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Abstract

Fully turbulent wind turbine computational fluid
dynamics simulations have been shown to over-
predict the aerodynamic performances. To en-
sure a correct prediction, modelling of flow tran-
sition from laminar to turbulent over the blade
is becoming necessary. While several transi-
tional turbulence models exist, the one equa-
tion intermittency Y model coupled with the k-
o SST turbulence model offers a simple frame-
work against wide range of generic industrial
application. However, the model is yet to be
calibrated for certain cases especially for exter-
nal aerodynamic flows at low turbulent intensity.
In this paper, the epistemic uncertainty of sev-
eral model constants related to the transitional
triggering function is investigated using machine
learning. The procedure is demonstrated for the
S809 airtoil. It was found that: (a) some coeftfi-
cients have a large impact on the results at high
angles of attack, causing fluctuation of the results
and (b) the calibration of the turbulence model
is influenced by several factors, for instance, the
solver limiters.

1 Introduction

Epistemic uncertainties are inherent to any com-
putational model due to our lack of knowledge
of some of the model parameters. The closure
coefficients are a common source of epistemic
uncertainty in a turbulence model. The model

equations that are created to mitigate the closure
problem contain coefficients which values are de-
termined from calibration with experimental val-
ues [1]. It is for some of these so—called closure
coefficients that a prior uncertainty interval is de-
termined. Cruz et al. [2] for instance performed
computational fluid dynamics (CFD) calculation
with several turbulence models and found that
a zero—equation model gives lower root mean
square (RMS) error than a two—equation model.
This is because the latter needs a few constants
that are often fine—tuned for specific applications,
thus showing that a standard turbulence model
coefficients do not accurately represent the tur-
bulence properties of the flow. Yarlanki et al. [3]
also concluded that turbulence coefficients are
usually approximated from simpler geometry and
it is plausible that these coefficients need further
calibration and the standard values may not work
well. Sgrensen et al. mentioned that:

"Determining the empirical corre-
lations by numerical optimization,
along with debugging the model, de-
mands a very large amount of com-
putations, and it is the hope that
other researchers can confirm the
present expressions by implementa-
tion in other flow solvers [4]."

Upon reflection from this statement, it is there-
fore necessary to perform a fast technique to cali-
brate the turbulence model, in this case, machine
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learning algorithm seems to satisfy the purpose
as previously proved in [5]. In addition, the ne-
cessity to calibrate the intermittency transition
model is explicitly mentioned in Ansys Docu-
mentation as followings:

"The vy transition model has only
been calibrated for classical bound-
ary layer flows. Application to other
types of wall-bounded flows is pos-
sible, but might require a modi-
fication of the underlying correla-
tions [6]."

This model was evaluated previously by Colonia
et al. [7] at Re larger than 1 - 10° by calibrating a
certain parameter of the model. However a big
loophole remains as a further complex calibra-
tion involving more model correlations are neces-
sary by means of further reducing the uncertainty
quantification in the CFD calculation.

The decision to calibrate the transitional
rather than fully turbulence model for wind tur-
bine application is explained here. Without incor-
porating the influence of transitional effect, the
prediction of flow over the wind turbine blade
will incur an over estimation of the total drag
to an incorrect prediction of the blade load and
performance. With that, the modelling of tran-
sitional flow from a laminar to fully turbulent
boundary layer is essential since it can improve
the accuracy and capability of CFD technique to
simulate the actual physics of the flow field more
realistically by exploiting the possible presence
of laminar flow. By taking into account the transi-
tion process during the design phase of the blade,
it may play a compelling role to maximize the
aerodynamic performance at a specific operating
condition without compromising its performance
in a fully turbulent flow. Unlike the fully turbu-
lent simulation, the performance is improved be-
cause the existence of the transition model could
delay the transition to turbulence while maintain-
ing the favourable pressure gradient, in turn re-
ducing total drag [8]. This phenomenon was ob-
served as simulated by Menter et al. [9] for 2D
and 3D wind turbine cases by which the out-
put torque of the turbine differs by 80% between

the two approaches. This observation is one of
the reasons that explains the necessity of using
transition prediction models in CFD-based inte-
grated design frameworks.

