meyer et
al. [11].

In the SPOD method eigenvalues are sorted in

decreasing order from highest to lowest energy.
However the SPOD ensures that the most impor-
tant modes in terms of energy are the first modes,
which are associated with large scale flow struc-
tures. In that case, if the flow has dominant flow
structures, these are therefore reflected in the first
SPOD modes.

The SPOD was analysed for two different
cases: the first case was using the enterely
domain with the contribution of each integral
weight. The second case focus was given at
the boundary layer region by neglecting the in-
tegral weights from the wake region (x/c > 1).
Fig. 2 and 3, for the first and second case, re-
spectively, show the eigenvalues and cumulative
contribution to total turbulent kinetic energy by
each SPOD mode at St = 7.93, which is the same
frequency used by Abreu et al. [3], defined as
St = f c/U∞, where f is the frequency, c is the
aerodynamic chord and U∞ is the free stream ve-
locity. The convergence of SPOD eigenvalues is
relatively fast; we can see for the first case in
Fig. 2 that 53% of the total energy can be recon-
structed using just the first SPOD mode, and the 6
first SPOD modes represent 82% of the total en-
ergy. While for the second case in Fig. 3 the first
SPOD mode contributes to 26% of the total en-
ergy, and the 6 first SPOD modes represent 62%
of the total energy. The energy of the first SPOD
modes is lower when the wake contribution is ne-
glected, since the most part of the total turbulent
kinetic energy comes from the wake, this is why
the wake is neglected in terms to highlight the
structures in the boundary layer region.

3.1 Convergence Analysis

In terms to verify the convergence of each SPOD
mode, or, in other words, verify which modes are
reliable to be analized, a normalized scalar quan-
tity β is defined. The total dataset is separated
into two blocks corresponding to 75% of the orig-
inal dataset and performing the SPOD on each
subset. So βi;k is the normalized projection of the
kth mode of total dataset φk and the correspond-
ing mode of each subset φi;k:
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Fig. 2 (a) Eigenvalues and (b) cumulative con-
tribution to total turbulent kinetic energy by each
SPOD mode for St = 7.93.

βi,k =
< φk,φi,k >√
|φk|2.|φi,k|2

, (2)

where i = (1;2) indicated each subset. The re-
liable modes are those in which β is closest to
one, meaning that the same computation with the
subset leads to a very similar mode. This kind of
analyses was also performed by Abreu et al. [3].

Fig. 4 (a) and (b) show the convergence anal-
ysis for two different frequencies: St = 3.97 and
St = 7.93 respectively. In the present study, we
focused on St = 7.93, since it has a better conver-
gence for the first four SPOD modes.

4 Resolvent Analysis

To perform a further analysis of the boundary
layer coherent structures found in the SPOD re-
sults, a locally parallel resolvent analysis was
done for some stations of the airfoil near the
trailing-edge, taken at x/c = 0.7, x/c = 0.8 and
x/c = 0.9, same stations studied by Abreu et al.
[3], but for a NACA 0012.

The present resolvent analysis follows the
procedure outlined by Tissot et al. [12], also used
in Abreu et al. [3]. Resolvent analysis provides
two orthonormal bases for forcings and associ-
ated flow responses, and each pair of forcing and
response modes is related by a gain. Modes with
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Fig. 3 (a) Eigenvalues and (b) cumulative con-
tribution to total turbulent kinetic energy by each
SPOD mode for St = 7.93.

high gain are expected to be dominant in the flow.
Resolvent analysis requires the linearisation

of Navier-stokes equations isolating the non-
linear terms at the right-hand side. We will for
simplicity consider the locally-parallel problem,
where the mean flow q̄ = [ū v̄ p̄] has its diver-
gence in x neglected and thus varies only in y.
The base-flow U(y) becomes thus independent of
x and t, and the linearised equations are homo-
geneous along these directions, which allows the
parallel-flow Ansatz: q(x,y, t) = q̂(y)ei(αx−ωt),
where hats now denote quantities that are Fourier
transformed in both x and t. Substitution of
the above equations in the linearised Navier-
Stokes and continuity equations, and consider-
ing that the Reynolds number, frequency ω and
wavenumber α are given, leads to a forced lin-
ear problem. The problem in operator notation
becomes

L{q̂}= f̂ (3)

where the L = (iω−A) is the linear operator in
q̂ = [u,v, p], and f̂ represents the nonlinear terms.
The problem is closed with homogeneous Dirich-
let boundary conditions for the velocity fluctua-
tions. On the wall we enforce u(y = 0) = v(y =
0) = 0. In the far field, we have u(y → ∞) =
v(y→ ∞) = 0. The resolvent problem becomes
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Fig. 4 Convergence of the SPOD modes. Satis-
factory convergence is observed for the first four
modes.

q̂ = (iω−A)−1f̂ = R(ω,α)f̂ (4)

where R is the resolvent operator. Now a
singular-value decomposition, or SVD, of R al-
lows to identify the optimal forcing f̂ associated
with the optimal response q̂ related with a max-
imum energy gain. The resolvent modes are or-
thogonal to each other, and they are ranking ac-
cording to their gain σ.

