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Abstract

A form-finding method for the tensegrity struc-
ture is used in order to find the pretensions and
final configuration of the structure. A finite el-
ement mesh with the pretension consideration
is used to model the structure. A numerical
modal analysis is performed over the structure
and comparisons is made between tensegrity and
tensegrity-membrane structures. A static analysis
over a finite element model of a membrane is per-
formed in order to account for pretension in the
modal analysis. The membrane model is com-
pared with an experimental data obtained in [1]
to validate the model.

1 Introduction

According to Fuller [2], a tensegrity structure can
be understood as an assembly of components un-
der traction and compression organized in a dis-
continuously compressed system. In [3] and [4],
tensegrity is defined as a structure that keeps
a steady volume in space by means of discon-
tinuous elements under compression (bars) con-
nected to a continuous web of tensioned elements
(cables). Kenneth D. Snelson, however, regis-
tered in 1965 the patent of a structure made by
long members put separately, either under ten-
sion or compression, to form a grid. In this struc-
ture, the compressed members were put apart
from each other while the tensioned members
were interconected to form a continuous tension
web [5]. This Snelson’s invention came to be
called tensegrity in the future.

The advantage of these structures is that they
can be designed so their elements are stressed
in one direction only. This characteristic not
only simplifies the motion equations but leads to
more precise models. Furthermore, these unidi-
rectional stresses permit a more efficient material
selection, leading to mass reductions of the stru-
cuture [6].

Tensegrity-membrane is an extension of the
tensegrity studies. They are formed by mem-
branes, bars and tendons. This kind of structures
inherit typical advantages of classical tensegrity
systems, such as reduced masses,extreme flexi-
bility and the ability to change its shape [7]. This
ability is useful for retractile structures, enabling
numerous space applications. In the deployed
form, these structures are more resistant to the
launching related complications. On the other
hand, in the expanded configuration, the structure
will bear the orbital loads only, which are sharply
lower [8]. Furthermore, this kind of function dis-
misses the risky assembly of structures in space.

2 Methods

A tensegrity structure is composed by nodes and
members, that are related by the connectivity ma-
trix, shown in [6], as can be seen by Equation 1.
The nodes are the extremities of the elements
while the members are the elements itself.

nl ∈ℜ
3 (1)

The matrix N contains the node coordinates
of the structure. The vector x, y, and z are the
nodes in the x, y, and z axis respectively. These
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coordinates are organized as follows:

N =


n1
...

nn

=
[
x y z

]
(2)

The members (mk) are the length of the ele-
ment in each axis and can be written as:

mk = nik−n jk (3)

where the terms nik and n jk are the ith and jth

nodes of the kth member.
The matrix M contains the members mk as

follows:

M =


m1
...

mm

 (4)

The matrices M and N are related by the con-
nectivity matrix C :

C.N = M (5)

and [9]:

C.x = u (6)

C.y = v (7)

C.z = w (8)

where u, v and w are the length of the members
in the x, y and z axis, respectively.

To obtain the equilibrium equation, it must
introduce the force density (q) concept. The
force density is the ratio between the traction or
compression forces and the length of the mem-
bers. That relation is shown in the equation 9 to
an arbitrary member k:

qk =
sk

lk
(9)

where sk and lk is the axial force and length of
member k, respectively.

The equilibrium matrix (E) can be obtained
by Equation 10.

E = CT QC (10)

where,

Q = diag(q) (11)

It can be written the equilibrium equation in
nodes coordinates function. For structures with
fixations, the equilibrium equations are:

E.x+E f x f = 0
E.y+E f y f = 0
E.z+E f z f = 0

(12)

where f is the vector with the fixed nodes of
the system. For structures without fixations, the
equations would be:

E.x = 0
E.y = 0
E.z = 0

(13)

Equations 12 and 13 can be solved predeter-
mining the values of the force densities.

2.0.1 Form-finding method

In order to work with tensegrity structures, it
is necessary to find the structure’s equilibrium
shape. There’s the analytical approach used
by [10] and a nonlinear method used by [11].
In this study, it’s used the force density method,
which will be explained in the next section.

The concept of force density and its advan-
tages is presented in one of Schek’s works [12].
However, the method has some disadvantages, as
there are few restrictions on the final shape of the
structure to be determined, although some meth-
ods to restrain the final form exist. This disadvan-
tage is due to the input of the model being only
the force density and some predetermined nodes.