Nevertheless, this important effect is not in-
cluded in most of current CFD simulations be-
cause the transitional modelling does not pro-
vide similar broad spectrum of CFD—compatible
model formulations that exist as for the fully tur-
bulent flow models. According to Menter and
Langtry [10], there are two reasons that lead to
this situation. Firstly, different applications have
their specific mechanism to trigger the transition
1.e natural, bypass or separation—induced separa-
tion. Secondly, the conventional Reynolds aver-
aged Navier—Stokes (RANS) equations cannot be
easily incorporated to the description of transi-
tional flows in which the linear and non-linear
effects are relevant. This is because of the diffi-
culty to apply the transition process since RANS
eliminates the effect of linear disturbance growth.
Yet, much like in fully turbulence modelling, it
is crucial to develop engineering models that can
be applied in wide different application areas and
accuracy requirements.

The transition prediction methods range from
generic empirical approach utilizing the linear
stability equation (LSE) such as the eV ap-
proach [11, 12], to parabolic stability equation
(PSE) and more recently the one equation in-
termittency, Y model [13] based on the earlier
two equations Local-Correlation based Transi-
tion Modelling (LTCM) of y— Reg [9, 14, 15].
According to Mayda and Van Dam [16], wind
turbine blade typically operates at Reynold num-
ber, Re, on the order of 10°. At this order, the
airfoils are very sensitive to the Re thus the de-
velopment of laminar separation bubbles is pos-
sible. Several works were conducted to accu-
rately predict the location of transition. Windte
et al. [17] and Lian et al. [18] for instance has
utilized the eV coupled with CFD to study the
transition for 2D cases. Although the stabil-
ity based methods were very successful in pre-
dicting the transition for many years, they are
not compatible with general-purpose CFD meth-
ods as typically applied in complex geometries.
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The reason is that these methods require a priori
knowledge of the geometry and the grid topol-
ogy. Due to this reason, Langtry and Menter [ ! 5]
proposed a new two equations Local-Correlation
based Transition Modelling (LTCM) by formu-
lating a set of CFD—compatible transport equa-
tion which allow combining experimental corre-
lations in a local fashion with underlying turbu-
lence model. In the earlier version, two addi-
tional transport equations, one for the intermit-
tency and the other for the transition onset cor-
relation were defined. Sgrensen [4] attempted
to use this transition model coupled with RANS
solver for a 2D wind turbine airfoil and full ro-
tor configuration. Similar initiative was also con-
ducted by Khayatzadeh and Nadarajah [8] and
both showed promising results. In a more re-
cent effort, while conserving the original feature
of the original LTCM model, a simplified version
was released by reducing the formulation to a sin-
gle ¥ equation only. This updated model, while
conserving the original LTCM feature was vali-
dated against generic turbomachinery and exter-
nal aeronautical test cases by Menter et al. [13]
for Re less than 500 - 10° and found good agree-
ment with the available experimental data, and
some of the coefficients were adjustable to allow
for fine tuning of the model.

The work in this paper is build on two main
objectives: 1) exploit machine learning algorithm
as a fast technique to assess the sensitivity of the
closure coefficients towards the output quantities
of interest and 2) calibrate the closure coefficients
of the one—equation intermittency transition tur-
bulence model by reducing the discrepancies be-
tween the experimental data and numerical re-
sults for subsonic flow around S809 airfoil. The
work, therefore, assumes that the experimental
data provide a reasonable accuracy which can be
used for calibration, and are error—free. This as-
sumption may not be fully met, but the data set
is the only one available. To exploit the avail-
ability of high—performance computer (HPC) fa-
cility, the numerical calculations were performed
on the HPC of the University of Southampton
known as Iridis4. In this paper, the constants that
are directly influenced by the transition trigger-

Machine Learning Algorithm

ing function of the y—equation model, are iden-
tified and calibrated for the S809 wind turbine
airfoil, at Re=2 - 10° at various angle of attacks.
Through an approach based on machine learning
techniques, a modification of the correlation to
improve the results is presented and compared
against the fully turbulent simulation and exper-
imental data. The current initiative is to further
calibrate the correlations by means of a machine
learning—based adaptive design of experiments
(ADOE) technique as similarly utilized and de-
scribed by Da Ronch et al. [19] based on surro-
gate models. To perform the sensitivity analy-
sis and the model calibration, a surrogate model
resembling the dependency of the closure coeffi-
cients and the output quantities of interest is con-
structed. The crucial aspect of this methodology
is to maintain an accurate representation of the
system behavior with a very minimum number of
CFD simulations, explaining the key attribute of
the ADOE.

