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Abstract  

The focus of this work is on applying the 

Continuation Method (CM) for the aeroelastic 

analysis of the JAXA Standard Wing Model (JSM) 

with Pylon-Mounted Engine Nacelle in subsonic 

and low supersonic flow regimes. The results of 

standard structural analysis are shown and 

compared for cases of the JSM with and without 

engine to formulate a reduced order model for 

the analysis. The generalized aerodynamic 

forces (GAF) under different reduced 

frequencies are calculated using the Doublet 

Lattice Method (DLM) in the subsonic flow 

regime and a supersonic lifting surface theory 

based on the unsteady linearized small 

disturbance potential flow equation for the low 

end of the supersonic flow regime. The 

formulation of the state space form of the system 

equations based on the Rational Function 

Approximation (RFA) method and the 

combination with the continuation method are 

shown. Flutter analysis results from the 

continuation method are compared with those 

from traditional p-k method to elucidate its 

advantages in efficiency for modes tracking and 

modes switching phenomenon. 

1 Introduction   

Flutter is a self-oscillating motion resulting from 

interactions between aerodynamic forces and 

structural vibrations which can result in a loss of 

control or serious damage to the aircraft. For 

these reasons, flutter characteristics of aircraft 

structures in fluid flow must be analyzed to 

mitigate the consequences of flutter during the 

operation. In this work, the effects of a pylon-

mounted engine nacelle on the structural 

characteristics of the original JAXA Standard 

Wing Model (JSM) which is a wing-body model 

with high-lift devices and pylon-mounted engine 

for wind tunnel experiment defined by the Japan 

aerospace exploration agency (JAXA) and used 

as a test case for NASA high lift prediction 

workshop as outlined in [1], are analyzed using 

the Finite Element Model (FEM). The 

Continuation Method (CM), as outlined in Meyer 

[2] combined with the Doublet-Lattice Method 

(DLM) using the Prandtl-Glauert transformation 

for compressible subsonic flow as outlined in 

Albano and Rodden [3] are used to estimate the 

aerodynamic loads and to analyze the flutter 

characteristics.  

2 Description of Wing-Pylon-Nacelle Model 

The main objective of this study is to assess the 

aeroelastic characteristics of the JSM wing, the 

properties of which are defined in Yamamoto et 

al. [4] when a single engine mass is included. For 

efficient modeling and computation, the original 

JSM wing is approximated with the finite 

element model (FEM) using plate elements as 

shown in Fig. 2.1. The main body of the wing is 

created with the combination of two sections and 

the effect of engine mass is simulated as the point 

mass on the center of gravity inside the engine. 

The point mass for the engine is located on the 

center of gravity (CG) of the engine nacelle and 
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pylon mount which is assumed as 60% of the 

distance between inlet and the end of the pylon 

as in Chai et al. [5]. The position of the point 

mass for the engine implementation, mean 

aerodynamic chord of the wing and the change in 

CG location due to the engine mass 

implementation are shown in Fig. 2.1. As the 

specifications of the JSM are similar to that of the 

Boeing B787 series, consequently, the mass of 

the engine is estimated based on the sample 

engine, GEnX for B787. The original dry-weight 

for GEnX is   12822 𝑙𝑏 ≈ 5816 kg  and the 

estimated length ratio between real aircraft and 

the model is 10:1 which leads to  5.816 kg  of 

point mass applied on the estimated center of 

gravity for engine nacelle and support.  There are 

10 grid points on chord-wise direction and 21 

points on span-wise direction for the simplified 

JSM FEM model. The total number of grid points 

is 210 and the total number of shell elements is 

180. The semi-wingspan of the wing model is 

2300 mm with a mean aerodynamic chord of 

529.2 mm, a leading-edge sweep angle of  33° 

and a taper ratio of 0.333. The original model is 

purely for the aerodynamic experiments and the 

information of the material properties is not 

known. Hence, the material is assumed to be the 

as that used in the AGARD 445.6 wing model 

described in Yates [6]. The moduli of elasticity in 

the longitudinal direction ( 𝐸1 ) and lateral 

direction (𝐸2 ) are 3.1511 GPa  and 0.4162 GPa 
respectively. The Poisson’s ratio (υ ) is 0.31, 

shear modulus ( 𝐺 ) is 0.4392 GPa  and wing 

density (ρ) is 381.98 kg/m3. 
 

