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Abstract  

With the aim of accelerating early design studies 

and reducing design iteration cycles, a technique 

was developed that leverages explicitly captured 

a priori stakeholder knowledge in the form of 

preference maps. To put these preference maps 

to use, they are applied in transforming the 

model of the physical system into a standard-

format objective function that can be used with 

the power of existing numerical search 

algorithms. The search results are a set of design 

points likely to be of interest for exploration in 

further design cycles, and various tools 

associated with the technique aid in 

understanding of the design tradeoffs and the 

design decision-making to follow. 

Of the test cases used in developing the 

approach, the one presented here is an early 

exploration of a winglet retrofit for a narrow-

body airliner. The technique demonstrated 

successfully producing insights under the 

uncertainty of early design studies, producing 

useful results for a relatively low effort compared 

to investing further into more mature system 

models and requirements. It is also an approach 

that enables reaping some of the benefits of 

numerical search algorithms much earlier in 

design than would normally be appropriate. 

1  Introduction  

Computers and software play a fundamental and 

intrinsic role in contemporary aircraft design and 

trade studies. At every stage of a project, not only 

have computers replaced manual calculations, 

but often software is written even for the simplest 

of tasks. From day one of a new aircraft design 

investigation, for example, conducting initial 

‘back of the napkin’ hand calculations has been 

replaced by writing formulae into a spreadsheet 

or a simple script. In this way, the designer not 

only has access to the results of these initial 

calculations but has simultaneously created a 

useful tool whereby the calculations can be 

repeated with different inputs and assumptions 

with virtually no cost. Because software is ever-

present in design as a tool to be wielded by the 

designer, it is worth exploring techniques that 

have the potential to augment the mutualistic and 

complementary interaction between designers 

and their software.  

Many capabilities are available to designers 

by the simple presence of nearly-free repetitions 

of a given analysis. One prominent example is 

automatic searching of the design space, i.e. 

optimization, using various search algorithms to 

find an optimal design. Optimization is an 

excellent tool that has a unique capacity for 

handling design problems with many variables of 

interest that all interact (a common situation in 

aeronautical design). While it is quite 

straightforward to produce plots and 

visualizations that allow a designer to fully 

understand a problem with only a few design 

variables and a handful of dependent parameters 

and make an informed design decision, most 

search algorithms are well-suited to scaling up to 

larger problems, which a human designer could 

only grasp a few dimensions at a time. Because 

of this, optimization also enables exploring these 

large design spaces, not only to find optimal 

solutions, but also often to enable or accelerate 

the discovery of feasible solutions to highly 
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constrained problems, as well as identify and 

gain insight into design constraints.  

This work explores specifically an approach 

to formally capturing a priori stakeholder 

information and leverage numerical search as a 

means of making use of that information. 

1.1 Issues with Optimization in Early Design 

Studies 

An early design study refers here to the early 

stages of any trade study or exploration of the 

design space. This could be the first rough sizing 

estimate made in the first days after exposure to 

a new set of air vehicle requirements or decision 

to pursue development of a new product. 

Alternatively, an early design study could simply 

be the initial investigations into some aspect of a 

vehicle or system that has not been previously 

given significant attention in the overall 

development. In any case, there are some 

characteristics of early design studies which pose 

a challenge to leveraging design optimization in 

the process.  

The first such characteristic is that the 

requirements and/or objectives for the project are 

unlikely to be extremely well defined and 

understood. This is especially true for product 

design as opposed to, e.g., a traditional defense 

program in which the objectives and metric(s) to 

maximize or minimize are explicitly stated. Even 

then, the explicitly-stated objectives are only a 

best effort by the author of the requirements, and 

a faithful adherence to those objectives may not 

result in fulfilling the ‘spirit’ of the program 

goals. 

Conventional wisdom regarding the 

analytical models used in optimization is 

captured well by [1]: “the underlying analysis 

must properly model the true physics or 

optimization will generate unrealistic designs.” 

Besides uncertain requirements, another (and 

arguably more universal) trait of early design 

studies is a lack of maturity and/or fidelity of the 

analytical models in use. Models appropriate for 

conceptual aircraft design, for example, by their 

very nature do not capture the effects of all 

possible design parameters for the simple reason 

that these parameters are unknown at this stage. 