A description of the flow solver and the
machine—learning methodology to calibrate the
closure coefficients of the intermittency turbu-
lence model is presented in Section 2. A com-
prehensive formulation of the model as well as
the required necessary modifications to both the
transition and the underlying k—® SST turbulence
model is included. Then Section 3 introduces the
test case used in the current study and the find-
ings are presented. Finally, Section 4 denotes the
conclusions as well as future recommendations.

2 Methodology

Two computational software are used in the
framework. Firstly, the aerodynamic calculations
are performed by commercial CFD software AN-
SYS Fluent and the description of the intermit-
tency turbulence model is also included in Sec-
tion 2.1. Section 2.2 briefly discussed the cali-
bration of the closure coefficients by the software
Noesis Optimus [20].
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2.1 Flow Solver

ANSYS Fluent was chosen to demonstrate the
consistent integration of the ADOE with a well—
established CFD tool. The incompressible fluid
is solved by finite volume pressure based solver.
SIMPLE pressure—velocity coupling scheme was
chosen to solve the transition turbulence model
coupled with the k—® SST. The pressure is dis-
cretised by second order. The spatial discretisa-
tion of the momentum, turbulent kinetic energy
and specific dissipation rate are specified to sec-
ond order upwind accuracy.

2.1.1 Turbulence Model Formulation

For detailed explanation of the intermittency tur-
bulence model, the reader is referred to Menter
et al. [13] by which the definition of the nota-
tions used and equations mentioned in this work
are maintained as in the reference. The transport
equation for the intermittency 7y transition model

min(1+ Cpgiher, Chm),

Fpg(Mor) = {

The value of Reg, is adjusted in the favorable and
adverse pressure gradients regions by the con-
stants Cpg; and Cpgp, respectively. In order to
correct the Reg. in separation region, Cpg3 1S in-
cluded. From Eq. 2, it is clear that the Reg,
depends on the pressure gradient parameter, Ag.
In the coupling with the SST turbulence model,
an additional term, P/™, in Eq. 4 was intro-
duced into the turbulent kinetic energy produc-
tion term (k—equation) to ensure the transition
process is more reliable when it is developing
under low Tu or/and when it starts in a separa-
tion bubble. The "'max(3C.pu — pt,0)’ switches
this additional term off when the transition pro-
cess is completed and the boundary layer is in
fully turbulent state when the turbulent viscosity,

pr > 3Cseppt.

Plim — 5C; max(y—0.2,0)(1—y)

lim )
F,)"max (3Cseptt — pr,0) S

min(1+ Cpgarer + Cpgz min|[Agr +0.0681, 0], %2)7

is given as:
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The transition source term, Py, is a function of
a correlation in the form of critical momentum
thickness Reynolds number, Reg., given as fol-
low

Rege(Tur,Ag) = Cry1 +Crua o(=Crus Tur Fpg(ho))

(2)
The minimal value of the Reg,, is determined by
the constant Cry; whereas its maximal value is
controlled by the sum of Cry1+Cry2. The Crys
constant defines the rate of decay of the Reg. as
the turbulence intensity, Tu increases. The sub-
script L in the equation denotes the local value
of the respective parameter. To incorporate the
transition effect to the streamwise pressure gra-
dient, the constant Fpg is introduced and reads as

for hg;, > 0.

3
for Aoy < O. )

In addition, the triggering transition func-
tion relies on the vorticity Reynolds number, Re,
rather than Reg. as in Eq.(4) of Menter et al. [13]
or similarly given as

Re,

2.2 Reg, )

Fonser =
The strong effect of the pressure gradient can
be incorporated by calibrating the 2.2 factor of
this equation as shown by Colonia et al. [7], or
through the correlations of Eq. 2 and Eq. 3. Ac-
cording to Menter et al. [13], the latter approach
is more favorable.

