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Abstract  

 

Cascading Failure has become one of the points 

of scientific research in complex networks. In 

this paper, we use the different definition of 

Load and Capacity in the network, to research 

the final changing direction of Cascade model 

with an attack. When the node Capacity is 

within a specific range, Risk Strength and 

Elasticity of the link both affected the result of 

the attack on ER network. Because of the 

elasticity of link, the degree of Cascading 

Failure does not increase in pace with attack. 

The elasticity of the link becomes essential to 

mitigate the failure under different risks. 

1  General Introduction  

Since Watts and Strogatz published an article to 

introduce the small world network model [1], 

and Barabási also pointed out the characteristics 

of scale-free (Scale-Free) network [2], scientists 

studied many topological networks [3-15]. They 

found that deliberate attacks on critical nodes in 

networks, especially in scale-free networks, will 

have a significant impact. In a network, nodes 

and links always carry a load and need to have 

an individual ability to handle. If the load 

exceeds, the failure will occur. One node’s 

failure often causes the fell of the others with 

the crash of the whole, which called Cascading 

Failure in Network. Loads of failed nodes or 

links will reallocate to other connected nodes 

according to a specific policy. For the next node 

or link, if the increases load is also beyond the 

Capacity, they will also fail and cause a new 

round failure until no new. In the real, the early 

collapse or impact of individual nodes limits. 

After spreading with connections, it often leads 

to broader effects, even the fall of the entire. 

Therefore, the related research on Cascading 

Failure has become the leading way to reduce 

the disastrous crash in a network. 

For infrastructures with higher 

interconnection, Cascading Failure is the 

leading cause of its disastrous fail. In the power 

transmission network, the failure of one local 

node will lead to a large-scale power outage 

[16]. Because of their importance for modern 

society, researchers try to build models to 

capture the typical characteristics of those 

Cascading Failures. One of the classic Cascade 

models composed of two ER-dependencies 

networks with average degree levels. [17] 

There’s a deliberate attack or a random risk 

happened on node A5. Sergey simulated this 

Cascading Failure as shown below. 
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Fig. 1. A Cascading Failure [17] 

In Figure 1, we assume there’s attack on 

node A5 which triggered a Cascading Failure. 

However, the author of literature [17] does not 

distinguish the variation between links and 
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nodes. All nodes or links have the same features 

no resilience considering in Fig 1. When risk 

struck, the node and its ties will fail in all, 

which is inconsistent with the reality. In real life, 

we can find the property differences of any of 

them. The changing in Fig 1 is one example of 

many cases for ER network. We can recognise 

the differences of nodes or links in the network 

which affect the result of the Cascading Failure. 

In fact, based on the prior research, there are 

three reasons affect the evolution direction in 

Cascade models. The original load and Capacity 

node or link, the removal policy with load's 

reallocation and the risk's intensity. Thus, we 

believe the failure of node A5 may not lead to 

its four links’ failure immediately and 

simultaneously. Besides, the risk diffusion in 

one-way should exceed the anti-destruction to 

cause the failure. So, in Cascade model,  the 

changing results are not all shown in Figure 1. 

In this paper, we defined the load and 

Capacity of the network nodes and links, looked 

for the results of Cascading Failure in Cascade 

model when node A5 is at risk, and explored the 

reason. This analysis of the Cascading Failure 

based on node overload under a risk is critical to 

lessen the scale of Cascading Failure and 

improve the survive-Capacity of the network. 

2  Defines Cascading Failure of nodes and 

their links 

First, we will explain the idea of node removal. 

Researchers have taken this for the analysis of 

network failures [18,19]. It means the failed 

node will be deleted with all its links for their 

inability from the net. However, in a real 

network, the failure of a node does not 

necessarily cause the problem of all connections. 

Just like the shown in Fig 2. Decay or failure of 

any node or edge is not unavoidable which 

caused by the previous failure. The method of 

node importance judgement based on the 

change of network robustness data by this is 

only an extreme as well. 

The congestion occurred on the node, or its 

link will both cause the node failure, followed 

by its lessened efficiency and a Cascading 

Failure. We can define the traditional network 

Cascading Failure as a node group’s [20]. 

Besides, this Cascading Failure of Nodes and 

Their Links (CFNL) differs from the former. In 

our assumptions, any link of the network has the 

different likelihood of breakage, will produce 

various Cascading Failures and results. 