One fortunate side benefit is that these models 

used in early design tend to be computationally 

inexpensive, which helps ease what can be one of 

the pain points in search algorithms: long 

computation times.  

Another reason that models in early design 

studies may lack maturity is simply that, 

especially when unique and novel design 

problems and/or solutions are involved (or 

problems or solutions novel to the particular 

organization), the models are in the process of 

being built in parallel to the design effort itself. 

These under-construction models are also less 

tested and validated, and if used in optimization 

have a significant chance of leading the design 

astray through unaccounted for responses to 

certain combinations of inputs.  

A final characteristic of early design studies 

that poses a challenge to using optimization is 

that there is less-than-perfect alignment between 

the fundamental aims of the processes. 

Mathematical optimization, by its nature, is 

focused on finding optima and, in most cases, a 

single optimal design solution according to an 

all-encompassing objective function that 

captures all value factors for all stakeholders. In 

early design studies, by contrast, because it is 

certain that any design point chosen will change, 

the designer is more interested in identifying 

‘interesting’ design solutions and regions of the 

design space for further investigation and 

informing human-in-the-loop decision making 

than in finding the single best design point. The 

designer is also more interested in increasing 

understanding of the design space, rather than 

letting an optimization algorithm explore the 

design space behind a veil of obscurity and 

abstraction. Finally, especially when working on 

a novel design problem or solution, the designer 

may be more focused in this stage on building 

and maturing the aforementioned analytical 

models. 

1.2 Technique Objectives 

The aim of the technique is to capture as best as 

possible the preference information designers 

normally have a priori but typically only use to 

make design decisions after the design space and 

trade-offs are better understood. This type of 

preference information is normally not used in 
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multidisciplinary design optimization (MDO). 

To illustrate the role this preference information 

plays and the effects it has on the design process, 

consider a simple abstracted example of an early 

trade study for a new aircraft design project: 

payload capacity of the vehicle (which the 

customer already specified as a requirement or 

preference) vs. the operational cost per unit of 

payload delivered (the notional value function to 

be minimized to yield the ‘best’ system), shown 

in Figure 1. 

 

 
Fig. 1. Illustration of early payload capacity 

trade study. 

 

In this situation, a significant cost 

improvement would be possible with a system 

designed with several times the payload capacity 

the customer originally requested. In the 

hypothetical case that optimization would be 

used for this study, the resulting design point 

would either have the customer-prescribed 

payload (if this were set as a constraint) or it 

would be a system many times larger than what 

the customer originally requested and expected. 

However, the design choice was neither, instead 

selecting a point in between. 

What preference information was available 

to the designer before the shape of the curve was 

known that led to the decision? This question is 

the inspiration for the technique presented here. 

The objective of the technique is to capture this 

type of (often non-linear) preference information 

in the form of explicit semi-quantitative 

preference maps that can then be combined with 

the power of computational tools, specifically 

search algorithms, to provide a useful result. In 

this way, the aim is to accelerate the design and 

decision-making process and reduce design 

iteration cycles with automatic searching of the 

design space that is as informed as possible to 

allow the search algorithms, at every step, to be 

driven in the same way a human-in-the-loop 

designer would be. 

2  Implementation 

To develop the proposed technique, a framework 

(Figure 2) was built using object-oriented 

MATLAB and two main classes. A single top-

level design space object for a given project 

contains a vector of design variable objects. The 

design variables are inputs and/or outputs to a 

separate system model function.  

 

 
Fig. 2. Framework architecture. 

2.1 System Model  

The design space points to a system model 

function, which may have an arbitrary number of 

inputs and outputs. It is written in or wrapped by 

a MATLAB function that takes a struct as input 

and returns the same struct with added and 

updated fields for outputs. The fields of the struct 

may also be arbitrary; users are not restricted to 

pre-standardized system parameterizations, such 

as CPACS[2] or ADDAM[3] (though nothing 

precludes their use internally in the system 

model). Inputs and outputs can be floating point 

numbers, discrete numeric or non-numeric 

values (e.g. strings), or dimensioned variables 
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that carry units. This flexibility allows for faster 

and more natural building of the system model 

compared to a traditional MDO setup, which 

normally requires that the target functions accept 

a single vector of continuous numeric inputs. 

