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Abstract

A near-optimal gain-scheduling strategy for
the morphing aircraft flight control design
is proposed. Nonlinear parameter-dependent
dynamics of the morphing aircraft is transformed
into a quasi-linear parameter-varying form.
Assuming that the morphing parameters
are determined in an outer-loop to meet
system requirements, an inner-loop controller
is designed by optimal control scheme.
An algebraic Riccati equation using the
parameter-dependent coefficient matrices is
solved to design a near-optimal controller.
Numerical simulation is performed to
demonstrate the effectiveness of the proposed
scheme.

1 Introduction

Aircraft capable of in-flight, controlled,
large-scale shape changes with the object
of improving efficiency, versatility, and
performance over a wide range of flight
conditions and variant missions are called
morphing aircraft [1]. The concept of
variable-geometry aircraft has a long history
starting from the beginning of manned flight,
and there exist many operational aircraft which
can perform shape changes [2]. However,
utilization of traditional mechanical and
hydraulic systems has been restricted mainly
due to their low energy density. Recently, the
efforts to develop morphing aircraft has been

re-ignited according to smart technologies for
materials, sensors, and actuators [3], which offer
researchers new possibilities to design efficient
morphing aircraft [4]. The design process often
involves complex trade-off studies as well as
multidisciplinary optimization. In [5], impact
of wing morphing on aircraft performance was
demonstrated. The morphing strategies were
also considered to improve the performance of a
cruise missile [6–8].

Morphing configuration may be determined
online to maximize the system-level benefits,
e.g., lift-to-drag ratio. Reinforcement
learning-based approaches were used to learn
the optimal policy for shape change [9–11].
Since the determined configuration is realized by
manipulating a series of morphing actuators, the
problem of designing morphing aircraft control
system can be divided into three sub-problems:
shape determination, shape control, and flight
control. This separation can be partly justified
by the fact that response of morphing actuators
is significantly slower than that of conventional
flapped control surfaces. In this study, only flight
control design is mainly focused. Shape changes
are often parametrized by a set of measurable
time-varying signals, which continuously affect
the dynamics in a given manner. In addition to
aerodynamic characteristics, mass properties are
also significantly changed. Therefore, morphing
aircraft is often modeled as a multi-body dynamic
system with varying degrees of approximating
assumption [12, 13]. The obtained dynamic
model of morphing aircraft is, in general, a
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parameter-dependent nonlinear system.
Flight control system of morphing aircraft

should ensure consistent closed-loop behavior
for the considered flight regimes and shapes.
Accordingly, several control design approaches
to address the parameter-varying nature of
the system have been studied. They often
schedule or adapt the controller parameters by
measuring or estimating the external parameters.
One standard approach is a classical gain
scheduling method [14]. This approach
provides a simple yet powerful way to design
a gain-scheduled controller despite the lack
of theoretical guarantee of stability. Another
approach is the linear parameter-varying (LPV)
control method [15–19], which can be viewed
as a mathematically rigorous version of the
gain-scheduled design. Adaptive dynamic
inversion control based on feedback linearization
was also applied to account for the uncertainties
due to the parameter variation [9–11, 20, 21].
Other popular nonlinear control methods have
also been studied, which include sliding mode
control [22,23] and backstepping control [13,24].

In this study, a near-optimal gain-scheduling
strategy for the morphing aircraft flight
control design is proposed. A variable-span
morphing aircraft model is obtained by
modifying a conventional high-performance
aircraft model. The obtained nonlinear
parameter-dependent dynamics of the
morphing aircraft are then transformed into
a quasi-linear parameter-varying (qLPV) form.
In earlier related work, a parameter-dependent
Riccati equation was utilized in a pitch-yaw
autopilot design where the parameter was
exogenously supplied [25]. In fact, there is
no fundamental difference between qLPV
model and state-dependent coefficient (SDC)
form used in the state-dependent Riccati
equation (SDRE) method. Both modeling
strategies can exploit endogenous as well as
exogenous parameters in the coefficient matrices.
Quasi-LPV modeling approach, however, tries
to separate the non-scheduling state variables
from the system matrices and often involves
some approximations if necessary. Therefore,

unnecessary dependency of the controller gain
on the non-scheduling variables can be removed.
An algebraic Riccati equation (ARE) using the
qLPV model is then solved at every time step to
give the near-optimal control law. The resulting
controller is self-scheduled on the altitude and
morphing parameter (exogenous parameters) as
well as airspeed and angle of attack (endogenous
parameters). The morphing parameters are
assumed to be determined and controlled
externally to meet the system requirements, and
therefore their determination is not addressed
explicitly in this study. Numerical simulation is
performed to demonstrate the effectiveness of
the proposed scheme.