 

Figure 2.1 Simplified JSM wing model 

3 Computational Aeroelastic Modeling   

3.1 Modal Analysis and Formulation of 

Reduced Order System Equations  

Considering a three-dimensional simplified wing 

model with three degrees of freedom, namely 

plunge (q1=ℎ), pitch (q2=𝛼) and roll (q3=𝜙), a 

modal analysis is carried out in order to establish 

the reduced-order structural model from the 

general structural equations defined as  

𝑴𝒒̈ + 𝑪𝒒 + 𝑲𝒒 = 𝑭𝒂𝒆𝒓𝒐
 (1) 

where 𝑴,𝑪,𝑲 are the global mass, damping and 

stiffness matrices and 𝒒 is a 𝑛 × 1 column vector 

representing the degrees of freedoms for each 

grid arising from the structural model. The 

unforced system equations of motion can be 

expressed as follows in which the aerodynamic 

forces and moments matrix 𝑭𝒂𝒆𝒓𝒐 is set to 0 in 

Eqn (1).  In this study and for the general 

vibrational modal analysis, the structural 

damping is also ignored i.e. (𝑪 = 𝟎). The natural 

modes and natural frequencies are then computed, 

and the first 4 natural modes are selected to 

establish the reduced-order structural model. The 

generalized mass matrix 𝑴̃, stiffness matrix 𝑲̃, 

and generalized displacements vector 𝒒̃  are 

computed as:  

𝚽T𝑴𝚽 = 𝑴̃ 

𝚽T𝑲𝚽 = 𝑲̃ (2) 

𝚽T𝒒 = 𝒒̃  

where 𝚽 is the modal matrix with the selected 

structural modes. The first four natural 

frequencies of the wing with engine together with 

that of the first two nacelle modes and the clean 

wing are shown in Table 3.1 and the 

corresponding mode shapes are shown in Fig. 3.2 

and Fig. 3.3 respectively.  

 
Table 3.1: Natural Frequencies of The Clean Wing 

and Wing with Engine Nacelle Model 

# 
Mode Frequencies 

(Nastran) 

With Nacelle 

(Hz) 

Clean Wing 

(Hz) 

1 1st bending 1.366 1.1381 

2 2nd bending 6.732 6.437 

3 1st torsion 12.603 10.768 

4 3rd bending 15.356 16.335 

5 Nacelle pitching 2.528 - 

6 Nacelle rolling 4.446 - 
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Figure 3.2 The First Six Natural Mode Shapes of the 

JSM Wing with Engine Nacelle 

 
Figure 3.3 The First Four Natural Mode Shapes of the 

JSM Wing without Engine Nacelle 

 

3.2 Aerodynamic Solvers  

 

 Fig. 3.4 shows the aerodynamic model 

constructed in Nastran [7] for the JSM wing 

model. DLM for subsonic aerodynamic flows 

and the supersonic lifting surface method 

outlined in Liu et al. [8] embodied in ZONA51 [9] 

for supersonic flows are used to estimate the 

aerodynamic forces and moments 𝑭𝒂𝒆𝒓𝒐  for 

different reduced frequencies. The linearized 

unsteady small disturbance potential equation 

forms the backbone of the aerodynamic model i.e. 

(1 −𝑀∞
2 )𝛷𝑥𝑥 +𝛷𝑦𝑦 +𝛷𝑧𝑧 −

2𝑀∞
2

𝑈∞
𝛷𝑥𝑡 −

𝑀∞
2

𝑈∞
𝛷𝑡𝑡 = 0 

(3) 

where  𝛷  is the disturbance velocity potential 

function,  𝑀∞ =
𝑈∞
𝑎

is the free stream Mach 

number , 𝑈∞  is the freestream velocity and  𝑎  is 

the speed of sound. The differential pressure 

∆𝑝(𝑥, 𝑦, 𝑧) between the upper surface and lower 

surface across the wing and the nondimensional 
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upwash velocity field on the surface of wing 

i.e.  𝑤̅̅̅(𝑥, 𝑦, 𝑧) are related via a kernel function 

based on the assumption of small deflection 

harmonic motion outlined in Albano and Rodden 

[3] as : 

𝑤̅(𝑥, 𝑦, 𝑧) = −
1

4𝑈∞𝜋𝜌
∬∆𝑝(𝑥, 𝑦, 𝑧) 𝐾(𝑥 −

𝜉, 𝑦 − 𝜂, 𝑧)𝑑𝜉𝑑𝜂                                     (4) 

 

where 𝜌 is the density of the fluid, 𝜉  and 𝜂 are 

dummy variables of integration over the wing 

surface, 𝐾  is the approximated kernel function 

along the 1/4 chord line of each box element. In 

subsonic flow region, the unknown lifting 

pressures are assumed to be concentrated 

uniformly across the one-quarter chord line of 

each box. There is one control point per box, 

centered spanwise at the three-quarter chord line 

of the box, and the surface boundary condition of 

no normal flow is satisfied at each of these points. 

