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Abstract  

The present work proposes to investigate the 

relationship between the longitudinal dynamics 

of Fly-by-Wire aircrafts and the resultant 

susceptibility to the Pilot Induced Oscillations 

phenomena. Different values of the stability 

derivatives will be simulated in software 

implementations with multiple theoretical pilot 

models. The aircraft movement is considered 

happen only along the longitudinal axis. It is 

expected from these trials a range of values of the 

derivatives that must be avoided in future aircraft 

designs to minimize the PIO occurrence and 

which derivatives have influence on PIO 

occurrence. 

1  Introduction  

In the last few decades, the automation of 

aircrafts has been growing fast. Considering it, 

the developing process must concern about 

safety and flying qualities of such systems, 

especially on the called Fly-By-Wire (FBW) 

which is applied nowadays in large scale. It is 

extremely helpful in the project development to 

avoid an undesired response, like Pilot Induced 

Oscillations (PIO), prior to flight tests of the 

aircraft. The PIO phenomena can be defined as 

“sustained or uncontrollable oscillations 

resulting from the efforts of the pilot to control 

the airplane” [1]. It has been studied since the 

1960s in manual flight control airplanes, as seen 

in [2-4], that investigate the causes of these 

events. Another works performed, such as [5,6], 

studied experimentally human pilot models to 

predict the proneness to PIO in the simulated 

systems. Algorithms to detected the occurrence 

of the phenomena in real time have also been 

studied, like The Real Time Oscillation Verifier 

(ROVER), which was defined by [7] and 

implemented in [8]. Despite these phenomena 

have been studied for 50 years there are few 

researches focused on FBW systems. Those 

issues have motivated the present work, which 

aims to look for conditions that PIO 

susceptibility is present for aircrafts with FBW 

systems, in order to increase the flight safety and 

quality on aircraft provided with this kind of 

command. 

For FBW systems, the stability derivatives 

can be implemented via software. Consequently, 

the resultant response of such aircrafts can be 

altered prior to flight operation. Considering this 

scenario, the present work proposes to 

investigate the relation between the longitudinal 

dynamic characteristics of FBW airplanes and its 

susceptibility to PIO. This proneness is 

investigated with computer simulations, using 

the Matlab platform and also an integration of 

this software with commercial flight simulators 

that can provide a fast visual method to verify the 

resultant system response. The required 

dynamics of the simulated aircraft is 

implemented by the use of a Model Reference 

Adaptive Control (MRAC), which can alter the 

original system dynamics to follow the model 

response.    

This paper is organized as follows: the 

Aircrafts Dynamics Modelling is described in 

section 2, followed by the controller framework 

description in Section 3. This chapter also 

includes a briefly explanation of pilot models in 

section 3.1 and the ROVER algorithm in Section 

3.2. Next, the experimental setup is described in 

Section 4. Experimental results are then 

presented in Section 5 and a discussion of these 
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results is done in Section 6. Finally concluding 

remarks are discussed in the last section.    

2  Aircrafts Modelling: Stability and Control 

derivatives 

An aircraft modelled as a rigid body have six 

degree of freedom, three of translation (x,y and 

z) and three of rotational motion angles (roll-𝜙, 

pitch-𝜃  and yaw-𝜓 ). Commonly, in the flight 

dynamics formulation an airframe’s stability 

axes 𝑂𝐵 located at the aircraft’s center of gravity 

(CG) and moving with it is defined as presented 

in Fig. (1), which is referenced to a reference 

frame 𝑂𝐸 . Once this airframe is defined, the 

resultant aerodynamic force can be described by 

three components [X,Y,Z] acting along each 

corresponded axis. Similarly, the resultant 

moment vector has the components [L,M,N] 

representing the rolling, pitching and yawing 

moment respectively. The velocity of the 

aircraft’s CG also has the components [u,v,w] 