Epistemic Interval Based on previous studies,
7 parameters having correlation to the transition
equations have been identified herein, namely the
Crui, Cruz, Crus, Cpci, Cpca, Cpes, and Csgp,
and will be calibrated in the present work through
the machine learning technique. One of the is-
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sues encountered was to identify the appropriate
range for these constants for the calibration. Ac-
cording to Menter et al.[13], it is given that the
value of Fpg is always positive while the con-
stant C%’l and C%lz are equal to 1.5 and 3.0
respectively. With this information, the suitable
range of Cpgy and Cpgy for -0.1< Ag < 0.1 can
be determined from Eq. 3. Another proposed
modification is to rescale the value of Cry and
Crya. According to the Tollmien—Schlichting
limit of stability, the minimum value of Reg,
is 163, which is directly related to the constant
Cryi [21]. Hall [22] on the other hand, suggested
that this value should be 320.0. In order to deter-
mine the range of Cry, the reader is referred to
Fig. | similarly found in [21]. At given Tu level
as prescribed in the experimental procedure, the
range of Reg. can be determined. For instance, at
0.02% Tu level, the value of Reg,. varies between
1150 to 3000. With known lower and upper lim-
its of all of the other constants in Eq. 2 apart from
the Cry3, the range of this parameter can be de-
termined. The nominal value and limits of these
constants are summarized in Table 1.

3200

@ Rys= 163 +exp(6-91 —<) start of transition (zero pressure gradient)
(2) Rog=2-667 Rs end of transition

i\ @ Re=320 + exp(7-T —0-4475¢) end of transition (Hall and Gibbings )

1600 2000 2400 23800

800 1200

400
T

0 1 2 3 4 5 6 7 8 9 10

Freestream turbulence level, %

Fig. 1 Momentum thickness Reynolds number
at start (Rgg) and end (Rgg) of transition for zero
pressure gradient, reproduce from [21].

Machine Learning Algorithm
2.2 Machine-learning Technique

The Noesis Optimus software platform provides
an iterative adaptive DOE methodology strongly
based on machine learning techniques. The
ADOE entails three main steps: 1) the regions
in the design space that are difficult to model
are identified; 2) The design points in those area
are distributed iteratively; and 3) the surrogate
model that best fits the results obtained from de-
sign of experiment (DOE) plan is selected auto-
matically. The strategy used is to build designs of
experiments that is based on an explicit trade—off
between reduction in global uncertainty and ex-
ploration of regions of interest. This framework
analyses the data history to distribute the design
points of the next iterations in areas of the pa-
rameters space considered of interest. Two oppo-
site factors determine the choice of new sample
for the design points namely the space—learning
and feature—learning. The objective of the space—
learning is to explore the new design space and
filling it uniformly without considering any in-
formation about the response of the model. The
feature—learning is used to improve accuracy of
the surrogates of critical areas of the design space
by adding new samples in those area. The driven
factor that determine reliability of the machine—
learning approach adapted by Noesis Optimus is
the capability to identify the best possible sur-
rogate models for a given set of design points.
The surrogate models identified by the ADOE are
then employed to efficiently evaluate the sensitiv-
ity of the turbulence model closure coefficients
towards the aerodynamic features and then cal-
ibrate the values of these coefficients based on
the experimental data. For further detail of this
machine-learning framework, the reader is re-
ferred to Da Ronch et al. [19].

3 Test Case & Results

3.1 S809 Airfoil

The S809 airfoil is used for the uncertainty quan-
tification and calibration of the intermittency tur-
bulence model. This airfoil was chosen herein as
it was constructed specifically for wind turbine
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Table 1 Nominal value and epistemic interval for
the turbulence constant at 7u=0.02% and -0.1<

Ag <O0.1.

Constant | Nominal Value | Lower Limit | Upper Limit
Crui 163.00 100.00 320.00
Crua 1002.25 1000.00 2650.00
Crus 1.00 0.00 or 1.00
CrG1 14.68 -100.00 50.00
Crca -7.34 -10.00 6.00
Crg3 0.00 0.00 or 1.00
Csep 1.00 0.00 or 1.00

application. This 21%-thick airfoil was designed
and analysed theoretically and experimentally at
the low—turbulence wind tunnel of the TU Delft
at Re=1-3.0-10° for a series of angle of attack,
o=-17.1-20.4 deg [23].