The solutions of Eqn (4) give the relation 

between the pressure coefficient differences 

∆𝐶̃𝑝and the upwash velocity field as:  

{∆𝑪̃𝒑} = [𝑨. 𝑰. 𝑪 (𝑀∞, 𝑘)]{𝒘̅} (5) 

where [𝑨. 𝑰. 𝑪 (𝑀∞, 𝑘)]  is aerodynamic 

influence coefficient matrix which is a function 

of Mach number and reduced frequency k which 

is regarded as a key parameter in aeroelastic 

analysis that relates the structural motions to the 

aerodynamic forces. The 180 aerodynamic boxes 

are tied to the 210 grid points which are 

uniformly spaced spanwise from the root to tip of 

the wing. The density of air is assumed to be 

1.225 kg/m3 and the Mach number for subsonic 

and supersonic region is varied in the range 

0.1~0.8 and 1.1~1.4, respectively. The range of 

airspeed is varied from 4.8 m/s to 210 m/s to find 

the instabilities for each Mach number. 

Considering the generalized aerodynamic forces 

arising from the aerodynamic models for 

subsonic and low speed supersonic regions, the 

reduced-order governing equations for the JSM 

wing can be written as follows: 

𝑴̃𝒒̈̃ + 𝑲̃𝒒̃ = 𝑞∞𝑨. 𝑰. 𝑪(𝑀∞, 𝑘)𝒒̃
 (6) 

where 𝑞∞ =
1

2
𝜌𝑈∞

2  is a dynamic pressure. 

 

 

 

Figure 1.4 Aerodynamic Model for JSM Wing with 

Engine Mass based on DLM Method 

3.3 Introduction of the Continuation Method  

The Continuation Method (CM) can be  

described as “a continuous transformation from 

one function to another” as in Weisstein [10]. It 

was originally introduced to solve the algebraic 

nonlinear problems in which the solution is 

treated as an instant of a dynamic problem as in 

Ogrodzki [11]. In the Continuation Method, an 

auxiliary equation is chosen properly and 

constructed to solve the original problem. For 

example, if the original problem is  𝒇(𝒙) = 0 , 

then one example of the CM equation can be 

written as follows: 

𝑯(𝒙, 𝜆)  =  𝜆𝒇(𝒙) + (1 − 𝜆)𝒈(𝒙) = 𝟎 (7) 

The idea of the continuation method is that an 

easy function is chosen as 𝒈(𝒙)  and the 

parameter 𝜆 is swept from 0 to 1, so that the easy 

problem is continuously deformed into the 

original problem as outlined in Vesa Linja – aho 

[12] which is the approach used in this work. The 

parameter 𝜆 could also be chosen as one of the 

system variables. The continuation function 

𝑯(𝒙, 𝜆)  may be constructed and solved in 

numerous ways. The concept of using a 

continuation method for solving a set of 

nonlinear equations consists of the formation of 

the CM function, choosing an efficient solver and 

making a working implementation of these. 

Generally, the continuation methods are much 

less sensitive to the initial guess than the 
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Newton–Raphson method. Some continuation 

methods can be globally convergent with certain 

conditions as in Vesa Linja – aho [12]. Common 

to all the continuation methods, there is a 

predictor phase followed by a corrector phase as 

shown in Fig.3.5. Starting from a known solution, 

the predictor phase computes a starting guess 

which is then used by the corrector to obtain the 

true solution at the new value of the continuation 

parameter as shown in Meyer [2]. The tangent 

vector 𝐭  is often used as the predictor in the 

continuation method to determine the direction 

of the predictor for each step shown in Figure 3.5. 

It can be defined as 𝐉𝐭 = 𝟎 where 𝐉 = ∂𝐇/ ∂(x, λ) 

is the Jacobian matrix of the original nonlinear 

equations. Noting that the Jacobian matrix 𝐉 is a 

n ∗ (n + 1)  non-square matrix and the tangent 

vector 𝐭 = [x1 x2… xn λ]
T  is a (n + 1) 

dimensional column vector implying that 𝐉𝐭 = 𝟎 

contains n equations with (n+1) unknowns. 