and angular velocity the components [p,q,r], 

which represents the rate of roll, pitch and yaw 

correspondingly. The linearized equations of 

aircrafts motion in the longitudinal plane can 

then be derived considering some simplifying 

assumptions: the aircraft is treated as a single 

rigid body with six degrees of freedom; the 

gyroscopic effects of the spinning rotors are 

neglected; the wind velocity is considered zero; 

and finally the longitudinal motion is decoupled 

of the lateral one. Considering these 

simplifications and the Etkin[9] formulation, 

which applies the small-disturbance theory, the 

linear equations of motion can be defined as a 

state space model. In the present notation, the 

variables reference values are represented by a 

subscript zero and the small perturbations from 

the reference condition are denoted by the prefix 

Δ.  

The longitudinal aircraft dynamics can be 

then represented by the equations:   

 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (1) 

   

 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (2) 

 

where the states 𝑥  is represented by the vector 

[∆𝑢 𝑤 𝑞 ∆𝜃]𝑇  and for a constant throttle 

control condition the input is defined as the 

elevator angle position 𝛿𝑒. 

 

 

 

 

Figure 1: Aircraft Modelling 

The expanded expression of Eq. (1) is 

presented in Eq. (3). The terms 

𝑋𝑢, 𝑋𝑤, 𝑍𝑢, 𝑍𝑤, 𝑍𝑞 , 𝑍𝑤̇, 𝑀𝑢, 𝑀𝑞  and 𝑀𝑤̇  represent 

the longitudinal dimensional stability derivatives 

and the terms 𝑋𝛿𝑒
, 𝑍𝛿𝑒

 and 𝑀𝛿𝑒
 represent the 

longitudinal control derivatives. These 

parameters can also be expressed in a non-

dimensional way, which will be expressed in the 

present work by the variables  
𝐶𝑥𝑢

, 𝐶𝑥𝛼
 , 𝐶𝑧𝑢

, 𝐶𝑧𝛼
, 𝐶𝑧𝑞

, 𝐶𝑧𝛼̇
, 𝐶𝑚𝑢

, 𝐶𝑚𝛼
, 𝐶𝑚𝑞

, 𝐶𝑚𝛼̇
 

respectively for the stability derivatives and  
𝐶𝑥𝛿𝑒

, 𝐶𝑧𝛿𝑒
 𝑎𝑛𝑑 𝐶𝑚𝛿𝑒

 for the control derivatives. 

The stability and control derivatives will be 

evaluated with different values in the present 

work, aiming to find the relation between their 

values and the resultant proneness to the PIO 

phenomena. The matrixes C and D are defined 

depending of the output considered. At the 

present work C is considered an identity matrix 

and D is a zero matrix, which enables the output 

to be the states defined, as shown in Eq. (4). 
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[

∆𝑢̇
𝑤̇
𝑞̇

∆𝜃̇

] =

[
 
 
 
 
 
 
 

𝑋𝑢

𝑚

𝑋𝑤

𝑚
0 −𝑔 cos 𝜃𝑜

𝑍𝑢

𝑚 − 𝑍𝑤̇

𝑍𝑤

𝑚 − 𝑍𝑤̇

𝑍𝑞 + 𝑚𝑢𝑜

𝑚 − 𝑍𝑤̇

−𝑚𝑔 sin 𝜃𝑜

𝑚 − 𝑍𝑤̇

1

𝐼𝑦
[𝑀𝑢 +

𝑀𝑤̇𝑍𝑢

(𝑚 − 𝑍𝑤̇)
]

1

𝐼𝑦
[𝑀𝑤 +

𝑀𝑤̇𝑍𝑢

(𝑚 − 𝑍𝑤̇)
]

1

𝐼𝑦
[𝑀𝑞 +

𝑀𝑤̇(𝑍𝑞 + 𝑚𝑢𝑜)

(𝑚 − 𝑍𝑤̇)
] −

𝑀𝑤̇𝑚𝑔 sin 𝜃𝑜

𝐼𝑦(𝑚 − 𝑍𝑤̇)