2.0.2 Condition of non-degeneracy

As shown in [9], in order for the structure to have
nd dimensions, the matrix Enxn must have the
condition presented below:

rank(Enxn) = n−h′ (14)
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where,

h′ = nd +1 (15)

Choosing the force density values that will re-
sult in a matrix E that has the required rank is
one of the difficulties of finding the final form of
the structure. In [13], three types of processes
are mentioned. The first would be the intuitive
method, which could be used in simple systems
with few members.The second process would be
the analytical method, in which the analysis of
the matrix results in expressions that can relate
the force densities.

The third process would be the iterative
method, where the force density values are up-
dated at each iteration until the equilibrium ma-
trix (E) reaches the desired rank. This method
will be described in the next topic.

2.0.3 Iterative method for the form-finding

In [9] and [14], is proposed an iterative method
in order to obtain the desired rank of the equilib-
rium matrix.

First, initial values are selected for the force
density (qi) vector, that is used to obtain the equi-
librium matrix E through Equations 10 and 11.
Then, the eigenvectors and eigenvalues of E are
obtained through Equation 16.

E = Φ
T

ΛΦ (16)

In order to the rank of E has the value pre-
sented in Equation 14, the number of zeros be-
tween eigenvalues of Λ must be h′. In the itera-
tive method it’s analyzed the number of zeros in
the diagonal of matrix Λ. If the required num-
ber is not met, the lower values of the diagonal is
replaced by zero to reach the required value.

Proceeding with the iterative method, a new
Λ value is found with the substitution of the h′

smaller values with zero. This new Λ will be de-
noted as Λ and it’s used to find E through Equa-
tion 16.

With Equation 20, one can obtain the updated
value of q through the matrix E.one can get q,
which are the updated values of force densities.
For this, one must define the matrices R and g.

Ri is given by:

Ri.q = Ei (17)

where Ei is the ith column of E.
Then:

RT = (RT
1 ; ...;RT

i ; ...;RT
n ) (18)

Also, g is given by:

gT = (ET
1 ; ...;ET

i ; ...;ET
n ) (19)

Then, q can be obtained by the Equation 20.

q = (RT R)−1RT g (20)

The updated force density matrix (Ei+1) is ob-
tained with q and the Equation 10. Then, Λi+1,
which is the updated value of matrix Λ, is ob-
tained with Equation 16. The iterative procedure
is repeated until the required number of zeros in
Λi+1 is achieved.

It is still possible to add some restriction con-
ditions of the force density relations in the final
form of the structure. This restriction can be writ-
ten as presented below:

Fq = 0 (21)

where the matrix F relates the force density com-
ponents of the vector q.

The node’s height of the tensegrity structure
can be determined by the Equation 22 as seen
in [14].

CT diag(Cz)q = 0 (22)

The restrictions presented above can be writ-
ten as the following linear equation system:(

F
CT diag(Cz)

)
q = Gq = 0 (23)

The system’s solution is given by:

q = φ(Rφ)−1g (24)

where φ is the null space of G.
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These constraints can be accounted in the it-
erative method by using the Equation 24 instead
of Equation 20 in order to find q.

With the force density vector determined, it’s
necessary to find the final form of the structure.
Thus, to find the nodal coordinates X, the homo-
geneous Equation 25 is solved.

HX = 0 (25)

where,

H =

 E On On
On E On
E On E

 (26)

X =


x
y
z

 (27)

The solution for the Equation 25, as shown in
[9], is given by:

X = AA−1X (28)

where A is the null space of H and A is the cor-
responding components in A of related to the in-
dependent set of nodal coordinates X.

The Figure 1 shows the form-finding proce-
dure that was used.

Fig. 1 Iterative process to find force density vec-
tor values.

2.0.4 Form-finding of the Tensegrity-Membrane
structure

The traction in each tendon is found by the form-
finding method described in this paper. The finite
element method can be used in order to find the
membrane displacements and stress that can rep-
resent the same effect of the tendons of the struc-
ture without membrane that was found. Thus, the
tendons can be replaced by the membranes with
no changes in the positions of the nodes of the
structure.

(a) Tensegrity-Membrane. (b) Tensegrity.

Fig. 2 Tensegrity and Tensegrity-Membrane
structures.

2.1 Dynamic Model of the system

A Finite Element model is used in order to ob-
tain the dynamics characteristics of the struc-
ture. A bar element will be employed to represent
the rods and cables of the tensegrity-membrane
structure. The membrane will be modeled by
shell elements.