2.2 Design Variables 

The core property of the design variables in the 

framework is the preference map (blue line in 

Figure 3), which is simply a lookup table of a 

penalty or value as a function of a system 

parameter value. The ordinate of a preference 

map is arbitrary and can be a dollar cost, for 

example, or a fully abstracted points system, as 

long as it is consistent across all design variables. 

While it is possible to build the maps with 

hard step changes at step changes in value (for 

example when wingspan breaks an ICAO code 

limit), experiments revealed that the technique 

produces slightly more useful results when the 

maps are built with ramps instead of steps, 

creating drivers for the automatic search to make 

‘decisions’ similar to those that a human designer 

would make, but at the multidimensional scale of 

MDO instead of only considering the one to 

about five parameters that typical humans are 

capable of considering simultaneously (for 

example with a carpet plot trade study).  

 

 
Fig. 3. Example preference map for payload 

capacity trade study from Fig. 1. 

 

Each node and segment in a preference map 

can be tagged with an arbitrary amount of 

additional information, with the normal use case 

being linking to requirements, either informally 

or with a formal requirements tool such as IBM 

Rational DOORS or other requirements 

management schemes such as that presented in 

[4]. This helps make the defined design variable 

objects a useful source of documentation as well 

as reusable artifacts for future projects where 

some of the same drivers may be present. 

There is a variety of other information 

captured in the design variable class. These other 

design variable properties either capture 

additional a priori information, such as the level 

of uncertainty in the scale of a particular 

preference map (see below), or simply help 

facilitate working with the design space.  

2.3 Design Space Search 

To leverage the multitude of existing off-the-

shelf search algorithms, design variable 

preference information is transformed into a 

standard-format single-objective optimization 

problem: 

 

min
𝒙

𝑓(𝒙)  such that {
𝑔(𝒙) ≤ 0

ℎ(𝒙) = 0
𝒙𝑙 ≤ 𝒙 ≤ 𝒙𝑢

      (1) 

 

The transformation for the objective 

function to include the preference maps is given 

by the sum of design variable preferences: 

 

𝑓(𝒙) = ∑ 𝑝𝑖(𝑠(𝒙)) ,                 (2)

𝑛

𝑖=1

 

 

where 𝑠(𝒙)  is the system model function that 

analyzes a design defined by input vector x 

(along with some input processing to transform x 

into a usable input struct for the system model 

function) and 𝑝𝑖 returns a preference value based 

on the preference map for the design parameter 

returned by s corresponding to design variable 𝑖. 
Upper and lower bounds are implemented 

as side constraints for input design variables and 

as nonlinear constraints for bounds on output 

design variables. Design variables that are both 

inputs and outputs and that must be consistent, 

for example an estimated weight input and a 

calculated weight output, are also enforced 

automatically with nonlinear constraints, 

removing the requirement for the system model 

function to converge internally. 
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To generate interesting sets of multiple 

design points, the technique seeks to find many 

unique local minima by searching from many 

different start points, 𝒙0,𝑗 . Note that this is 

contrary to the goal common in MDO to find a 

single, globally optimal solution, so some 

variation and tuning in the application of search 

algorithms is required. While it is possible to use 

a wide array of existing search algorithms 

without modification, because the aim here is to 

find local minima in an intentionally non-convex 

problem, the application of most algorithms can 

be outside the original algorithm intent, and 

future work includes exploring new algorithms 

suited and tuned for this type of application. 

The other mechanism for adding variation 

to the resulting set of design points leverages a 

design variable property that is a measure of 

uncertainty in the preference map. Equation (2) 

becomes: 

 

𝑓𝑗(𝒙) = ∑ 𝜌
𝑖

𝑋𝑖,𝑗~𝑈(−1,1)
∙ 𝑝𝑖(𝑠(𝒙)) ,

𝑛

𝑖=1

   (3) 

 

where in addition to each search using a different 

starting point, 𝒙0,𝑗, the uncertainty factor for the 

design variable, 𝜌𝑖, is used to scale the ordinate 

of the preference map stochastically based on 

random number 𝑋𝑖,𝑗  between -1 and 1. An 

uncertainty factor of 2, for example, means that 

the preference map may be scaled by between ½ 

and 2. A flowchart of the implementation of 

Equation (3) is shown in Figure 4. 