0 0 1 0 ]
 
 
 
 
 
 
 

[

∆𝑢
𝑤
𝑞
∆𝜃

]

+

[
 
 
 
 
 
 
 

𝑋𝛿𝑒

𝑚
𝑍𝛿𝑒

𝑚 − 𝑍𝑤̇

𝑀𝛿𝑒

𝐼𝑦
+

𝑀𝑤̇

𝐼𝑦

𝑍𝛿𝑒

(𝑚 − 𝑍𝑤̇)

0 ]
 
 
 
 
 
 
 

𝛿𝑒 

 

 

 

(3) 

 

 

𝑦 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

∆𝑢
𝑤
𝑞
∆𝜃

] 

 

(4) 

 

 

In order to simulate a more realistic 

aircraft a simple actuator servo-hydraulic model 

of the elevator control surface was incorporated 

to the system. This model enables the modeling 

of the rate and position saturation of the actuator 

system and can be described by the diagram 

showed in Fig. (2). In the normal condition of 

operation, which occurs when the commands are 

of small amplitude, the actuator dynamics can be 

described by Eq. (5).  

 

  

 
𝐺𝑎𝑐(𝑠) =

1

𝜏𝑠 + 1
 

(5) 

 

 

     
 

  Figure 2: Actuator dynamics  

 

 

 

3 Control system framework 

The control system structure is showed in Fig. 

(3). The reference signal, commonly named as 

synthetic task (Syntask), consists in a sequence 

of pitch angles to be followed by the simulated 

aircraft. The error between the reference and 

actual position of the pitch angle is then sent to a 

pilot model, which aims to simulate the behavior 

of a real human pilot. This model so calculates a 

control signal which is passed to a reference state 

space model. This model consists of a state space 

equation, as defined in Eq. (1) and (2), which 

models the longitudinal dynamics of an aircraft 

to a given set of values for the stability and 

control derivatives.  

Furthermore, this reference model 

operates in a closed-loop scheme considering for 

that the Linear Quadratic Regulator (LQR) 

methodology. The output of the model is then 

used to calculate an error signal between its 

output and the actual output of the controlled 

aircraft, which in the present work is represented 

by a flight simulator model. These set of signals 

is so used in the implementation of the M-MRAC 

(Modified Model Reference Adaptive Control), 
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which guarantees that the controlled aircraft 

follows the model reference dynamics. Lastly, 

the ROVER algorithm detects the PIO 

phenomena in real time in the controlled aircraft 

output. The ROVER output will be then used in 

the evaluation of the implemented models 

proneness to the phenomena. The next sections 

describe each of the cited control system 

elements.           

 

 

 

 

Figure 3: Control system structure 

 

3.1 Pilot Modelling 

Due to the ability to adapt its behavior, the field 

of modelling the human response consists in a 

challenging and difficult issue. Nevertheless, 

some transfer functions can simulate the human 

pilot behavior in simple tasks as the one 

considered in the present work, where a reference 

signal of the pitch angle must be tracked. For this 

purpose, three models will be considered: the 

Tustin[10] pilot model, the crossover[11] model 

and the precision[12] pilot model described by 

the Eqs. (6), (7) and (8) respectively. The input 

for these models is considered the error 𝑒(𝑠) for 

the tracking task considered and the output is 

defined as the elevator angle command 𝛿𝑝(𝑠).  

 

 𝛿𝑝(𝑠)

𝑒(𝑠)
=

𝐾𝑝(5𝑠 + 1)𝑒−0.3𝑠

𝑠
 

(6) 

 

 𝛿𝑝(𝑠)

𝑒(𝑠)
=

𝐾𝑝𝑒−0.3𝑠

0.2𝑠 + 1
 

(7) 

 

 𝛿𝑝(𝑠)

𝑒(𝑠)
= 𝐾𝑝𝑒−0.3𝑠

(6𝑠 + 1)

(3𝑠 + 1)
𝐺𝑁𝑀(𝑠) 