2.1.1 Bar element

The solution for the displacement of the bar ele-
ment is given by:

uaxial = ω1uaxial1 +ω2uaxial2 (29)

where the shape functions is described by ω1 and
ω2, and is given by:

ω1 =
L− x

L
, (30)
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and

ω2 =
x
L
, (31)

where, the term x is the position on the element
and L is its length.

The displacement interpolation matrix (H)
organizes the shape functions. The matrix is pre-
sented in Equation 32:

H =

{
ω1
ω2

}
(32)

The strain-displacement matrix B, for the bar
element, can be obtained by the Equation 33:

B =
∂H
∂x

(33)

The stiffness matrix of an element is given by
Equation 34, as shown in [15]:

ke =
∫

V
BT CBdV (34)

where C is the material matrix and V is the ele-
ment volume.

For the bar element, C = E and V = AdL.
Where E is the young’s modulus and A is the area
of the transversal cross section of the bar element.

As shown in [15], the mass matrix is given
by:

Me =
∫

V
ρHT HdV (35)

where ρ is the bar element density.
In local coordinates, the bar element is writ-

ten as:

rT
e =

[
uaxial1 uaxial2

]
(36)

The vector re can be transformed into global
coordinates Re by using the Equation 37:

Re = TT re, (37)

where T is the transformation matrix with angles
formed between the global and local coordinates.
Then, the stiffness matrix can be written as:

Ke = TT keT, (38)

The geometric stiffness matrix (KG), pre-
sented in [14], is used in order to consider the
pretensions applied in the cables and the bars of
the tensegrity structure. The matrix (KG) is pre-
sented in Equation 39.

KG = I⊗E (39)

where I is the identity matrix and E is the equi-
librium matrix.

2.2 Shell element

In [15] is presented the shell element used in this
paper. It’s considered an isotropic material for
the material matrix for the eight node element.
Also, it’s considered plane stress state.

3 Results and discussion

3.1 Finding the shape of the tensegrity struc-
ture

The desired configuration of the Tensegrity struc-
ture presents the shape observed in Figure 2(b).

The method of form-finding was imple-
mented in the software MatlabTM. The initial
force densities used in the adaptive force density
method is shown in Table 1.

Table 1 Initial force densities
Force Density

[N/m]
Base Tendons 1,2
Top Tendons 1,5
Vertical Tendons 2,5
Vertical Bar 2,5

It was imposed that each group of the struc-
tures (top, base and vertical members) had the
same force densities between them. Also, it was
imposed that the height of the structure has 150
mm.

The configuration obtained after 161 itera-
tions is shown in Figure 3 and the position of the
nodes in the Table 2.

The force densities and the final forces are
shown in Table 3. Then, in order to the structure
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Fig. 3 Configuration obtained with the force den-
sity method. The tendons are shown in red while
the bars are represented in black.

Table 2 Nodes obtained after 161 iterations.
Position

[mm] x y z

Node 1 97,8 13,7 0,0
Node 2 -14,0 68,9 0,0
Node 3 -5,9 -55,5 0,0
Node 4 -28,0 -27,0 15,0
Node 5 84,2 -19,7 15,0
Node 6 21,8 73,8 15,0

to have a desired configuration, the force densi-
ties of each member must maintain the same ratio
as shown in Table 3.

Table 3 Pretensions present in the final configura-
tion of the structure.

Force
density
[N/m]

Member
lengths
[mm]

Member
forces

[N]
Base

Tendons 1,2558 125,7 0,1566

Top
Tendons 1,5453 112,4 0,1737

Vertical
Tendons 2,4129 154,3 0,3723

Vertical
Bars -2,4129 200,0 -0,4825

3.2 Modal analysis of the structure

The modal analysis was performed using a finite
element model for the structure. Bar elements
were used in the tendons and bars. Shell elements
were used in the membrane. Also, in the simula-
tion was considered the pretension of the struc-
ture.

The structure that was simulated consists of
a membrane of 51µm, a nylon cable of 1mm in
diameter and a 5mm square steel bar. The mate-
rial’s properties used are presented in Table 4.