Observe that if all preference maps are 

linear, the technique simply becomes a weighted 

sum method for multi-objective optimization. In 

the case that the system model function is also 

smooth and convex, only the uncertainty factors, 

not the varying start points, lead to variation in 

the resulting design point set (if not all 𝜌 = 1). 

 

3  Development Use Case 

Different applications for aircraft generally have 

more or less well-defined metrics in 

development. Small general aviation aircraft are 

at one end of this spectrum, as they are often 

being purchased and operated by individuals for 

whom financial costs of aviation are of secondary 

importance to emotional or aesthetic factors. So, 

the first development test case for the technique 

was an initial sizing study (payload, range, etc.) 

of a personal use, one-off home-built 

experimental general aviation airplane.  

While a personal homebuilt experimental 

aircraft design represents a case with early, 

uncertain, and fungible requirements, at the other 

end of the spectrum are systems like airliners, 

where there is an existing and well-understood 

business model and a small set of clear, 

overarching value functions to maximize or 

minimize (costs and profits), often supported by 

 
Fig. 4. Implementation flowchart. 
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market research. The second development test 

case (and the case used here for a deeper 

illustration of the preference mapping technique) 

was a winglet retrofit study with a system model 

that is very simple and does not go all the way to 

capturing a top-level figure of merit like direct 

operating cost. The design spaces for both test 

cases are relatively small and simple, but the 

uncertainty that the tool addresses is quite 

different for each.  

3.1 Winglet System Model 

The system model function for this use case 

analyzes a potential winglet retrofit on a narrow-

body airliner. Though the airliner industry has 

well-defined objectives and many well-

established models, the modeling used for this 

test case is intentionally simple to mimic the lack 

of such fidelity in early design studies. The 

primary analysis for lift, induced drag, and 

bending moments is based on the vortex lattice 

method as implemented in Athena Vortex Lattice 

(AVL) software [5], with simple models or 

surrogates used to yield other parameters for use 

with preference maps (weight and parasite drag, 

for example). 

For this study, the modifications are limited 

to the tip section of the wing that is entirely 

outboard of the aileron and slat (Figure 5). As the 

analysis is subsonic, the leading edge sweep of 

both the winglet (if present) and the tip section 

are enforced to be at least that of the main wing. 

The main parameters to adjust are the tip panel 

geometry, the winglet size, and the winglet twist 

and incidence. Weight change is based on a 

simple areal weight parameter, and parasite drag 

change is based on a constant section drag 

coefficient. 

3.2 Design Variable and Preference Maps 

A total of sixteen design variables were defined 

for the winglet study. Six of those are shown in 

Figure 6. The preference maps were scaled based 

on cruise drag, i.e., one percent of cruise drag 

reduction was thought of as a unit of ‘currency’ 

when building the preference maps (and hence 

the linear preference map for cruise drag 

reduction).  

Because the system model contained no 

structural analysis, preference maps for wing root 

bending moment and winglet structural aspect 

ratio were used as surrogates, with any root 

bending moment increase greater than 10% 

flagged as likely requiring a more major 

structural redesign effort. The wing span 

preference map captures the significant penalty 

for exceeding the ICAO Code C maximum of 36 

meters, with a hard bound at the Code D limit. 

The xspar preference maps drive favorable design 

adjustments in the case that a main wing spar is 

close to aligning with the thick part of the winglet 

root section. The winglet span preference map 

captures that if the best design has only a very 

tiny winglet, it is desirable to simplify and not 

have any winglet at all. Uncertainty factors 

typically between two and three were set for 

design variables other than cruise drag change. 

 
Fig. 5. Narrow-body airliner half-wing AVL 

model with tip modification region marked. 
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3.3 Use Case Results 

The design space class, in addition to 

coordinating search to generate interesting sets of 

design points, also provides tools to process and 

visualize those results to help facilitate making 

decisions and moving the design process 

forward.  

After a search of the design space, the result 

is a large set of design points. Some processing 

methods are available to make the set more 

manageable. In the (rare in tests so far) case that 

there are points that are completely dominated by 

another (better preference map value for every 

variable), they can be removed, along with 

searches that failed for one reason or another. 

Clustering algorithms were also explored, with 

the most useful being those that preserve outliers, 

since those are often design points of interest. 