 

(8) 

 

 𝐺𝑁𝑀(𝑠)

= (
1

(0.1𝑠 + 1) (
𝑠2

202 +
2 × 0.7

20 𝑠 + 1)
) 

 

 

 

3.2 Reference Model: LQR 

The reference model presented in Fig. (3) is 

defined in closed loop scheme using the LQR 

control strategy. This approach enables the 

possibility of modification in the original 

response of the model. Besides, the stability of 

this system is assured with the LQR control 

system. For its implementation is aimed, for a 

given MIMO (Multiple-Input-Multiple-Output) 

system 𝑥̇ = 𝐴𝑥 + 𝐵𝑢(𝑥 ∈ ℝ𝑛 𝑎𝑛𝑑 𝑢 ∈ ℝ𝑚) , a 

control law 𝑢 = −𝐾𝑥  which minimizes the 

quadratic cost function:  

 

   

 
𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

∞

0

 
(9) 

 

where 𝑄 ≥ 0 and 𝑅 > 0 are symmetric, positive 

semi-definite matrices with appropriated 

dimensions. The solution for this LQR problem 

gives the gain 𝐾 of the form: 

 

 𝐾 = 𝑅−1𝐵𝑇𝑃 (10) 

 

 

 to a 𝑃 ∈ ℝ𝑛 × 𝑛  positive definite, symmetric 

matrix which satisfies the equation: 

 

  

 𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (11) 
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 However, the LQR problem presented is 

based on the minimization of a set of signals, 

commonly known as controlled outputs, in the 

shortest amount of time. Therefore, some 

modifications are necessary in order to enable 

this method to be applied in system which aims 

to track a reference signal. One of these methods, 

as stated in [13], adds to the system a new state 𝑧 

of the error between the reference 𝑟  and the 

system output, as follows: 

 

 𝑧̇ = 𝑟 − 𝐶𝑙𝑞𝑟𝑥 (12) 

    

where 𝐶𝑙𝑞𝑟  denotes a matrix of appropriated 

dimensions. The system is then altered in a 

augmented form with the inclusion of the new 

state: 

 

 
[
𝑥̇
𝑧̇
] = [

𝐴 0𝑛 × 𝑚

−𝐶𝑙𝑞𝑟 0𝑚× 𝑚
] [

𝑥
𝑧
]

+ [
𝐵

0𝑚× 𝑚
] 𝑢

+ [
0𝑛 × 𝑚

𝐼𝑚× 𝑚
] 𝑟 

(13) 

 

where 𝐼 represents an identity matrix. Once the 

augmented system is defined, a control law 

which minimizes the quadratic cost function 

presented in Eq. (9) is searched in the form 𝑢 =

−[𝐾𝑥 𝐾𝑧] [
𝑥
𝑧
]. 

3.3 M-MRAC 

The control systems named MRAC (Model 

Reference Adaptive Control) are a class of 

algorithms which the desired response of the 

controlled system is specified by a model. The 

parameters of the controller are then adjusted 

based upon the error between the output of the 

controlled and the model systems. The controller 

parameters so converge asymptotically to a set of 

ideal values, which can enable the controlled 

system to tracks a reference following the 

dynamics of the model system.  

For a MIMO system, 𝑥̇ = 𝐴𝑥 + 𝐵𝑢(𝑥 ∈
ℝ𝑛 𝑎𝑛𝑑 𝑢 ∈ ℝ𝑚)  with 𝑥(0) = 𝑥0 , a MRAC 

controller can be defined using the inverse 

Lyapunov analysis, as stated in [14]. The main 

purpose of the this MRAC system is to design a 

state feedback adaptive control law so the system 

state 𝑥 globally uniformly asymptotically tracks 

the state 𝑥𝑟𝑒𝑓 ∈ ℝ𝑛 of the reference model: 

       

 𝑥̇𝑟𝑒𝑓(𝑡) = 𝐴𝑟𝑒𝑓𝑥𝑟𝑒𝑓(𝑡) + 𝐵𝑟𝑒𝑓𝑟(𝑡) 

