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Abstract  
This paper addresses a design optimization 
problem of a multistage missile during a 
preliminary design phase. One of the most 
important points of the design of long-range 
surface-to-air missiles is to find the minimum 
weight available to carry out the mission. In this 
study, the weight and trajectory are optimized at 
the same time to solve the problem. Delta-v 
approach, commonly used in simple analysis of 
rocket performance, is used to deal with 
simultaneous trajectory and weight optimization 
problems. The velocity changes during the flight 
is assessed considering mission constraint, 
gravity, and aerodynamic drag forces. 
Validation and verification are also conducted 
by comparing the results of two different 
optimization methods. 

1  Introduction 
Multistage surface-to-air missiles are designed to 
protect friendly bases from long-range threats or 
to intercept targets at a higher altitude. However, 
design of the missiles is a great challenge 
because of its highly complex and complicated 
nature. In the beginning of the design process, 
there exist various rough design concepts and 
requirements depending on specific mission 
objectives. During the preliminary design phase, 
tedious and iterative steps are repeated to find the 
optimal missile configuration. 

Thus, integrated tools for system level 
optimization are required to reduce cost and time. 
Some researchers have solved a missile design 
problem using multi-objective optimization 
(MOO) or multi-disciplinary optimization (MDO) 
[3-5]. Anderson has optimized 29 design 

parameters at the same time but long calculation 
time is inevitable due to the use of several 
software to calculate subsystem specifications 
[6]. 

In this paper, to reduce the calculation time, 
delta-v approach is used. Velocity constraint is 
imposed considering the velocity losses due to 
gravity and aerodynamic drag force. Trajectory 
and stage optimization is conducted including 
additional mission constraints. Two different 
optimization methods are used to verify the 
results. The rest of this paper is organized as 
follows. The optimization problem is formulated 
in section 2. Section 3 briefly introduces 
optimization methods. Then, optimization results 
are depicted and compared in section 4. Finally, 
section 5 concludes the paper. 

2  Problem Formulation 

2.1 Missile System 
The surface-to-air missile system is composed of 
two propulsion stages and a kill vehicle. The 
objective of the rocket motors is to deliver the kill 
vehicle to the predicted intercept point (PIP). At 
the beginning, the first stage rocket motor is 
ignited and the missile is launched vertically. 
After the first boosting phase, the empty rocket 
motor is jettisoned and the missile glides. The 
second rocket motor ignites and the missile steers 
its direction to the target. At the end of the second 
boosting phase, the second stage is separated and 
the kill vehicle flies to the PIP.  

The thrust is proportional to the weight of 
each stage at the end of the boost phase. 
Aerodynamic coefficients are calculated using 
Missile DATCOM. The missile is 0.4m in cross 
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sectional diameter and 3.6m in length, which is 
defined as the reference shape to calculate the 
aerodynamic coefficients. It is assumed that even 
if the weight of each stage is changed in the 
subsequent stage optimization problem, the 
slenderness ratio does not change. Thus, the 
change of the weight does not significantly affect 
the change of aerodynamic coefficients. 

2.2 Delta-v approach 
The ideal rocket equations, which is derived from 
Newton’s second law of motion, is expressed as 
follows [1, 2].  

 lnmissile eV v∆ = ⋅ Λ   (1) 

where missileV∆  is the maximum change of speed 
of the missile, ev  is the effective exhaust velocity, 
and Λ  is the propellant mass ratio, or burn-out 
mass ratio. The effective exhaust velocity can be 
expressed by using specific impulse, and the 
relationship to each other is defined as the 
following equation. 

 0e spv g I= ⋅   (2) 

where spI  is the vacuum specific impulse in 
seconds, and 0g  is the standard gravity. The 
burn-out mass ratio is defined as: 
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where 0m , fm , sm , pm , and plm  are the initial, 
final, structural, propellant and payload mass, 
respectively. 

For multistage missiles (or rockets), the 
ideal velocity increment is the sum of the 
velocity increment of each propulsion stage.  
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The missile must provide the required 
velocity to intercept the target with sufficient 
velocity. In addition, the missile loses its velocity 
due to various factors: gravity, aerodynamic drag, 
steering, ambient pressure change, and 
performance margin. Among them, gravity and 
aerodynamic drag have the greatest influence on 

velocity loss. From the missile kinematics in Fig. 
1, the gravity loss can be calculated by 
integrating gravity acting on the velocity 
direction. 

 ( )
0

sinft

g t
V g t dtγ∆ = ⋅∫   (5) 

where ( )tγ  is the missile flight path angle, 
which is a function of time. The gravity also 
varies depending on the altitude. In general, as 
the altitude increases, the magnitude of gravity 
decreases, however, this study assumes that the 
gravity is fixed as 9.8m/s2 relative to sea level 
and does not decrease with altitude. When 
integrated, a greater value is calculated than the 
actual loss of velocity due to gravity, which is 
used as a design margin for missile performance. 