Table 4 Properties of the materials used in the
simulation

Young’s
Modulus

[GPa]

Poisson
[-]

Density
[kg/m3]

Nylon
Tendons 2 0,3 1130

Steel
Bars 200 0,3 7800

Membrane 0,165 0,34 1400

3.2.1 Pretension application

The addition of pretension in the longiline ele-
ments of the structure is simple. When consid-
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ering stresses only in the axial direction, one has
only to insert the stresses directly into the ele-
ments.

For the membrane, a static analysis is per-
formed on the membrane. In this analysis, pres-
sures are applied at the ends of the membrane
and a restriction is applied at the center. The Fig-
ure 4(a) shows the constraints and forces applied.
The force applied on the membrane is equivalent
to the forces applied at the nodes of the struc-
ture, where the membrane will be fixed, so that
the tensegrity has a stable configuration.

The average size of the 8-node shell elements
is 2 mm. The average size of the elements for the
refined mesh is approximately 0.6 mm.

(a) Boundary condi-
tions.

(b) Stress Map.

Fig. 4 Boundary conditions for the membrane
simulation and its stress map

When the stress map is obtained, as shown in
Figure 4(b), it is inserted to the complete model
shown in Figure 2(a).

3.2.2 Validation of the membrane simulation

In order to validate the membrane model, the
numerical results of the prestressed membrane
was compared with the experimental results ob-
tained [1]. The simulation was carried out
with a 22in.x23.25in.x0.002in. membrane with
young’s modulus of 3.7x105 psi, mass density
ρ = 2.7552 slugs/ f t3. The average size of the 8
node shell elements is 7mm. In order to account
for the air influence in the experimental modal
analysis, the mass density was multiplied by a
factor of 2.6 [1]. It can be seen in Table 5 that
the frequencies of the first mode has the greater
difference between numerical and experimental

analysis. As shown in [16], in order to account
for the air influence in the modal analysis, one
could add mass to the model. The mass that is
needed to be added is proportional to the wave-
length of the membrane’s vibrating mode. As the
first vibrating mode has an greater wavelength,
the air influence must be greater in this natural
frequency, causing the difference in the results.

Table 5 Comparison between numerical and ex-
perimental results.

Natural Frequency
Numerical

(Hz)

Natural Frequency
Experimental [1]

(Hz)
8.0 5.4

11.0 12.7
11.2 13.9
20.1 19.4

Table 6 Comparison between numerical and ex-
perimental modes of vibration.

Mode of Vibration
Numerical

Mode of vibration
Experimental [1]
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3.2.3 First vibration mode - with and without
membrane

For this simulations, it was performed a modal
analysis without fixation in the structure. The be-
havior of the first vibrating mode for the tenseg-
rity and tensegrity-membrane structure is com-
pared. The behavior of the natural frequency of
the first mode of vibration in relation to the pre-
tension applied in the vertical tendons can be seen
in Figure 5.

Fig. 5 Behavior of the natural frequencies of the
first modes of vibration in relation to the preten-
sions applied to the structure.

It can be seen from the Figure 5 that while
the natural frequency of the first mode for the
tensegrity structure, approximately, constantly
grows as the pretension increases, the tensegrity-
membrane presents a different behavior. One ex-
planation would be the membrane inserted in the
structure introduces new vibration modes whose
natural frequencies become the lowest after a pre-
tension of approximately 30 N. This can be ver-
ified in Figure 6 which plots the frequencies of
two mode shapes, shown in Figure 7, for the
tensegrity membrane structure and the first mode
of vibration of the tensegrity structure. The mode
shape will be the displacement configuration pre-
sented by the system during its vibration. It can
be seen that the mode shape 2, inserted by the
membrane, becomes the first mode of vibration at
approximately 30 N. It can be seen that the mode
shape 1 has similar behavior of the first mode of
the tensegrity structure.

Fig. 6 Behavior of natural frequencies of vibrat-
ing modes with corresponding shapes between
tensegrity structures with and without membrane.

(a) Mode shape 1. (b) Mode shape 2.

Fig. 7 Mode shapes of the Tensegrity-membrane
structure.
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4 Conclusion

The force density method is quite efficient to find
the forces of the tensegrity structures. With this
method, it was possible to obtain the prestress
and shape of the structure, indispensable for car-
rying out the modal analysis.

The addition of a membrane to exert the same
function as the tendons may alter the behavior
of the first vibration mode of the structure. It
is noticed that the first mode, for the tensegrity-
membrane has different behavior than that pre-
sented by the tensegrity structure. It’s related to
the mode shape introduced by the presence of the
membrane.
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