Hence a normalization condition is necessary to 

obtain the unique tangent vector in each iteration 

step by choosing the condition: 𝐭T𝐭 = 1. Newton-

Raphson’s method is usually chosen to be the 

corrector algorithm since it has proven to be very 

efficient in solving the nonlinear equations when 

a good initial guess from the predictor is given: 

{𝒙𝒊+𝟏} = {𝒙𝒊} − [𝑱]
−𝟏𝒇(𝒙) (8) 

Another important point is that during the 

corrector phase followed by the next predictor 

phase, the continuation parameter 𝜆  is fixed to 

avoid singularities in algorithm. For example, 

after the prediction point (𝐱̂N, λN) in Fig. 3.5 has 

been computed based on the previous accurate 

point (𝐱N−1, λN−1) and tangent vector 𝐭N−1, then 𝜆 

should be fixed at 𝜆 = 𝜆𝑁  in the following 

corrector phase in order to let the correction 

algorithm work properly to get the accurate point 

(𝐱N, λN) in the path. 

 
Figure 3.5. Path tracking based on Continuation 

Method 

3.4 Application of Continuation Method in 

Flutter Analysis  

Recalling the reduced order system equation for 

the JSM wing model as 

𝑴̃𝒒̈̃ + 𝑲̃𝒒̃ = 𝑞∞𝑨. 𝑰. 𝑪(𝑀∞, 𝑘)𝒒̃ (9) 

for a fixed Mach number and a series of reduced 

frequencies ranging from 0.0 to 1.5 is chosen to 

compute the 𝑨. 𝑰. 𝑪(𝑀∞, 𝑘) matrices from the 

aerodynamic solver, noting that the original 

𝑨. 𝑰. 𝑪(𝑀∞, 𝑘) can only be listed for a series of 

discrete reduced frequencies for a fixed Mach 

number 𝑀∞.  Hence the Rational Function  

Approximation (RFA) method is then applied to 

convert the  𝑨. 𝑰. 𝑪 (𝑀∞, 𝑘)  from frequency 

domain to the Laplace domain in the form of 

classic Roger’s formula shown in ZAERO 

Reference Manual [9], i.e.: 

[𝑨. 𝑰. 𝑪̃(𝑝)] = [𝑨𝟎] + [𝑨𝟏]𝑝 + [𝑨𝟐]𝑝
2 + ∑ [𝑨𝒍]

𝑝

𝑝+Υ𝑙−2

𝑛𝑙+2
𝑙=3   (10) 

where p is the non-dimensional Laplace variable 

𝑝 = 𝑠𝑏/𝑉, 𝑛𝑙 is the number of lag terms. (𝑛𝑙 = 3 

in our case), 𝛾𝑖 is the root value of each lag term 

which can be chosen by the following empirical 

formula from ZAERO Reference Manual [9].  

𝛾𝑖 = 1.7𝑘𝑚𝑎𝑥(
𝑖

𝑛𝑙+1
)2 (11) 

When converting the 𝑨. 𝑰. 𝑪 (𝑀∞, 𝑘)  matrices 

from frequency domain to Laplace domain, 

either of the formulations based on Least Squares 

(LS), Modified Matrix Pade (MMS) or Minimum 

State (MS) is used for the curve fitting as outlined 
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in Tiffany and Adams [13]. Part of the results are 

shown in Fig. 3.6. 

 
Figure 3.6. Approximation Results of 𝑨. 𝑰. 𝑪(𝑀𝑎, 𝑘) 

based on RFA method 

The reduced order system equations are then 

transformed to: 

𝑴̃𝒒̈̃+ 𝑫̃𝒒̇̃+ 𝑲̃𝒒̃− 𝑞𝑑𝑦𝑛𝑨𝟑𝑌1 − 𝑞𝑑𝑦𝑛𝑨𝟒𝑌2 −
𝑞𝑑𝑦𝑛𝑨𝟓𝑌3 = 0 (12) 

where the lag term variable 𝒀𝒊 =
𝑠̅

𝑠̅+𝛾𝑖
𝒒̃ , the 

modified 𝑠̅ = 𝑗𝑘 , 𝑴̃ = 𝑴− 𝑞𝑑𝑦𝑛𝑨𝟐 (
𝑏

𝑉
)
2
 ,  𝑫̃ = 𝑫 −

𝑞𝑑𝑦𝑛𝑨𝟏 (
𝑏

𝑉
)
2
  and 𝑲̃ = 𝑲 − 𝑞𝑑𝑦𝑛𝑨𝟎 . Hence the state 

space form system equations can be set up as:  