The problem was discretised using a Cheby-
shev pseudo-spectral method [13]. 301 Cheby-
shev polynomials have been used in the discreti-
sation. We have verified that increasing the num-
ber of polynomials does not modify the results.

The frequency ω and wavenumber al pha are
both parameters of the resolvent operator. Fre-
quency was already choosen, since the Strouhal
number was defined, ω = 2πSt. However, the
wavenumber α is not known a priori, since dif-
ferent wave-lengths may appear in the forcing.
To study the effect of α, first was varied α and
studied the first four gains for three cases: x/c =
0.7, x/c = 0.8 and x/c = 0.9, which are shown in
Fig. 5. Similar results were found by Abreu et al.
[3], but for a NACA 0012. One can notice a peak
in all cases at the first gain σ1. There is a clear
dominance of the optimal forcing, corresponding
to an optimal response with a gain that is at more
than one order of magnitude higher than the sub-

optimals, as shown in Fig. 6. To perform the
resolvent analysis was thus used the wavenum-
ber α corresponding to those peaks. These peaks
correspond to disturbances inside the boundary
layer, where with phase speed lower than the free
stream velocity.

Resolvent analysis assumes that the linear
locally-parallel operator L in eq. 3 is stable.
This was verified to be the case for the turbu-
lent boundary layer profiles studied here. When
the analysis is carried out at the wake, an unsta-
ble Kelvin-Helmholtz mode appears, and locally-
parallel resolvent analysis is no longer appropri-
ate. To analyse the wake, we instead resort to
numerical solutions of the Orr-Sommerfeld equa-
tion, referred to as linear stability theory (LST)
in what follows. The same numerical methods
have been used for the discretisation of the Orr-
Sommerfeld equation in the spatial stability prob-
lem. The Kelvin-Helmholtz mode of the wake is
obtained as the only unstable mode in the eigen-
spectrum.

5 Mean Velocity Profiles

The analysed positions, where the mean veloc-
ity profiles were taken, are show in Fig. 7 (a).
The profiles used to solve the resolvent analysis
problem for turbulent boundary layer, were taken
at three different positions x/c = 0.7, x/c = 0.8
and x/c = 0.9, are show in Fig. 7 (b). The
mean velocity profiles used to analyse the wake
region are show in Fig. 7 (c) at stations x/c =
1.05 and x/c = 1.1. The coherent structures at
the wake are modelled as the Kelvin-Helmholtz
mode from linear stability theory (LST), which is
basically a eigenvalue problem from the Navier-
Stokes equation.

6 Results

6.1 SPOD Results

The SPOD results are show in Fig. 8 for chord-
wise velocity fluctuations u and in Fig. 9 for
chord-normal fluctuations v. The results were ob-
tained for St = 7.93, which is the frequency that

5



L. I. ABREU , A. V. G. CAVALIERI , P. SCHLATTER , R. VINUESA , D. HENNINGSON

50 55 60 65

0

5

10

15

20

25

1

2

3

4

(a) x/c = 0.7

50 55 60 65

0

5

10

15

20

25

1

2

3

4

(b) x/c = 0.8

55 60 65 70

0

5

10

15

20

25

1

2

3

4

(c) x/c = 0.9

Fig. 5 First four gains as a function of the wavenumber for St = 7.93.

0 5 10 15 20

SPOD mode

10
-2

10
0

10
2

(a) x/c = 0.7

0 5 10 15 20

SPOD mode

10
-2

10
0

10
2

(b) x/c = 0.8

0 5 10 15 20

SPOD mode

10
-2

10
0

10
2

(c) x/c = 0.9

Fig. 6 Resonvent gains for St = 7.93.

shows better convergence (see Fig. 4).
The first and second SPOD modes (Fig. 8

and Fig. 9) show a weak wavepacket propagat-
ing from the trailing-edge toward the wake re-
gion, where the amplitudes are highly amplified.
In those cases we badly see the boundary layer
structures, due to the magnitude of the wake.

In terms to highlight the structures in the
boundary layer region, the wake contribution is
neglected in SPOD by imposing zero at the inte-
gral weights in the wake region (x/c > 1). SPOD
results in that case are show in Fig. 10 for chord-
wise velocity fluctuations u and in Fig. 11 for
chord-normal fluctuations v. The results were
also obtained for St = 7.93.

The first and second SPOD modes (Fig. 10
and Fig. 11) show now a wavepacket on the up-
per suface of the airfoil with more pronounced
amplitudes near the trailing-edge region. This
remarkably coherent wave shown in all quanti-

ties of the first two SPOD modes appears, even
though the boundary layer is in a fully-turbulent
state. Remind that the two-dimensional mode of
the field was taken prior to the SPOD; this is thus
a coherent, two-dimensional wave within the tur-
bulent flow.

The SPOD results for the u component (Fig.
10) show the fluctuations near the wall with phase
opposition to disturbances from the wall to the
boundary-layer edge. This suggests a behaviour
of Tollmien-Schlichting waves although this is a
turbulent boundary layer. The appearance of such
waves in turbulent boundary was also found by
Hussain & Reynolds [14], where turbulent chan-
nel flow was forced using vibrating wires, the tur-
bulent boundary layer appears to exhibit T-S-like
waves as well.
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Fig. 7 Mean velocity profiles: (a) positions, (b)
boundary layer and (c) wake for different x/c po-
sitions.