The aerodynamic drag force is defined as : 

   21
2D ref DF V S Cρ=      (6) 

Then, the velocity loss by aerodynamic 
force can be calculated by integrating eq. (6) 
divided by the missile weight. 

 
( )0 0
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D
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∆ = ⋅ = ⋅∫ ∫   (7) 

Finally, missileV∆  must satisfy following 
inequality. 

 missile mission g dV V V V∆ ≥ ∆ + ∆ + ∆   (8) 

 

Fig. 1 Missile Kinematics 
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2.3 Stage Optimization 
We can define the objective function for the stage 
optimization problem to find minimum initial 
weight of the missile (or gross lift-off weight, 
GLOW). 

 0
1
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Dividing by plm   and taking the natural 
logarithm, Eq. (9) can be expressed as follows. 
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where iε  is the structural ratio and it depends on 
material technology. Constraint for the mission is 
given as follows. 
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2.4 Trajectory Optimization 
Assume that the missile moves along the pitch 
plane, then, the equations of motion for the 
trajectory optimization problem can be expressed 
as Eq. (12). Here, the missile weight is also 
considered as a state variable. The initial value of 
the weight and burning rate c  is predetermined 
in the previous stage optimization step.  
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where x , y , xV , and yV  are the downrange, 
altitude, x -directional velocity, and y -
directional velocity, respectively. T , D , and L  
are the thrust, drag force, and lift force, 
respectively. θ  is the pitch attitude angle and γ  
is the flight path angle. Two angles are related to 
each other by: 

 θ γ α= +   (13) 

where α  is the angle of attack, which is used as 
the control input in this study. 

3 Optimization Methods  
To solve optimal control problems numerically, 
a wide range of approaches have been developed. 
These methods are divided into two categories, 
indirect methods and direct methods [7]. In direct 
methods, the state and/or control of the original 
optimal control problems are approximated using 
various interpolation functions. The direct 
methods are re-classified according to how the 
discretization is conducted. When only the 
control inputs are approximated, the method is 
called a control parameterization method. When 
both state and control are approximated, the 
method is called a collocation method.  

Collocation methods are further subdivided 
into two methods: (1) Local collocation method 
and (2) Global collocation method. In this paper, 
the given optimization problem is solved through 
these two methods. 

3.1 Local Collocation Method 
In local collocation, time interval is divided into 
a series of subintervals. The optimal solution 

( ) ( )( ),x t u t  is approximated by suitable 
functions for each interval, and the dynamic 
constraints are imposed to derive necessary 
algebraic equations. Among the local collocation 
methods, Hermite-Simpson method transcribes 
the states into a cubic polynomial in the interval 
( )1,k kt t + . 
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where ( )x τ  with respect to t  is calculated as: 

 ( ) ( )2
1 2 3

1 2 3d dx x c c c h
dt h d

τ τ τ
τ

= = + +   (15) 

For each interval, the coefficients should be 
calculated to satisfy the boundary conditions. 
Furthermore, in order to satisfy the dynamics 
constraints, the slope of the interpolation 
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function at 1 2τ =  should be equal to the 
derivative calculated from the state equation. 

 ( ) ( ) ( )( )
1
2

, , ,c c c
d x h f x t u t p t
dt τ

τ
=

= ⋅    (16) 

where 1 2c k= + . In summary, we obtain 

 ( )1 14
6k k k c k
hx x f f f+ +− = + +   (17) 

which is well-known as Simpson’s rule. 

3.2 Global Collocation Method  
Among the global collocation methods, 
pseudospectral methods are widely used. In this 
method, the states are approximated by 
combination of interpolating polynomials and 
collocation is performed at the chosen points. 
The exact number of polynomials depends on the 
collocation points, but in general, 

 ( ) ( ) ( ) ( )
1

N

i i
i
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where ( )1, , Nτ τ  are the N  collocation points. 
The cost is approximated as 
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where ( ) 1, ,i i Nω =   are the weights. The 
resulting collocation equation forms also depend 
on the collocation points, in general, 

 ( )0 ,
2

f
k k

t t−
× =D X F X U   (20) 

After a continuous infinite dimensional 
optimal control problem is transcribed and 
converted into a nonlinear programming problem 
(NLP), then a NLP solver is required to obtain 
optimization results. Most common methods are 
sequential quadratic programming (SQP) and 
interior point (IP) methods. In this paper, we 
combine Hermite-Simpson and SQP method and 
pseudospectral method and IP method to solve 
the problem in two different ways. 

4 Optimization Results  

4.1 Optimization Scenario 
In this study, the mission is given as follows. The 
PIP is set as (60, 100) km. The objective of the 
mission is to deliver the kill vehicle of 150 kg to 
the PIP with sufficient velocity. Eq. (8) can be 
modified as following equation.  