𝑿̇ = 𝑨𝑿 (13) 

where 𝑿 = [𝒒̇̃ 𝒒̈̃ 𝑌̇1 𝑌̇2 𝑌̇3] and the matrix 𝑨  is 

(

 
 

0
−𝑴̃−1𝑲̃
0
0
0

      

𝐼
−𝑴̃−1𝑫̃
𝑰
𝑰
𝑰

      

0
𝑞𝑑𝑦𝑛𝑴̃

−1𝑨𝟑
−(𝑉𝛾1 𝑰)/𝑏

0
0

       

0
𝑞𝑑𝑦𝑛𝑴̃

−1𝑨𝟒
0

−(𝑉𝛾2 𝑰)/𝑏
0

     

0
𝑞𝑑𝑦𝑛𝑴̃

−1𝑨𝟓
0
0

−(𝑉𝛾3 𝑰)/𝑏)

 
 

 

The main drawbacks of the RFA method is the 

trade-off between the number of aerodynamic 

lags and the accuracy of the approximation as 

pointed out in Edwards [14]. For the analysis of 

the complex wing models in the continuation 

method, the approximation errors for 

𝑨. 𝑰. 𝑪̃(𝑠) using RFA Method cannot be ignored. 

In this situation, another approach is to calculate 

𝑨. 𝑰. 𝑪(𝑀∞, 𝑘) using cubic spline method under 

different reduced frequencies followed by the 

update of the system equations simultaneously in 

each iteration. Figure 3.7 shows the flow chart of 

each iteration when combining continuation 

method with cubic spline method for modes 

tracking in the flutter analysis. 

 

Figure 3.7. Flow Chart of Applying Continuation 

Method in Modes Tracking for Flutter Analysis 

 

4 Results, Analysis and Discussions  

4.1 Modes tracking results in flutter analysis  

The first four selected natural modes are tracked 

using both the traditional p-k method outlined in 

Hassig [15] and the continuation method based 

on 1st order state space system equations or the 

original 2nd order system equations to find the 

flutter speed corresponding to different flow 

Mach numbers. In the p-k method for classical 

flutter computations, the solutions can be 

expressed in the following form: 

𝒒̃ = 𝒒̅𝑒𝑝𝑡 (14) 

where 𝒒̅ is the complex eigenvector, 𝑝 = 𝜎 + 𝑖𝜔, 

𝜎 is the damping which indicates the instability 

when 𝜎 > 0  while 𝜔  represents the angular 

frequencies. Substituting this into the original 

reduced order system equations (9) results in: 

[𝑝2𝑴̃ + 𝑲̃ − 𝑞∞𝑨. 𝑰. 𝑪(𝑀∞, 𝑘)]𝒒̅ = 𝟎 (15) 

By solving the above second order equations 

iteratively, we can get a series of isolated point 

solutions for different airspeeds 𝑈∞ and damping 

𝜎 . The corresponding results are shown in 

Figures 4.1 to 4.7. In Fig 4.1 corresponding to 
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JSM wing without engine, mode 1 is the flutter 

mode since it reaches flutter (as the damping 

goes to zero) at 119.8 m/s before Mode 2 which 

is stable until 140.6 m/s under fixed Mach=0.1 in 

Fig. 4.1 and Fig.4.2.  

 
Figure 4.1 Modes Tracking for JSM Wing without 

Engine using p-k method 

 
Figure 4.2. Modes Tracking for JSM Wing without 

Engine using Continuation Method 

However, for the case of the JSM wing with 

engine, which results in significant changes to 

the mass and stiffness matrices, it can be seen 

from Figs. 4.3-4.4 that Mode 2 becomes the 

flutter mode since it reaches flutter at 91.3 m/s  

 

 
Figure 4.3. Modes Tracking for JSM Wing with 

Engine using p-k method 

 

 
Figure 4.4. Modes Tracking for JSM Wing with 

Engine using Continuation Method 

 

earlier than Mode 1 which reaches flutter at 122.2 

m/s. 