Conceivably, since the overall network failure is 

cascade [20], the CFNL also. Further, for a 

directed network, maybe one way of a link has 

interrupted, but the other still works. For 

example, on 17 September 2016, the typhoon 

"Merandi" brought heavy rain, resulted in a 

severe delay of over 300 departure flights from 

Shanghai Pudong International Airport. 

However, the impact on inbound flights was 

fewer with ten delayed before landing  [21]. 

3 Conditions  

3.1 Assumptions  

To calculate the final, we use the 

Cascade model in Fig 1 to simulate the 

CFNL. Assume there are n nodes in the 

ER networks. Each node contains a 

certain number of random primitive 

links with load L. We numbered the 

relevant links, n ijL L
.A further detailed 

analysis as follows: 

 

 Nodes and links are different because of 

their load and resistance ability. 

 Node failure has an impact on its 

connections, but not lead to inability. 

 When a node fails, its load will reassign 

along the working path. However, if the 

load also exceeds the link’s anti-

destruction, the link will fail; 

 One failing node will cause the link 

becomes unidirectional. Load from the 

fail will transfer to another side for the 

last time; 

 If the nodes on both sides of a link 

invalid, the link will be useless; 

 The node without a valid connection will 

isolate in the net. 

 If no more faults occur, the CFNL will 

stop. 
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Fig. 2. Cascade model with an attack on node A5. 

Assuming A5 is under attack. The black nodes are the 

nodes of network A; the grey belongs to network B; the 

hollow is the failure. 

3.2 Early load and Capacity 

Plus, we need to define the first load of the node 

and link. According to some classic literature, 

the first load of a node always equals to its 

betweenness value. That is the total number of 

the shortest paths between any two points in the 

network through it. This approach can reflect 

the node's static Capacity index, but the 

calculation complicated. Wang proposed 

another, which is the product of node degree 

with its next's. [27] This method makes better 

use of the product which is positive correlate to 

betweenness of nodes. [28] It can reflect the 

early load distribution of the node with easy 

data gaining. Therefore, this paper applies the 

latter method to define the first load of the node: 

0 , 1,2, ,
i

i i j

j

L k k i N





 
  
 
  (1) 

Here, 0

iL  is the original load of node
iv . 

ik is 

the degree of node
iv . 

i is the set of 

neighbours of a node
iv .  is an adjustable 

parameter for controlling the early load strength, 

and N  is the total number of nodes. 

The original load for each link is: 

0 0 ( ) , , 1,2, ,ij n i jL L k k i j N    (2) 

 (   > 0) is a charge parameter. To adjust it, 

we can control the intensity of the early load, 

and simulate the different network load 

distribution in the network. 
ik  and 

jk are the 

degrees of node i  and j as the ends of the link 

ijL . V  is the total number of links.  

To be more practicable, we assume the early 

load and Capacity of the nodes and links in the 

cascade model conform, 0.5  * , The 

preliminary load of each node is, 

0

1AL =5.4772； 0

2AL =5.1962； 0

3AL =6.9282； 0

4AL

=3.7417； 0

5AL =6.6332； 0

6AL =3.7417 

0

1BL =4.8990； 0

2BL =3.4641； 0

3BL =3.7417； 0

4BL

=4.5826； 0

5BL =5.4772； 0

6BL =4.8990 

0.5  , The early load of each link is, 

0

1L =4; 0

2L =2.8284； 0

3L =3.4641； 0

4L =2.8284；

0

5L =2.4495； 0

6L =3； 0

7L =3.4641； 

0

8L =3.4641； 0

9L =3； 0

10L =3； 0

11L =3， 0

12L

=2.4495； 0

13L =2.8284； 0

14L =2.4495； 

0

15L =4.2426； 0

16L =3； 0

17L =2 

“Capacity” is a fundamental issue in the 

research of Cascading Failures. It refers to the 

maximum load can handle. Higher Capacity, 

less likely to fail for node or link. The entire 

network will also have broader ability to 

withstand Cascading Failures. Therefore, 

Capacity equals to the survivability of node or 

link. When the load exceeds, the node or link 

will fail. If Capacity is enough, there’s no 

Cascading Failure anymore. 

About defines “Capacity”, here are three styles. 