2 Morphing Aircraft

In this study, longitudinal dynamics of a
morphing aircraft model is considered.
Variable-span morphing aircraft model is
obtained by modifying a conventional fixed-wing
aircraft model. The target aircraft is assumed to
be capable of symmetric variable-span morphing,
which changes the aerodynamic characteristics
of the aircraft. The longitudinal equations of
motion can be expressed as

V̇T =
T cosα−D

m
−gsinγ (1)

α̇ =−T sinα+L
mVT

+
gcosγ

VT
+q (2)

γ̇ =
T sinα+L

mVT
− gcosγ

VT
(3)

q̇ =
m
Jy

(4)

where VT , γ, α, q, and h are the true airspeed,
flight path angle, angle of attack, pitch rate,
and altitude, respectively, m, Jy, and g are the
mass, y-axis moment of inertia, and gravitational
acceleration, respectively, and L, D, m, and T
are the lift, drag, pitching moment, and thrust,
respectively. The thrust T is expressed as

T = Tmaxδt (5)

where Tmax is the maximum thrust, and δt is the
throttle. Aerodynamic forces and moment are
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defined as

L = QSCL (6)
D = QSCD (7)

m = QSc̄C̄m− xref(Dsinα+Lcosα)

+ zref(Dcosα−Lsinα)
(8)

with
Q = 1

2ρaV 2
T (9)

where Q is the dynamic pressure, ρa is the
atmospheric density determined by the altitude in
the international standard atmosphere (ISA), S is
the reference area, c̄ is the reference length, and
xref and zref are the displacements of the center
of pressure from the center of gravity along the
body x- and z-axes, respectively.

Note that S and c̄ are the planform area and
mean aerodynamic chord, respectively, which
are parameters chosen to derive dimensionless
aerodynamic coefficients. Therefore, S
and c̄ are constant regardless of morphing.
Instead, aerodynamic coefficients bear whole
morphing-induced aerodynamic variations. In
the considered aircraft model, dimensionless
aerodynamic coefficients are constructed as
follows,

CL =CL0 +
c̄

2VT
CLqq+CLδe

δe (10)

CD =CD0 +
c̄

2VT
CDqq+CDδe

δe (11)

C̄m = C̄m0 +
c̄

2VT
C̄mqq+C̄mδe

δe (12)

where δe is the elevator deflection. Control
derivatives are functions of α, and the other six
coefficients are functions of both α and morphing
parameter η. To simplify the expressions for the
pitching moment coefficients, new coefficients
including the c.g. effect are defined as

Cm0 = C̄m0−
xref
c̄ (CD0 sinα+CL0 cosα)

+ zref
c̄ (CD0 cosα−CL0 sinα)

(13)

Cmq = C̄mq−
xref
c̄ (CDq sinα+CLq cosα)

+ zref
c̄ (CDq cosα−CLq sinα)

(14)

Cmδe
= C̄mδe

− xref
c̄ (CDδe

sinα+CLδe
cosα)

+ zref
c̄ (CDδe

cosα−CLδe
sinα)

(15)

Now, let us define

Cm =Cm0 +
c̄

2VT
Cmqq+Cmδe

δe (16)

Then, the pitching moment m can be expressed
as

m = QSc̄Cm (17)

The original model can be found in [26],
and further details for morphing aircraft model
modification can be found in [27].

3 Quasi-LPV Model

In this section, basic concept of an LPV system
is introduced. A standard procedure to transform
a specific class of nonlinear systems into a
qLPV model is explained. Equations of motion
of the morphing aircraft are embedded in a
qLPV model, which is considered for the control
design.

