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Abstract  

Surrogate model combined with global optimi-

zation algorithm is necessary for design space 

exploration in aerodynamic shape optimization 

(ASO). However, the “curse of dimensionality” 

exists to a great extent in those global optimi-

zation algorithms. Multilevel collaborative opti-

mization (MCO) method is studies to cope with 

high-dimensional optimization problems in this 

paper. The superiority of MCO method over 

traditional direct full-variables optimization 

method is confirmed through different test fun-

ctions. In aerodynamic shape optimization, 

Sobol’ global sensitivity analysis is introduced 

to quantify the importance degrees of design 

variables. The design variables are divided in to 

subcomponents according to their importance 

degrees and the subcomponents are optimized 

individually in multiple cycles. The MCO aero-

dynamic design framework is established by 

integrating the Sobol’ global sensitivity analysis 

method, efficient shape parameterization meth-

od, mesh deformation technique, numerical sim-

ulation method and surrogate-based global opt-

imizer. Finally, a commercial airplane in trans-

onic regime is optimized by MCO method and 

conventional method respectively. Results show 

that the proposed MCO method is better than 

conventional method. 

1  Introduction  

In the past decades, automatic design opti-

mization has been the subject of ever growing 

interest, thanks to the development of ever more 

reliable analysis software, efficient optimization 

methods and powerful computers. In the aero-

dynamic shape optimization (ASO) community, 

the use of high-fidelity computational fluid dyn-

amic (CFD) simulation is ubiquitous and sear-

ching for an improved design using CFD-based 

optimization is a common practice[1]-[5]. To achi-

eve a preferable aerodynamic design, various 

algorithms and approaches have been develo-

ped, from conventional gradient-based algori-

thm including those utilizing adjoint methods[6]-

[8], to surrogate-based optimization (SBO) that 

offer efficient global optimization and substan-

tial reduction of the design cost[9]-[12].    

In aerodynamic shape optimization especi-

ally in aircraft wing design, a large number of 

design variables are required to help increase 

the degrees of freedom and explore more feas-

ible design space. The nature of high dimensi-

onal aerodynamic design space, with a large 

number of constraints that generate multiple 

infeasible regions and a highly multimodal and 

fragmented landscape complicates the optimi-

zation process considerably. When facing high 

dimensional aerodynamic design issues, the 

adjoint method which drastically reducing the 

cost of computing the gradient is quite popular. 

Nevertheless, gradient-based optimizers tend to 

get trapped in local minima and a decent base-

line is indispensable. To obtain the global opti-

mum, surrogate-based optimization with global 

design space exploration should be conducted[13]. 

Different kinds of global optimization algo-

rithms have been developed: Simulated Annea-

ling (SA), Genetic Algorithms (GA), Differen-

tial Evolution (DE), Particle Swarm Optimiza-

tion (PSO) and so on. Although these global 
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optimization algorithms have shown good opti-

mization performance in solving lower dimen-

sional problems, many of them suffer from the 

“curse of dimensionality”, which implies that 

their performance deteriorates quickly as the 

dimension of the problem increases[14].  

The “curse of dimensionality” refers to the 

exponential growth of volume associated with 

adding extra dimensions to a problem space 
[15],[16]. For population based optimization algo-

rithms such as PSO, this rapid growth in volume 

means that as the dimensionality of the problem 

increases, each of the particles has to potentially 

search a larger and larger area in the problem 

space. Furthermore, the number of local optima 

will grow dramatically. The majority of global 

optimization algorithms lose the power of 

searching the optimal solution when the 

dimension increases. Therefore, more efficient 

search strategies are required to explore all the 

promising regions in a given time budget[17],[18].  

In recent years, large-scale global optimi-

zation has attracted more and more interest. The 

most usual approach for solving large scale 

optimization problems is collaborative coevolu-

tion (CC) frame proposed by Potter and De Jong 
[19]. CC adopts a divide-and-conquer strategy, 

which decomposes a high dimensional problem 

into several subcomponents and evolves the 

subcomponents individually in multiple cycles. 

Via this divide and conquer method, CC is able 

to solve many separable or weak nonseparable 

problems effectively[20],[21].  

There are many decomposition strategies 

dealing with high-dimensional problem in the 

literature. In our work, we present a decompo-

sition strategy based on global sensitivity ana-

lysis[22],[23]: the design variables are decomposed 

in to different low dimensions according to their 

global sensitivity indices. Sobol’ global sensiti-

vity analysis method is introduced which studies 

how the variation in the output of a model can 

be apportioned quantitatively to different design 

variables. Combined with Sobol’ global sensiti-

vity analysis, the multilevel collaborative optim-

ization (MCO) framework is established.  