 

The inclusion of the engine nacelle decreases the 

flutter speed by around 28 m/s.  The  continuation 

method enables the tracking of the frequency 

components of each mode as shown in Fig. 4.5 

and Fig. 4.6. As the velocity reaches the flutter 

point, the two associated frequencies get closer 

to each other. This phenomenon known as 

‘frequency coalescence’ implies that the energy 

transfer between the two modes which is usually 

considered as one of the reasons for flutter 

occurrence. Fig. 4.7 shows the change of flutter 

speed in subsonic region and low speed 

supersonic region as Mach number increases 

from 0.1 to 1.3. 

 

 

 

 
Figure 4.5. Frequency Tracking for JSM Wing 

without Engine  
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Figure 4.6. Frequency Tracking for JSM Wing with 

Engine  

 

 
Figure 4.7. Flutter Speed of JSM Wing without Engine 

under varying Mach Number 

4.2 Discussion about Modes Switching 

Phenomenon  

Modes switching phenomenon is widely 

observed in the modes tracking task and it is 

defined as when the parameters of interest 

change, which usually is the airspeed, several 

different modes will get closer to each other and 

finally cross at some points. However, using 

traditional methods like eigenvalue analysis or p-

k method may sometimes cause difficulties in 

recognizing each mode from the crossing point 

and even lead to potential errors for flutter 

analysis. As an example, Fig. 4.8 shows the 

results of the first 6 modes tracking using p-k 

method for the JSM wing without engine under 

Mach number 1.2, when airspeed reaches to 45 

m/s, three mode shape curves almost cross at one 

point. Under this situation, a natural way to fix 

this phenomenon is to connect the points 

manually, but this is not efficient and in some 

situations, it is difficult to tell the different modes 

apart if too many selected modes all cross near 

one point. However, this issue in modes tracking 

task is well handled using continuation method 

which seldom fails in recognizing the modes 

switching phenomenon. This is because in the 

prediction phase it can predict the right direction 

of each mode curve based on the previously 

corrected points. A smaller step size will be 

automatically chosen in the algorithm when it 

detects the modes curve steepen and folds to be 

multiple-valued. This is realized by monitoring 

both the curve slope and the number of iterations 

in corrector phase because the greater the number 

of iterations usually implies the occurrence of a 

steeper curve or fold back phenomenon. The 

fixed curve in modes tracking and frequency 

tracking by using continuation method are shown 

in Figs. 4.9 and 4.10. 

 

 

 
Figure 4.8. Original Result Points for JSM Wing 

without Engine using p-k method under Mach=1.2 
 

 
Figure 4.9. Modes Tracking for JSM Wing without 

Engine using Continuation Method under Mach=1.2 
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Figure 4.10. Frequency Tracking for JSM Wing 

without Engine using Continuation Method under 

Mach=1.2 

5 Conclusion 

In this work, the flutter analysis of a JSM Wing 

with a pylon-mounted engine nacelle is 

considered with the finite element model (FEM) 

based on Nastran. The corresponding results of 

standard structural analysis are shown and 

compared for both JSM Wing with and without 

engine mass to construct the reduced order model. 

The generalized aerodynamic forces under 

different reduced frequencies are calculated 

using Doublet Lattice Method for subsonic 

regime and ZONA 51 method for the lower end 

of the supersonic flow regime. Both of these 

linearized panel methods are based on a series of 

assumptions such as infinitesimal deflections, 

inviscid flow and flat plate wing model which 

will bring some potential inaccuracies. In 

addition, for the current work, the follower force 

caused by the engine thrust has been ignored 

during the flutter analysis. This effect can be 

taken into consideration by conducting a static 

aeroelastic analysis before the flutter analysis in 

the future work. To extend the application of 

Continuation Method into 3D aircraft wing 

flutter analysis, two different methods 1) 

Rational Function Approximation (RFA) 2) 

Cubic Spline are discussed detailedly. The results 

of flutter prediction and frequencies tracking 

based on Continuation Method for both JSM 

wing with and without engine implementation 

are obtained in subsonic region (𝑀∞=0~0.8) and 

low speed supersonic region (𝑀∞=1.1~1.4). For 

the transonic region, the combination between 

the calculation of generalized aerodynamic 

forces based on CFD simulation and the 

continuation method is necessary and will be 

shown in the future work.   Traditional p-k 

method has also been applied for the flutter 

analysis. The corresponding results of modes 

tracking and frequencies tracking are compared 

with continuation method which show the 

advantages of efficiency in modes tracking and 

fixing the errors in modes switching 

phenomenon. 
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