Visualizing a multi-dimensional design 

space is quite useful for providing a deeper 

understanding of the system for stakeholders. 

Sometimes the density of resulting points can be 

valuable, in which case a corner plot 

(implemented by [6]) is useful. There are also 

tools built in to support simply creating a 

spreadsheet data table of the various designs and 

their attributes. However, thus far the most 

commonly valuable tool, inspired by and 

implemented similarly to the multi-objective 

genetic algorithm results visualization tool in [7], 

is the scatter matrix augmented with data 

brushing. This visualization of the results for the 

winglet study is shown in Figure 7, where the 

marker color corresponds to the sum of 

preferences before uncertainty factor scaling and 

flagged design points are denoted by smaller 

marker size. 

 
Fig. 6. Selected preference maps used in winglet study. All ordinate axes are the same penalty 

scale. 
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The results reveal a few large clusters of 

design points in interesting regions of the design 

space (with some variation within clusters as 

well). Representative wing geometries for the 

three clusters is shown in Figure 8. Figure 8(a) is 

representative of the large cluster of results that 

feature a prominent winglet, 8(b) depicts a 

simple span extension up to but not violating the 

ICAO Code C limit, and 8(c) shows a design with 

very high bending moments (flagged ahead of 

time as likely being unmanageable) but very 

good drag performance. 

  

 
Fig. 7. Winglet study scatter matrix results visualization with example data brushing (red). The 

main diagonal shows preference maps for reference, along with underlaid histograms to indicate 

distribution and density of design points. 
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4  Conclusions 

The results shown above are not the final step of 

the process. Rather, the important next step is for 

the designer and other stakeholders to use the 

results to make human-in-the-loop design 

decisions that narrow down the design space and 

allow proceeding with further design iterations. 

The technique enables this by generating 

qualitatively distinct alternatives and presenting 

only those that are likely to be of interest for 

further exploration. In addition, through tools 

such as the scatter matrix with data brushing, the 

technique enables exploration and understanding 

of the quantitative tradeoffs between designs. 

These sets of information yield the insights 

needed for quick, informed design decision-

making and accelerated design cycles. 

This is made possible in part by using the 

power of numerical search and optimization 

much earlier, when normally the system model 

and/or requirements are too immature to be 

appropriate for use with optimization. With the 

technique, however, the process can proceed 

under significant but explicitly captured 

uncertainty. As an example, when the winglet 

study use case was set up as a weighted sum 

multi-objective optimization, the one design 

point returned was a high-aspect ratio, high-span, 

and very high bending moment design similar to 

Figure 8(c). 

Another key benefit of the approach is the 

relatively low amount of effort required to build 

preference maps in comparison to refining 

requirements and system models (along with 

additional benefit of the forced critical thinking 

exercise that comes with building preference 

maps). The resulting winglet geometries in the 

use case presented here, for example, are quite 

reasonable and realistic without having any sort 

of highly informed analysis for structures or 

weights. The preference maps used as surrogates 

were built using 100% a priori knowledge and 

therefore did not require any research and 

development to generate. The technique provides 

an alternative path to putting effort into market 

research to lock in requirements or building more 

and more in-depth system models, and therefore 

the technique can be a significant improvement 

in return on invested effort by producing similar 

design results using low-effort preference maps 

in lieu of high-effort requirements and models. 

Initial experience using the technique with 

the two simple test cases has shown enough 

promise to warrant further development and 

exploration of the approach. The architecture of 

the tool makes it a useful framework for other 

design tasks, such as Monte Carlo probabilistic 

 
Fig. 8. Isometric views of representative unique wing geometries from each of the major results 

clusters (triads are one meter for scale). 
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design, more conventional optimization setup (or 

just simply design convergence setup), and 

generating visual artifacts useful for inclusion in 

reports, design reviews, etc. Future development 

specific to the technique presented here will 

focus on more use cases to explore inclusion of a 

wider variety of stakeholders (including non-

technical) in the workflow, scalability to slightly 

higher-dimensional search spaces, and 

applicability to later stages of design. Regarding 

the latter, it is anticipated that the usefulness of 

the technique will diminish at later stages of 

design when uncertainty is significantly reduced, 

requirements are solidified, and system models 

much more closely capture true physics. 
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