3.1 LPV Model

LPV system is defined as a linear system whose
system matrices in state-space representation
depend on a set of exogenous parameters. Note
that the exogenous parameters are measurable
online but not known a priori. LPV system can
be represented as

ẋ = A(ρ)x+B(ρ)u (18)
y =C(ρ)x (19)

where x ∈ R nx is a state, u ∈ R nu is a control
input, y ∈ R ny is a measurement output, and
A(ρ), B(ρ), and C(ρ) are parameter-dependent
matrices with proper dimensions. For a given
compact set P ⊂ R nρ , a scheduling parameter
ρ ∈ P is assumed to be measurable in real-time,
where ρ(·) is a piecewise continuous trajectory.
Some of the most common techniques to
transform a nonlinear system into an LPV
model are Jacobian linearization, velocity-based
linearization, and qLPV linearization.
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The qLPV technique is an approach to
overcome the local validity of the resulting model
in classical Jacobian linearization schemes.
In qLPV linearization, nonlinear system is
transformed into an LPV form by hiding the
nonlinear terms in the scheduling variable. Since
this process is a transformation rather than a
linearization in a classical sense, the resulting
LPV model is exactly equal to the original
nonlinear system [28].

Consider a class of input-affine nonlinear
parameter-dependent system of the form[

ẋ1
ẋ2

]
=

[
A11(x1, p) A12(x1, p)
A21(x1, p) A22(x1, p)

][
x1
x2

]
+

[
B1(x1, p)
B2(x1, p)

]
u+
[

f1(x1, p)
f2(x1, p)

] (20)

Assuming that there exist differentiable functions
x̄2(x1, p) and ū(x1, p) which satisfy following
equation for every x1 and p[

0
0

]
=

[
A11(x1, p) A12(x1, p)
A21(x1, p) A22(x1, p)

][
x1
x̄2

]
+

[
B1(x1, p)
B2(x1, p)

]
ū+
[

f1(x1, p)
f2(x1, p)

] (21)

Let us consider the following transformation.

ξ1 = x1 (22)
ξ2 = x2− x̄2 (23)
v = u− ū (24)

Ã22 = A22−
∂x̄2

∂x1
A12 (25)

B̃2 = B2−
∂x̄2

∂x1
B1 (26)

Now, qLPV system can be obtained as follows,[
ξ̇1

ξ̇2

]
=

[
0 A12
0 Ã22

][
ξ1
ξ2

]
+

[
B1
B̃2

]
v+
[

0
E2

]
ṗ (27)

where E2 = −∂x̄2
∂p . Finally, Eq. (20) is

transformed to a qLPV model in a more concise
form as

ξ̇ = Ãξ+ B̃v+E ṗ (28)

If there are nonlinearities in the non-scheduling
variables, the qLPV system becomes a first-order

approximation along the family of equilibrium
points [29]. If reliable measurement is not
available for ṗ, it can be treated as a disturbance
to be rejected.

3.2 Embedding

Dynamics of morphing aircraft given in Eq. (1-4)
falls in a class of nonlinear systems given in Eq.
(20) by defining the state, input, and parameter as

x1 =

[
VT
α

]
, x2 =

[
γ

q

]
, u =

[
δt
δe

]
, p =

[
h
η

]
(29)

To eliminate the nonlinear entries in terms of
the non-scheduling variable x2, a first-order
approximation with respect to a trim value is
performed for the flight path angle γ. Assuming
that flight path angle is small, we have

cosγ≈ 1, sinγ≈ γ (30)

Given altitude, airspeed, and morphing
configuration, a typical trimming subroutine
for straight and level flight with constant
airspeed has three independent variables: angle
of attack, throttle, and elevator deflection.
Unfortunately, there is no guarantee that one can
always find the equilibrium given arbitrary x1
and p. Thus, in this study, nearest trim point is
found in terms of the angle of attack in every
time step, which is used to form a qLPV model.

In the trim condition, following result is
obtained because γ̄ and q̄ are zero.