Kim and the rest [29] found the Capacity has no 

linearly relation with load after the study with 

multiple real networks. They also discovered 

there are some nodes with a few Capacity but a 

large remaining [29-31]. The second is the 

node's Capacity does not concern with the early. 

These studies define the Capacity satisfy some 

statistical distribution [32-34]. Among them, the 

literature [33] defined it as two cases, the ICA 

model, the Capacity increases by the network 

size, and ECA model with a constant Capacity. 

The third defines the Capacity is in proportion 

                                                 
*For the parameters in the CASCADE model, we take a fixed 

value and does not discuss it in this section. The literature [37] 

has proved the network has the strongest ability to resist cascade 

failures in this value. 
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to the first load of the node. Because of the cost, 

the Capacity of network nodes often associated 

with the first load which makes many pupils 

accepted the third. [35,36]. In this paper, we 

also set the node's Capacity is proportional to 

the early load. 

0(1 ) , 1,2, ,i iC L i N    (3) 

Among, 
iC  is the Capacity of node 

iv . 0  , it 

is an adjustable parameter. 0

iL  is the first load of 

node 
iv , and N is the total number of nodes. 

Then, the Capacity of each link is 

0(1 ) , 1,2, ,n nC L n V    (4) 

nC  is the Capacity of link n ;  is an adjustable 

parameter and 0  ; 0

nL  is the first load of the 

link n  and V is the total number of links. In a 

real network, the value of  is in a specific 

range, and the Capacity as well. 

Let 0.5  . Then, the Capacity of each node is, 

1AC = 8,2158；
2AC = 7,7942；

3AC = 10,3923；

4AC = 5,6125；
5AC =9,9499；

6AC = 5,6125； 

1BC = 7,3485；
2BC = 5,1962；

3BC = 5,6125；

4BC = 6,8739；
5BC = 8,2158；

6BC = 7,3485 

We assume the link load comes from the node. 

When the node load exceeds its Capacity, the 

excess will transfer through the link. When the 

load increases until it cannot handle, the node 

will fail and cause the failure of others with 

interlocking faults in network. 

3.3 Failure chance and load redistribution 

When the node is fighting with the risk, its load 

increases but still fewer or equal to Capacity, 

( )i iL t C , the node will not fail. If ( )i iC L t , 

the load is greater than Capacity, the node fails. 

The likelihood of node failure is, 

0, ( )
( ( ))

1, ( )

i i

i

i i

L t C
R L t

C L t


 



 
(5) 

At the early stage of the network, the load of 

each link and node is less than its Capacity, and 

the network is running normally. However, any 

attack or failure will lead to load reallocation 

happen. Many researchers assume the load will 

transfer direct to the neighbour in part to a 

certain percentage. However, in fact, these 

studies ignored the Capacity of link. The 

premise of load transfer is that no exceeding the 

Capacity of the link. Otherwise, the load cannot 

transfer. If the load increases infinitely, the 

result can only be failures of the node and all its 

links. There is no effective transfer, but the total 

load lessens. For a power network, it will be a 

break of this node from others. 

If ( )nL t  represents the load of link n at time t . 

The likelihood of failure is ( ( ))nY L t .
nC  is the 

link Capacity. If ( )n nL t C , the link does not 

have a risk of failure; when ( )n nC L t , the load 

is higher than Capacity, the link fails. It can 

express as, 

0, ( )
( ( )) ( ( ))

1, ( )

n n

n ji

n n

L t C
Y L t Y L t

C L t


  


0( 1) ( ) ( 1)n ni niL t L t L t   

 

(6) 

Assuming the load will transfer as soon as it 

exceeds. The load reallocation tactics based on 

the early load of nodes and links is, 

Set 

0

0

i

n
n

n

n

L

L







, then,  

 

 

( ), ( )

,

( ( ) ), , ( )

( )

n i i i i

n i

ni

n n i i i

i i

L C L t C

L
L

L t C n L t C

C L t





  



  

   
 

 

(7) 

n  is the ratio of load distribution for node i .
0

nL  is the first load of link n ; 
i  is the set of 

close links of node i ; 
niL represents the 

reallocation from the overloaded node i  to node 

n. 
iL represents the load need divide. The value 

of 
n  is not fixable and will change with 

connections. 