The remainder of the paper is organized as 

follows: Section 2 reveals the “curse of dimensi-

onnnality” in population-based global optimiza-

tion algorithms. The advantage of multilevel 

collaborative optimization method over conven-

tional optimization method is confirmed in sec-

tion 3. The theory of Sobol’ global sensitivity 

analysis is presented in section 4. In section 5, 

the superiority of proposed method is further 

studied through design optimization of a transo-

nic wing. Section VI outlines conclusions and 

future work.. 

2 The “curse of dimensionality” 

The “curse of dimensionality’’, which was 

first coined by Bellman[15],[16], is the term used 

to describe the problem caused by the expon-

ential increase in volume associated with adding 

extra dimensions to a mathematical space.  

Many optimization methods suffer from 

the “curse of dimensionality”, which implies 

that their performance deteriorates quickly as 

the dimensionality of the search space increases. 

A variation of the Rastrigin function is employ-

yed to uncover the “curse of dimensionality” of 

global optimization algorithm. The function is a 

widely used multimodal test function. It has the 

following definition: 
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In the function, D  represents the dimensi-

ons of input variables. Rastrigin function is 

slighted modified and the division of D is to 

eliminate the impact of dimension on the 

function value. An overview of the function in 

2D situation is shown below. 

 

Fig. 1. Visualization of 2D Rastrigin function 

The PSO algorithm is used to optimize the 

function. In the first case, the same number of 

function evaluations is conducted for different 
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dimensional functions. There are 100 particles 

and 400 optimization steps for each dimensional 

function. In the second case, the number of 

particle is 10 times the dimensionality, i.e. the 

function evaluations is increasing with the 

dimensionality. 

In both case, the optimization is run 10 

times and the averaged optimization steps and 

optimum are shown in Fig. 2-Fig. 5. From the 

result, it is clear that the final optimum becomes 

worse as the dimensionality increases: when the 

dimensionality is high, the increased problem 

space, along with the sparse population of 

particles causes the algorithm quickly conver-

ging on relatively poor solution. Consequently, 

PSO’s predisposition towards premature conv-

ergence worsened and stuck in local optimum as 

the dimensionality of the problem grew. 

 

Fig. 2. Optimization 

histories of the first case 

 

Fig. 3 .Different 

dimensional results of 

the first case 

 

Fig. 4. Optimization 

histories of the second 

case 

 

Fig. 5. Different 

dimensional results of 

the second case 

3  Multilevel Collaborative Optimization 

The increasing dimensionality causes the 

deterioration of the performance of most global 

optimization algorithms. Therefore, it is very 

essential for modern optimization strategy to be 

able to be scalable for high-dimensional prob-

lems. The idea of multilevel collaborative 

optimization (MCO) is introduced in this work. 

In multilevel collaborative optimization, high 

dimensional design variables are decomposed 

into several subcomponents and these low 

dimensional design variables are optimized 

collaboratively in multiple cycles. 

To show the superiority of multilevel 

collaborative optimization over conventional 

direct full-variables optimization, the Rastrigin 

function is also employed to be optimized. In 

this case, the dimensionality of the problem is 

set to 40. For multilevel collaborative optimi-

zation, the input variables are decomposed into 

four sub-dimensions, i.e. there are 10 variables 

in each sub optimization loop. Each sub optimi-

zation is run with 100 steps and the total number 

of function evaluations is the same with that of 

direct optimization in section 2. The result is 

shown in figure 6, which shows that the multi-

level optimization is better than that of direct 

optimization. 

 

Fig. 6. Optimization histories of Rastrigin function 

The result may be not surprising for 

Rastrigin function which is a separable function. 

To further study the performance of multilevel 

optimization strategy, two non-separable func-

tions are chosen to be optimized. They have the 

following definition: 

Griewangk function: 
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Fig. 7. Visualization of 

2D Griewangk function 

 

Fig. 8. Visualization of 

2D Ackley function 

The optimization histories of these two 

non-separable functions are presented in Fig. 9-

Fig. 10. From the results, the multilevel optim-

ization also shows good performance for non-

separable functions. Thus, it can be inferred that, 

the multilevel collaborative optimization strate-

gy would hold true for aerodynamic shape desi-

gn problems. 