∂x̄2

∂x1
=

[
0 0
0 0

]
(31)

∂x̄2

∂p
=

[
0 0
0 0

]
(32)

Let us define the system matrices as follows,

A12 =

−gcos γ̄ −
QS c̄

2VT
CDq

m

−gsin γ̄

VT
−

QS c̄
2VT

CLq

mVT
+1

 (33)

A22 =

gsin γ̄

VT

QS c̄
2VT

CLq

mVT

0
QSc̄ c̄

2VT
Cmq

Jy

 (34)
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B1 =

 Tmax cosα

m −
QSCD

δe
m

−Tmax sinα

mVT
−

QSCL
δe

mVT

 (35)

B2 =

Tmax sinα

mVT

QSCL
δe

mVT

0
QSc̄Cm

δe
Jy

 (36)

Now, qLPV model of the morphing aircraft
can be obtained as in the form of Eq. (27).
Note that computation of the partial derivatives
∂x̄2
∂x1

and ∂x̄2
∂p is not required in this case. In

general, partial derivatives are computed by
performing analytical (desirable if possible) or
numerical differentiation. The time rate of
exogenous parameter variation ṗ is obtained by
the following kinematic relation.

ḣ =VT sinγ (37)

It is assumed that the morphing parameter rate η̇

is available. Thus, the complete information for
the disturbance signal E ṗ is available. However,
in this case, the term ṗ do not explicitly appear
in the control design model because E is a
zero matrix, although the parameter rate affect
the dynamics unless the airframe is completely
confined within a trim condition. The possible
influence of the parameter rates and exogenous
disturbance signal can be treated as unknown
disturbances to be rejected, which are implicitly
addressed by designing a robust controller.
Finally, the LPV system of the following form
is considered for the control design.

ξ̇ = A(ρ)ξ+B(ρ)v (38)

4 Control Design

Consider infinite-horizon quadratic cost function
of the form.

J =
1
2

∫
∞

0
(ξT Qξ+ vT Rv)dt (39)

where Q≥ 0 and R > 0 are positive semi-definite
and positive definite symmetric weighting
matrices with proper dimensions. Note that
the resulting controller with constant Q and R
is automatically scheduled by the parameter

ρ. However, Q and R can also be designed as
functions of ρ to accommodate the parameter
variations. These design parameters add further
flexibility to the controller design. The first step
is to solve the parameter-dependent ARE of the
form.

AT P+PA+Q−PBR−1BT P = 0 (40)

where all the matrices in the ARE are functions
of ρ. Therefore, ARE solution P is also a function
of ρ. Finally, the near-optimal gain-scheduled
feedback solution is obtained as follows,

v =−Kξ (41)

where
K = R−1BT P (42)

The actual control input can be recovered as

u =−K
[

x1
x2− x̄2

]
+ ū (43)

5 Numerical Simulation

Numerical simulation is performed to
demonstrate the effectiveness of the proposed
scheme. Actuator saturation and rate limits are
considered in the simulation. The initial altitude
is 15,000 ft, and the initial Mach number is 0.3.
The initial values for the state and input variables
are set to the trim values of the corresponding
straight- and level-flight condition, and only
the pitch rate is deviated -10 deg/s from the
equilibrium. The weighing matrices Q and R are
set as follows,

Q = diag(2 m−2s2,100 rad−2,100 rad−2,10000 rad−2s2)

R = diag(1000,5000 rad−2)

Simulation results with minimum and
maximum span are shown in Fig. 1. It
is observed that the transient and steady-state
responses are different according to the morphing
configuration. Note that the operating angle of
attack can be significantly reduced by extending
extra span, which is favorable when it comes
to reducing the possibility of separation in the
high-alpha region.
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Fig. 1 Simulation Results

6 Conclusion

In this study, nonlinear equations of
motion of a morphing aircraft longitudinal
dynamics were transformed into a quasi-linear
parameter-varying system. At every time step,
parameter and state-dependent algebraic Riccati
equation is solved to obtain a near-optimal
feedback control law. Numerical simulation
results show that the proposed controller
succeeds in stabilizing the longitudinal dynamics
of the morphing aircraft. Furthermore, there is
a room for possible improvement of the control
performance by utilizing parameter-dependent
weighing matrices. Note that the proposed
scheme eliminates the need for gain scheduling
while covering a wide range of the flight
conditions. Furthermore, the unnecessary
dependency of the control gain on the
non-scheduling variables can be removed.
Because there is no assumption other than the
small flight path angle, the proposed controller

almost fully captures the nonlinearity of the
original system.
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