In this case, the simulation was conducted at
Re=2-10° with six a equal to -0.01, 5.13, 9.22
deg, 11.22, 15.2 and 16.2 deg. The computa-
tional domain is depicted in Fig. 2. The medium
grid was chosen after a grid convergence study
was conducted to ensure the independence of the
results with the current grid size. The computed
C_, for all three level of grids is depicted in Ta-
ble 2. In this table, A% is the percentage dif-
ference between the computed and experimen-
tal value. It is shown that the change of Cp
between the fine and medium grid is less than
0.2% which indicate that further refinement of
the grid is not necessary. The C—domain consists
of 24,896 nodes with 192 nodes around the airfoil
and 34 nodes in the normal direction in a single
block. The y™ is well below 0.5 along the airfoil
chord and the farfield is located at a distance of
50 chords away from the airfoil. All the calcula-
tions used the pressure—based solver with SIM-
PLE pressure—velocity coupling scheme. The
spatial discretisation of the pressure is based on
second order accuracy whereas the momentum,
turbulent kinetic energy and specific dissipation
rate are discretised by second order upwind ac-
curacy. The boundary condition for the inlet and
outlet is specified as velocity—inlet and pressure—
outlet respectively. A no—slip wall boundary con-

dition was applied on the airfoil surface.
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Fig. 2 Medium grid for the S809 airfoil.

A preliminary study was conducted to ensure
the results are fully converged. Two flow con-
ditions were chosen at 5.13 and 11.22 deg an-
gle of attack. The simulations were conducted
for 30,000 iterations with check points at every
10,000 iterations. The lift coefficient, C;, was
compared at these intermediate points. In Fig. 3,
the convergence of the C; with the number of
iterations is shown in which the vertical dashed
lines indicate the check points. In Table 3, the
C. at these check points are presented. It was
found that as the number of iterations exceeding
10,000, the difference of the C discrepancy is
well below 0.05% for all cases indicating that the
solution does not change significantly at higher
iterations. Based on this result, it was concluded
that 10,000 iterations were adequate to obtain re-
sults for all of the simulations.

3.2 Result

3.2.1 Response Surface Model

Seven uncertain closure coefficients and their re-
spective epistemic interval were identified for the
turbulence model as mentioned in Section 2.1.1.
To generate the response surface model, the
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framework as previously described in Section 2.2
was employed. Three outputs of interest were
chosen which are the lift and drag coefficients,
and the sum of squared errors (SSE) between
the chordwise pressure distribution of the experi-
mental data and the numerical computations. The
SSE was also used as the system output to de-
termine the calibration of the closure coefficients
and for the uncertainty quantification and sensi-
tivity analysis. The procedure of the ADOE is
described as followings:

1. The algorithm was initialised with 27=128
sample points by a two—level full factorial
approach for each angle of attack (128 x 6
o). This initialization is based on the tradi-
tional DOE technique.

2. The machine learning technique is then
utilised to identify the best candidate de-
sign points based on the available results
and on a balanced strategy between the
space— and feature—learning. The output
variables for the new design points are then
computed through CFD, and this step is it-
erated until the maximum number of CFD
evaluations is reached. In this study, this
step entailed the execution of 100 CFD
runs in 10,000 iterations.

3. The best surrogate model was identified
automatically by the machine learning al-
gorithm in order to link the seven input
variables to the desired output based on ta-
ble containing a total number of 600 exper-
iments.

In total, 1368 CFD simulations were per-
formed utilizing 456 CPU hours.

Machine Learning Algorithm

Table 2 C;, for three level of grids at a=5.13 deg
and Re=2-10°.

Grid C. A %
Fine 0.7707 | 5.45
Medium 0.7698 | 5.57
Coarse 0.7593 | 6.98
Experiment | 0.7430 -

Table 3 The C; computed for two angles of attack

at every intermediate check points at Re=2-10°
C.