According to the first load of the four links, the 

load transfer ratio now is
1 =0.3049;

2 =0.2156;

3 =0.2640;
4 =0.2156. 
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The associated load of node i  transfers to 

another neighbouring node j  through each link. 

A load of node j  becomes the early and the 

increase. 

0( 1) ( ) ( 1),j j ij ij niL t L t L t L L        (8) 

4 CFNL in Cascade Model 

An attack occurred on node A5 in the model. 

The load increases and beyond Capacity, cause 

a failure. The load needs to transfer and begins 

from: 

 If the risk is small, the increased load 

has not exceeded the Capacity of node 

A5. No load needs a transfer. Node A5 

is still running, and no any failure 

happens.  

 If the load is within a specific range, to 

ensure node A5 is still reliable, the 

excess load will transfer. The added on 

each link should be in the range of the 

Capacity for successful moving. Then, 

we can get,  
0

5 5

5 5

5 5

5

5

( ( ) , )

( )

(

13.1209 9.9499)

( 9.9499),

0

9.9499

i

n A A n n i

A A

A n A

n

A

A

L C L C n

L C

L L C

L

L











    

 

  

 

 



 



 (9) 

As long as the load of node A5 has not 

exceeded, they can transfer to other nodes. To 

keep all connected nodes are valid, it needs, 
0

1 3 1 5 5 3 5

0

2 4 2 5 5 4 5

0

3 5 3 5 5 5 5

0

4 6 4 5 5 6 5

3: ( ) 21.3113

4 : ( ) 18.6271

5 : ( ) 20.3233

6 : ( ) 18.6271

A A A A A

A A A A A

B A A B A

A A A A A

L A L L C C L

L A L L C C L

L B L L C C L

L A L L C C L









     

     

     

     

 

For 5 9.9499AL  , it meets all controls. Nodes 

can afford the added. We can imply that when 

the risk is small, node A5 is still working 

without any failure happen. 

 Node A5 will fail if the load exceeds. 

The transfer begins under one-way 

without exceeding the links, 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (10) 

5i A ,  
0

5 5

i

A A n

n

C L L


    
 

After the beginning failure, the premise of load 

transfer is that it is less than or equal to the 

result of  times early load for all links.  is an 

adjustable parameter as the Link’s Capacity 

Elasticity (LCE). When the early Capacity of 

the link is a fixed value, the LCE controls 

whether the connected load can transfer. Now, 

we can also infer load transfer has relation with 

the sum instead of each of the link, assuming 

LCE of all links are same. Further, there are, 

 
0

59.9499 13.1209
i

A n

n

L L 


    , 0.7583   

We assume that when the attack occurred, 

0.7583  , and all loads can transfer. Because 

of the failure of node A5, all links also broke. 

The network will change to graph d1. 

A B

a

A B

d1

 

Fig 3 From a to d1 

Ensure another node of links will not fail, it 

needs, 
0

0

( :

, ) ( )
j

n j n i j

i ij i i i

n

L j L L C

L
L n L C







   


    

 

0

0(1 )
j

i i

n

L
L L







    

(11) 
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For the fixed value of n and 0

jL , we can get, 

iL C    (12) 

C is a constant.  is the Node Capacity 

Elasticity (NCE).Whether the transfer will cause 

next failure, it depends on the load and NCE.  

Also, 
00

0 0

0

0

0 0

0 (1 )

1
i

ii
n n

j j

n

ni

j n n

LL

L L

L
L

L L

  





    

  

  (13) 

If this meets, the Cascading Failure will stop. 

4.1 First way of CFNL 

To avoid the next failure because of the load 

from node A5, it needs, 
0

1 3 1 5 3 5

0

2 4 2 5 4 5

0

3 5 3 5 5 5

0

4 6 4 5 6 5

3: 11.3614

4 : 8.6772

5 : 10.3735

6 : 8.6772

A A A A

A A A A

B A B A

A A A A

L A L L C L

L A L L C L

L B L L C L

L A L L C L









     

     

     

     

 

Also, because of the need to meet 

5 5 9.9499A AL C  , when 

59.9499 10.3735AL  , nodes A4, A6 must be 

invalid and become isolated nodes; L14, L15 

will have the last transfer; the network changes 

to d2. 