In aerodynamic shape design, we have no 

prior knowledge of the design space property 

and the separability of design variables. To 

author’s knowledge, there is also no guideline 

for how to conduct multilevel optimization in 

aerodynamic design. In a very natural sense, the 

design variables can be divided in to sub-

components according to their importance deg-

rees, i.e. the sensitivities and optimized separ-

ately. The reason lies in that for global optim-

ization algorithm used in ASO, the design vari-

ables in each dimension are randomly distri-

buted and the contribution of less important 

variables would be concealed by the important 

ones. This idea is somewhat like the design 

variable screening method. However, MCO do 

not ignore any design variables, and the design 

space is not shrinked. In this paper, Sobol’ 

global sensitivity analysis is introduced to 

quantify the importance degrees of design 

variables and details of the sensitivity analysis 

method is presented in the next section. 

 

 

Fig. 9. Optimization histories of Griewangk function 

 

Fig. 10. Optimization histories of Ackley function 

4  Sobol’ Global Sensitivity Analysis 

Sensitivity analysis is the study of how the 

variation in the output of a model can be app-

ortioned, qualitatively or quantitatively, to diff-

erent inputs. Sensitivity analysis may help unde-

rstanding the contribution of the model inputs to 

the model output and system performance in 

general.  

Methods for sensitivity analysis are typi-

cally classified as local perturbation or global 

methods. Local methods perturb the inputs 

along coordinate directions around a nominal 

value and measure the effects on the outputs. 

Though relatively inexpensive, local methods 

are dependent on the choice of the perturbation 

step and the local sensitivity measured at the 

nominal condition may be very different else-

where in the parameter space. Global methods 

address these issues by providing integrated 

measures of the output’s variability over the full 

range of parameters. The global sensitivity 

approach does not specify the input. Therefore, 
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global sensitivity indices should be regarded as 

a tool for studying the mathematical model 

rather than its specified solution[24].  

Sobol’ global sensitivity analysis is a 

variance-based method[25]. The variance-based 

analysis is sampling-based and therefore applies 

Monte Carlo simulation. Moreover, it relies on 

the computation of conditional variances. The 

main advantage of the methods is that the 

analytic structure of the model to be analyzed 

has not to be known. 

As the effect of inputs upon the output can 

be independent and cooperative, it is natural to 

express the model output as a finite hierarchical 

correlated function expansion in terms of the 

input variables: 
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The total number of summands in (4) is 2n. 

We assume that the members in (4) are ortho-

gonal and can be expressed as integrals of  f x : 
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We have: 
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Assume that  f x  is square integrable. Then, all 

the𝑓𝑖1⋯𝑖𝑠  are square integrable. We get 
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The constants 
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are called variances and  
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The main breakthrough in Sobol’ method 

is the computation algorithm that allows a direct 

estimation of global sensitivity induces using 

values of  f x  only. Monte Carlo integration is 

utilized to obtain those sensitivities[26]. 

 Sobel’s g function is utilized to assess the 

accuracy of this sensitivity analysis method: 
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The constant ia  determine sensitivities of 

different variables. First order variance of g 

function is: 
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The total variance of g function is: 

 
1

1 (1 )
k

ii
V V


      (13) 

In this test case, the constant ia are presen-

ted in table 1. 10000 Monte Carlo simulations 

are performed to obtain Sobel’s sensitivities. 

Sobel’s sensitivities and the theoretical sensiti-

vities are shown in Fig. 11. It can be seen that 

Sobel’s sensitivities are quite close to the theo-

retical sensitivities. 

Table 1 Values of constant ia  

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

90 1 0.1 2 80 4 0.5 3 70 1 
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Fig. 11. Sensitivity comparison 

5 Design Optimization of a Transonic Wing 

5.1 Framework of multilevel collaborative 

optimization  

The Framework involves integrating an 

efficient shape parameterization and mesh def-

ormation technique with a numerical simulation 

method and surrogate-based optimizer. The flo-

wchart of multilevel collaborative optimization 

is presented in Fig.12 and the computation 

methods are discussed below. 

1. CFD Solver 

The RANS solver is used for aerodynamic 

analysis and SST turbulence model is applied; 

Roe scheme is used for inviscid terms and 

central difference for viscous terms; Implicit 

time marching method LU-SGS is utilized. 

2. Geometric Parameterization 

The parameterization scheme is the critical 

factor for an efficient exploration of the design 

space. We use free-form deformation (FFD) 

approach to parameterize the geometry[27],[28]. 

The FFD approach can be visualized as em-

bedding the spatial coordinates defining a geo-

metry inside a flexible volume. The parametric 

locations (u, v, w) corresponding to the initial 

geometry are found using a Newton search 

algorithm. Once the initial geometry has been 

embedded, perturbations made to the FFD 

volume propagate within the embedded geom-

etry via the evaluation of the nodes at their 

parametric locations. NURBS volumes are used 

for the FFD implementation, and the displace-

ments of the control point locations are design 

variables. 