2,000missile g d misisonV V V V m s∆ −∆ −∆ ≥ ∆ =   (21) 

where Eq. (21) is defined as an inequality 
constraint. 

The bounds of state variables, control input 
and the other optimization parameters are given 
below. 
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The optimization using local collocation 
method is conducted with MATLAB build-in 
function and global collocation method is 
conducted by using GPOPS, which is an optimal 
control problem solver. In Hermite-Simpson 
method, optimization results are very sensitive to 
the number of nodes, scaling factor, initial 
condition and many other factors. To verify the 
results from GPOPS, the bounds for the stage 
weights in the local collocation method are set 
near the results from the global collocation 
method, and we solely observe the convergence 
of the optimization result. Other missile 
specifications are summarized in the table below. 

Table. 1 Missile Specifications 

Variables Stage 1 Stage 2 

Ref. Diameter (m) 0.4 0.4 

Ref. Length (m) 1.6 1.2 

Propellant Ratio 0.83 0.85 

spI  (sec) 250 265 

maxa  (g) 20 10 



 

5  

MULTISTAGE MISSILE TRAJECTORY AND STAGE OPTIMIZATION 
VIA DELTA-V APPROACH 

The cost function is to minimize the total 
GLOW with Eq. (10). 

4.2 Results  
The optimization results of two methods are 
compared and presented through Fig. 2 to 5.  

 
Fig. 2 Trajectory Comparison 

 
Fig. 3 Velocity Comparison 

 
Fig. 4 Mass Profile Comparison 

 
Fig. 5 Angle of Attack Comparison 

In both methods, almost identical trajectory 
is achieved in Fig. 2, and at the end of the flight, 
the kill vehicle reaches the designated PIP. The 
state variables, including weights, and free flight 
time between first and second stage rocket are 
defined as the other optimization parameters. As 
illustrated in Fig. 3 and 4, there are some 
difference in calculated free flight times for each 
method. The optimal free flight time in Hermite-
Simpson method is 5.17 seconds and that of the 
GPOPS is 6.6 seconds, but they are still similar. 

Fig. 3 shows that the velocity of the kill 
vehicle is calculated as 2,000m/s at the end of the 
flight. For the delta-v approach, the velocity 
changes are only considered during the boost 
phase. Given the loss of velocity due to gravity 
and drag, the velocity obtained by the solid 
rocket motor is specified to be 2,000m/s in Eq. 
(21). Actually, the velocity at the end of the 
second boosting phase is calculated as 2,300m/s, 
which is greater than expected. After the 
propulsion, the kill vehicle flies towards the PIP, 
- slowed down by drag and gravity - resulting in 
2,000m/s. There are more factors that could 
cause the loss of velocity in real case, so it is 
appropriate to use the inequality constraint and to 
specify the required velocity in this problem. 

As mentioned above, the convergence of the 
local collocation method is determined based on 
the number of nodes, the initial conditions. Even 
if the result converges, there may exist large 
differences in the value of optimization results. 
Therefore, the results obtained from the global 
collocation method are used in this study to limit 
the bounds of the weights in Hermite-Simpson  
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method, and the convergence of the results is 
observed within a given bound. The weight 
profile is similarly optimized in Fig. 4. In the 
Hermite-Simpson method, the weight of each 
stage is calculated at 453.1kg, 155kg, and for 
GPOPS, is calculated at 456.1kg, 150kg; the total 
weight differed by about 3kg. 

In Fig. 5, the angle of attack results, defined 
as optimal control input, are compared. In the 
Hermite-Simpson method, 17, 5, 6, and 5 nodes 
are used at each of the four flight phases to 
approximate the state variables and control 
inputs. The control inputs are linearly 
approximated. On the other hand, the 
pseudospectral method transcribes the control 
input into interpolation functions. Thus, Hermite-
Simpson method has rougher results compared to 
those of the pseudospectral method, but the 
overall tendency is similar. 

5 Conclusion  
In this paper, two methods are used to 

optimize the weight and trajectory of surface-to-
air missiles. The objective function is defined as 
to minimize take-off weight in order to find a 
minimum weight system capable of achieving a 
given mission. Since the velocity losses due to 
gravity, drag, etc. occur significantly in the high 
altitude task, delta-v approach, which is used for 
simple analysis of the performance of launch 
vehicles, is adopted to achieve the sufficient 
velocity required for the mission. Pseudospectral 
and Hermite-Simpson method are used to 
optimize the given problem. In particular, the 
convergence of Hermite-Simpson method is 
determined by various factors; or the difference 
between the converged optimal results is very 
large. Thus, the weight results obtained from the 
pseudosepctral method are used to limit the 
search range and the convergence is observed 
within the given bound.  

The results obtained using the two methods 
are very similar, and for weight optimization, the 
total weight difference calculated is within 3kg, 
although the search bound is limited. For optimal 
control inputs, the pseudospectral method 
produces more elaborated results, but the overall 
trend is similar in both cases. 
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