The load exceeds the Capacity of nodes A4, A6 

and need a transfer. Now, A4, A6 can only 

transfer the load to B4, B6 no beyond the link’s 

Capacity. There is, 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (14) 

4, 6i A A , 14 1  , 15 1   

45.6125 2.4495AL   ;

65.6125 4.2426AL    

2.2913   

Assuming the load transferred and node B4, B6 

are valid, thus, 
0

14 4 14 4 4 4

0

15 6 15 6 6 6

4 : 2.2913

6 : 2.4495

B A B A

B A B A

L B L L C L

L B L L C L





     

     
 

Nodes B4, B6 will fail; link L14, L16 will erase 

for the failure; the network changes into d3. 

Link L5 and L6 will transfer the load of B4. 

Link L9, L10 will transfer the load of B6. 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (15) 

4, 6i B B , 

46.8739 5.4495BL   ; 

67.3485 6BL   , 

1.2248   

Since 2.2913  , the load of nodes B4 and B6 

could transfer. 5 0.4495  , 6 0.5505  ,

9 10 0.5   , then, 
0

5 3 5 4 3 4

0

10 1 10 6 1 6

3: 4.162

1: 4.899

B B B B

B B B B

L B L L C L

L B L L C L





     

     
 

To node B5, plus the former transfer load from 

A5 ( 3 = 0.2640): 

3 6 9

0

5 3 5 6 4 9 6 5

5 4 6

5, 5, 5 :

0.2640 0.5505 0.5 2.737

B A B B B

A B B

L B L B L B

L L L L C

L L L

  

  

      

   

 

Nodes B3, B5, B1 all fail. L5, L6, L9, L10 need 

to remove. The network changes into d4. For 

lack of link, the load of B5 cannot transfer. L13 

will transfer the load of the B3 load. L11 and 

L17 will transfer the load of B1. 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (16) 

3, 1i B B  

35.6125 2.8284BL   ;

17.3485 6.4641BL    

1.9843   

 

Since 2.2913  , the load of nodes B3, B1 

could transfer. 13 1  , 11 0.4641  ,

17 0.5359  , then, 
0

11 1 11 1 1 1

0

17 2 17 1 2 1

1,: 5.9009

2 : 3.2321

A B A B

B B B B

L A L L C L

L B L L C L





     

     
 

To node A3, add the former transfer load from 

A5 ( 1 =0.3049): 

0

13 1 3 1 5 13 3 3

5 3

3, 3:

0.3049 3.4641

A A B A

A B

L A L A L L L C

L L

       

  
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On it, the nodes A3, A1, B2 all fail. L13, L11, 

L17, L7 will remove. The network changes into 

d5. The last node is A2. Loads of nodes A3, A1, 

B2 will transfer to node A2 by links L8, L16, 

L12. Then, 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (17

) 

3, 1, 2i A A B  

310.3923 3.4641AL   ; 

18.2125 3AL   ; 

25.1962 2.4495BL    

3   

If we want node A2 still working, it needs, 

16 12 8

0

2 16 1 12 2 8 3 2

2, 2, 2 :

A A B A A

L A L A L A

L L L L C  

  

      

16 12 8 1      

1 2 35.1962 7.7942A B AL L L     

It shows that node A2 will fail. The network 

devises into d6 and collapses. 

The network fails from node A5, carries on load 

transfer, causes the failure of A4, A6 and further 

plan. As long as the value of LCE meets 3  , 

the network will collapse no stop. 

A B A B

d1 d3d2

A B

d4 d5 d6

Fig 4 First way from d1 to d6 

4.2 Second way 

If 510.3735 11.3614AL  , nodes A4, A6, B5 

will fail and links L13, L15, L6, L9 as well. The 

network changes into d7. A4, A6 can transfer 

the load to B4, B6. The load of B5 will also 

transfer to B4, B6. For success, it needs the 

Capacity of the link could cover. So, 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (18) 

4, 6, 5i A A B ， 

45.6125 2.4495AL   ;

65.6125 4.2426AL   ; 58.2158 6BL    

2.2913   

Assuming the load transferred and the other 

nodes B4 and B6 are still useful, it needs, 
0

14 6 4 14 4 6 5 4

4 5

0

15 9 6 15 6 9 5 6

6 5

4, 4 :

0.5 2.2913

6, 6 :

0.5 2.4495

B A B B

A B

B A B B

A B

L B L B L L L C

L L

L B L B L L L C

L L

 

 

      

  

      

  