3. Mesh Movement 

Mesh movement operation is required to 

propagate surface perturbations to the remainder 

of the volume mesh. A robust mesh deformation 

technique utilizing quaternion spherical inter-

polation[29] and inverse distance weighted inter-

polation developed in our previous work is 

utilized[30]. In this method, the movement is 

divided in to a rotation part and a translation 

part, and distributed parallel-computing is 

utilized to accelerate efficiency. Therefore, high 

quality CFD Grid can be generated automa-

tically in a very short time.  

4．Surrogate-based optimization 

Surrogate-based optimization is a very 

efficient method for global optimization of 

computationally expensive engineering proble-

ms. In this work, Kriging model is used as the 

surrogate of CFD simulations for its outstanding 

performance in data fitting problems[31],[32] and 

PSO algorithm is chosen as the optimizer due to 

its algorithmic simplicity and effectiveness 
[33],[34]. 
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5.2 Design optimization of a transonic wing 

A commercial airplane in transonic regime 

is chosen as the design case. The drag coeff-

icient is minimized at a prescribed lift coeff-

icient. The single design point is: 
 0.54, 0.78, 2 7Cl Ma Re e     

FFD technique is utilized to parameterize 

the wing as shown in Fig. 13. The leading edge 

and trailing edge of the wing remain unchanged. 

Vertical coordinates of the control points are the 

design variables and the wing shape is 

characterized with 48 variables. 

The Latin Hypercube Sampling (LHS) 

scheme is utilized as the DoE method. 3000 

samples are performed using high-fidelity CFD 

simulations. After the Kriging surrogate model 

is constructed, the surrogate model is used to 

calculate global sensitivities and assess 

candidate designs. 

By Performing Sobol’ sensitivity analysis 

approach, global sensitivities of different 

variables are presented in Fig. 14 and then they 

are sorted as shown in Fig. 15. The 48 design 

variables are decomposed into four subcom-

ponents according to their global sensitivities 

indices. These subcomponents are optimized 

individually in several cycles.  

Conventional direct optimization and prop-

osed multilevel optimization are both conducted 

in this case. Optimization settings are as follows:   

 Direct optimization: 100 particles, 400 steps 

(100x400). 

 Multilevel optimization: 100 particles, 20 

steps, 5 cycles (100x20x4x5). 

The number of function evaluations is the 

same in these two cases and the optimization 

histories are shown in Fig. 16. As expected, 

multilevel optimization shows better results than 

direct optimization. Fig. 17-Fig. 18 illustrates 

pressure contours of the baseline and optimized 

shapes. Fig. 19 gives airfoil and pressure 

coefficient comparisons on different wing span 

sections. It can be seen that, the shock wave is 

weaken on both optimized shapes. By 

comparison, the shock wave on direct optimized 

shape is stronger than that of multilevel 

optimized shape. The aerodynamic shape 

optimization case shows the effectiveness of 

proposed method. 

  

Fig. 13. The airplane configuration and FFD box 

 

Fig. 14. Sensitivities of 

different design 

variables 

 

Fig. 15. Sensitivity decay 

of design variables 

 

Fig. 16. Optimization histories of different methods 

 

Fig. 17. Pressure contour of the baseline 
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Fig. 18. Pressure contour comparison of different optimization results 

  

  

  

Fig. 19. Comparisons of section shapes and pressure distributions 
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6  Concluding Remarks 

In the aerodynamic shape optimization 

community, searching for an improved design is 

still a common practice. The huge search space 

and multiple local minima restrict the ability of 

an optimization algorithm to achieve a globally 

optimal design given a limited budget. This 

work proposed a multilevel collaborative 

optimization method based on Sobol’s global 

sensitivity analysis. The design variables are 

decomposed into subcomponents according to 

their importance degrees and then the 

subcomponents are optimized individually in 

multi cycles. The aerodynamic design case of a 

transonic wing is conducted to confirm the 

effectiveness of the proposed method. 

Different from design variables screening 

method, the multilevel collaborative optimiza-

tion approach does not eliminate any design 

variables and the design space does not shrink. 

Although there is no theoretical proof that the 

multilevel collaborative optimization can find 

the true global optimum, the blessing of MCO is 

that it can accelerate the design optimization. 

There remain several open questions in the rep-

arability of design variables and how to separate 

them in aerodynamic shape design optimization. 

Future work will focus on deep study of theo-

retical background and improving the know-

ledge of multilevel collaborative optimization. 
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