6.2 Resolvent analysis vs. SPOD Results

To model the waves in the boundary layer ob-
tained using SPOD from Fig. 10 and 11 where
the integral weights from the wake region were
neglected, resolvent analysis was used as a
reduced-order model. The results of the compar-
ison between leading SPOD and resolvent modes
are shown for the frequency St = 7.93 for bound-
ary layer stations taken at three different posi-
tions x/c = 0.7, x/c = 0.8 and x/c = 0.9 in Fig.
12, 13 and 14 respectively.

We observe that the first SPOD mode from
the DNS in general show a good agreement with
the first resolvent mode for x/c = 0.7. Since
we deal with a turbulent boundary layer, an ex-
act match is not expected, but the comparisons
presented here show that resolvent analysis pro-
vides a good reduced-order model for the two-
dimensional disturbances considered here, which
play an important role in the radiation of trailing-
edge noise [3]. The relative low amplitude of the
two-dimensional disturbances within the bound-

(a) Mode 1

(b) Mode 2

Fig. 8 SPOD at St = 7.93 for chordwise velocity
fluctuations u.

ary layer tends to ease the application of lin-
earised models.

For positions closer to the trailing edge
(x/c = 0.8 and 0.9) the agreement deteriorates,
but the general features of the SPOD mode are
captured by the optimal response from resolvent
analysis. The worse agreement at downstream
positions may be due to the proximity of the trail-
ing edge, which leads to a stronger inhomogene-
ity in x, making the locally-parallel assumption
invalid.

The present results suggest that reduced-
order models for trailing-edge noise from air-
foils could be built using a source model based
on resolvent analysis for two-dimensional distur-
bances, which, when advected past the trailing
edge, are scattered into acoustic waves; the scat-
tering mechanism can be modelled using a tai-
lored Green’s function [15].

6.3 LST vs. SPOD Results

In terms to model the waves in the wake region,
LST, which is also a reduced order model, was
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(a) Mode 1

(b) Mode 2

Fig. 9 SPOD at St = 7.93 for chord-normal fluc-
tuations v.

used. The comparison results between leading
SPOD from Fig. 8 and 9 and Kelvin-Helmholtz
modes from LST are shown for St= 7.93 at wake
stations taken in two different positions x/c =
1.05 and x/c = 1.1 in Fig. 15 and 16 respec-
tively. Close agreement is found between stabil-
ity eigenfunctions and SPOD modes at the wake,
showing that wake disturbances can also be mod-
elled using the linearised operator.

7 Conclusion

In the current work we have used SPOD to anal-
yse the flow around a NACA 4412 airfoil with an
angle of attack AoA = 5◦ at chord Reynolds num-
ber of Rec = 400000, looking for coherent struc-
tures that could be modeled using linear stability
theory. By doing so, we achieved a proper sepa-
ration of spatially and temporally coherent struc-
tures, which are either hidden in stochastic turbu-
lent fluctuations or spread over a wide frequency
range. We found in the leading SPOD mode,
which is statistically converged in our database,
a coherent wave that propagates over the upper

(a) Mode 1

(b) Mode 2

Fig. 10 SPOD at St = 7.93 for chordwise ve-
locity fluctuations u imposing zero at the integral
weights in the wake region (x/c > 1).

surface of the airfoil, with higher amplitude at the
trailing edge region.

The observed two-dimensional, wavy distur-
bances in the leading SPOD modes were mod-
elled using locally parallel resolvent analysis for
the boundary layers, where turbulent mean pro-
files were used as base flows, and locally parallel
linear stability analysis for the wake. Results for
profiles in the trailing-edge region (x/c = 0.70,
x/c= 0.80 and x/c= 0.90) show good agreement
between the optimal flow response and the lead-
ing SPOD mode; moreover, the optimal response
has a gain which is at least an order of magnitude
higher than the suboptimals, which explains its
presence in the turbulent boundary-layer fluctua-
tions. The results highlight resolvent analysis as
a pertinent reduced-order model for the relevant
fluctuations, leading to predictions of the struc-
ture advecting waves reaching the edge. Results
for the wake profiles show a good agreement with
the linear stability theory as expected, since the
Kelvin-Helmholtz mode has significant growth
rates for wakes; such strong spatial growth sim-
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(a) Mode 1

(b) Mode 2

Fig. 11 SPOD at St = 7.93 for chord-normal
fluctuations v imposing zero at the integral
weights in the wake region (x/c > 1).

plifies modelling in the near wake, similar to
what is seen in turbulent jets [2]. Further numer-
ical and experimental work aiming at the charac-
terisation of such structures is promising.
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Fig. 14 Resolvent analysis vs. SPOD for St =
7.93 at x/c = 0.9.
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Fig. 15 LST analysis vs. SPOD for St = 7.93 at
x/c = 1.05.
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Fig. 16 LST analysis vs. SPOD for St = 7.93 at
x/c = 1.1.
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