5.13 deg | 11.22 deg

10,000 0.7698 1.2589

15,000 0.7696 1.2585

20,000 0.7694 1.2585

Iterations

1.000

0.900

0.800 1 1 1

¢3'0.700

T———

os00

0.500

RIS BTN SIS SIS ST SR
0'4000 5000 10000 15000 20000 25000 30000

iterations

Fig. 3 Convergence of the lift coefficients for the
S809 airfoil at a=5.13 deg (Re=2- 109).

3.2.2  Coefficients Sensitivity Analysis

One of the initiative employs in this paper is to
analyse the sensitivity of the coefficient towards
the output of interests. As previously mentioned,
the initial intention is to calibrate 7 identified co-
efficients at 6 angles of attack at similar flow
condition. It was found that some of the coeffi-
cients particularly the Cs), had a larger influence
at higher angles of attack, causing fluctuation of
the results. The fluctuation of the C; when Cj,,
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equals to 0 and 1 is depicted in Figs. 4(a) and
4(b).
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Fig. 4 The fluctuation of Cy, for Csp equal to
0 and 1. The error bar denotes the range of the
fluctuation at given Q.

The observed behavior in these figures can be
explained by the influenced of the additional term
asin Eq. 4. As the angle of attack is increased, the
bubble decreases in length and has almost disap-
peared at «=5.13 deg [23]. The presence of sepa-
ration bubble at low angle of attack is controlled
by the *max(3Cseptt — 14,0)” term, affecting the
production of the intermittency around the airfoil
as shown in Fig. 5. In this figure, the production
of the intermittency is delayed when Cj,,=1. At
higher angle, the turbulent viscosity, y;, exceeds

the molecular viscosity, u, hence the additional
term should always been switched off. However,
by setting the value of Cs, to 1, will activates
the term hence compromising the reliability of
the turbulence model. Although smaller fluctu-
ation is observed, the Cy, is overpredicted. There-
fore prior knowledge regarding the presence of
the separation bubble is necessary to avoid such
problem. By considering this behavior, it seems
adequate to treat C,,., separately from the epis-
temic variables of the turbulence model. By do-
ing so, it is evident that Cj,, plays a role at higher
angles of attack, affecting greatly the solution
convergence.

0.2

0.15

0.2

0.15

005

0.35 0.4 0.45 0.5 0.55

Fig. 5 The fluctuation of Cy, for Cy), equal to 1
(top) and O (bottom) at a=-0.01 deg. The other
epistemic variables are assigned to their respec-
tive nominal value.



On the Calibration of the Intermittency Transition Turbulence Model for Wind Turbine Airfoil by

3.2.3 Additional Remarks

Although a significant improvement between the
modified and the standard solutions cannot be
presented, it was shown that the current initiative
can perform an automatic calibration of the clo-
sure coefficients. The factors that possibly con-
tributed to this situation are as followings: 1) The
success of this sort of work depends on the im-
plementation details of the flow solver such as
the limiters. By definition, it limits some quan-
tities within certain bounds. Here in this work,
the access to these limiters are limited therefore it
restricts the range of changes in the output quan-
tities. This behavior is manifested in Fig. 6. The
results appear to be clustered in layers with the
same SSE despite all closure coefficients being
modified. 2) It is assumed that the experimen-
tal data are free from errors, however, this is cer-
tainly not the case. The paper therefore demon-
strates the possibilities to lead an automatic cal-

ibration if accurate experimental data are avail-
able.

4 Conclusion

Modelling the transition process is essential to
avoid incorrect prediction of the load hence
the performance of a wind turbine. However,
the coefficients of a turbulence model were de-
signed for generic test cases and contribute to
the source of uncertainty in the CFD calculation.
To reduce the uncertainty, the turbulence model
needed calibration. In this study, this aspect was
notably addressed by utilizing multidisciplinary
technique including machine—learning method, a
flow solver and a high—performance computing
facility. Among the findings are: a) selected
number of the coefficients have significant influ-
ence on the final output of interest, particularly
the Cy., when separation bubble was observed on
the airfoil and b) the accomplishment of this type
of work depends on several factors e.g. the solver
limiters where it limits the variation of the output
quantities. If this condition is met, then the work
can be conducted without any constraints.

Machine Learning Algorithm
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Fig. 6 The clustered results within similar SSE to
show the restriction applied on the output quanti-
ties by the solver limiters.
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