14 1  ， 15 1  ， 6 0.5  ， 9 0.5   

Nodes B4, B6 will fail and cause removing of 

link L14, L15, L6, L9. The network changes to 

d8. A load of B4 will transfer by link L5. A load 

of B6 will transfer by link L10. 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (19

) 

4, 6i B B , 

46.8739 2.4495BL   ; 67.3485 3BL    

2.8062   

Also presuming the load of nodes B4, B6 can 

transfer, 5 1  , 10 1  , then, 
0

5 3 5 4 3 4

0

10 1 10 6 1 6

3: 1.8708

1: 2.4495

B B B B

B B B B

L B L L C L

L B L L C L





     

     
 

Nodes B3, B1 are all failed. L5, L10 will 

remove. The network also changes into d4, d5 

and d6. 
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A B

d7 d8d1

A BA B

d4

A B BA

d5

A

d6

B  

Fig 5 Second way from d1 to d6 

4.3 Third one 

If 511.3614 AL , node A3, A4, A6, B5 will fail, 

and the load begin to transfer, there are, 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (20) 

3, 4, 6, 5i A A A B ， 

310.3923 9.7566AL   ;

45.6125 2.4495AL   ; 

65.6125 4.2426AL   ; 58.2158 6BL    

2.2913   

Assuming the load transferred and the other 

node still reliable, 7 8 0.3551   ,

13 0.2899  , 14 1  , 15 1  , 6 0.5  , 9 0.5  , 

then, 
0

7 1 7 3 1 3

0

8 2 8 3 2 3

0

13 3 13 3 3 3

0

14 6 4 14 4 6 5 4

4 5

0

15 9 6 15 6 9 5 6

6 5

1: 7.7122

2 : 7.3162

3: 6.4533

4, 4 :

0.5 2.2913

6, 6 :

0.5

A A A A

A A A A

B A B A

B A B B

A B

B A B B

A B

L A L L C L

L A L L C L

L B L L C L

L B L B L L L C

L L

L B L B L L L C

L L







 

 

     

     

     

      

  

      

   2.4495

The nodes A1, A2, B3, B4, B6, must cancel, the 

links L5, L6, L7, L8, L9, L13, L14, L15, L6 

removed, and the network devises to d10. The 

load of A1 and A2 will transfer through link 

L11, L12 to B1, B2.  Load of B6 will transfer to 

B1. No active link, the load of B3 and B4 will 

stop to transfer. 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (21) 

1, 2, 6i A A B  

18.2158 3AL   ; 27.7942 5.1962AL   ;

67.3485 4.899BL    

2.7386   

Assume the load transferred. 11 12 10, , 1    , 

then, 
0

12 2 12 2 2 2

0

11 10 1 11 1 10 6 1

1 6

2 : 1.7321

1, 1:

2.4495

B A B A

B A B B

A B

L B L L C L

L B L B L L L C

L L



 

     

      

  

The nodes A1, A2, B3, B4, B6, must cancel, the 

links L5, L6, L7, L8, L9, L13, L14, L15, L6 

removed, and the network devises to d10. The 

load of A1 and A2 will transfer through link 

L11, L12 to B1, B2.  Load of B6 will transfer to 

B1. No active link, the load of B3 and B4 will 

stop to transfer. 
0

0

( , ) ( )

i

n i n n i i i

i i n

n

L L C n L C

C L L






     

   
 (22) 

1, 2, 6i A A B , 

18.2158 3AL   ; 27.7942 5.1962AL   ;

67.3485 4.899BL   ; 2.7386   

Assume the load transferred. 11 12 10, , 1    , 

then, 
0

12 2 12 2 2 2

0

11 10 1 11 1 10 6 1

1 6

2 : 1.7321

1, 1:

2.4495

B A B A

B A B B

A B

L B L L C L

L B L B L L L C

L L



 

     

      

  

The node B2, B1 and all links failed. The 

network changes into d6 with the crash. 
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A B

d9

A B

d1

A B

d10

A B

d6

 

 Fig 6 Third way from d1 to d6 

5 Conclusion 

In this paper, we analyzed the different 

directions of the evolution of the network. 

Under the constraints of capacity and resiliency, 

the attacked network will change in different 

directions, resulting in different cascading 

failures. Many research tells us one failure may 

cause lots unequal finals. In future, we will find 

more reality to test. 
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