𝑥𝑟𝑒𝑓(0) = 𝑥0 

(14) 

 

where 𝐴𝑟𝑒𝑓 ∈ ℝ𝑛×𝑛 is a Hurwitz matrix, 𝐵𝑟𝑒𝑓 ∈

ℝ𝑛×𝑚  and 𝑟(𝑡) ∈ ℝ𝑚  is an external bounded 

command vector. The control input 𝑢 thus needs 

to be selected so the tracking error presented in 

Eq. (15) globally uniformly asymptotically tends 

to zero. 

 

 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑟𝑒𝑓(𝑡) (15) 

 

 

  Through the application of the inverse 

Lyapunov analysis the control law can be 

computed as stated in Eq. (16), where 𝐾̂𝑥  ∈
 𝑅𝑛 𝑋 𝑚  e 𝐾̂𝑟  ∈  𝑅𝑚 𝑋 𝑚  are control gains (or 

adaptive laws) which are generated online with 

the controller.   

 

 𝑢 = 𝐾̂𝑥
𝑇𝑥 + 𝐾̂𝑟

𝑇𝑟 (16) 

 

If the adaptive laws are selected as stated 

in Eq. (17) a Lyapunov function 𝑉 can be defined 

with its time derivative globally negative 

semidefinite, in the form  V̇ = −𝑒𝑇𝑄𝑒 ≤ 0 (for 

some 𝑄 = 𝑄𝑇 > 0 ), and with its second 

derivative bounded in the form 𝑉̈ = −2𝑒𝑇𝑄𝑒̇ . 

Consequently, the Lyapunov analysis establishes 

that the state tracking error 𝑒(𝑡) defined in Eq. 

(15) tends to the origin globally, uniformly and 

asymptotically. The terms Γ𝑥 = Γ𝑥
𝑇 > 0  and 

Γ𝑟 = Γ𝑟
𝑇 > 0 are user selected matrices of rate of 

adaption and  𝑃 = 𝑃𝑇 > 0 satisfies the algebraic 

Lyapunov equation 𝑃𝐴𝑟𝑒𝑓 + 𝐴𝑟𝑒𝑓
𝑇 𝑃 = −𝑄  for 

some 𝑄 = 𝑄𝑇 > 0.     

 

 𝐾̇̂𝑥 = −Γ𝑥𝑥𝑒𝑇𝑃𝐵 

𝐾̇̂𝑟 = −Γ𝑟𝑟(𝑡)𝑒
𝑇𝑃𝐵 

(17) 

 

Nevertheless, the classical MRAC 

system described above can have an oscillatory 

transient behavior which deteriorate the 

controller response and limits its applicability, 
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especially in a PIO scenario, where an oscillatory 

response already exists. To overcome this 

problem, a simple modification in the reference 

model can be done by feeding back the tracking 

error signal. This approach is called modified 

reference model MRAC or M-MRAC and is 

defined in [15]. In the M-MRAC framework, the 

tracking error signal 𝑒𝑚(𝑡) = 𝑥(𝑡) − 𝑥𝑚(𝑡)  is 

computed using the modified model reference: 

 

 𝑥̇𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡) + 𝐵𝑚𝑟(𝑡) + 𝜆𝑒𝑚(𝑡) 

𝑥𝑚(0) = 𝑥0 

(18) 

 

where 𝜆 > 0  is a design parameter. One can 

notice that for 𝜆 = 0  the conventional MRAC 

design is achieved again, with 𝑒(𝑡) = 𝑒𝑚(𝑡) . 

The application of the Lyapunov stability theory 

can also prove that the modified state tracking 

error 𝑒𝑚(𝑡)  tends to the origin globally, 

uniformly and asymptotically. The parameter 𝜆, 

according to [16] methodology, can be calculated 

in the terms of the adaption rate matrix Γ𝑟 and the 

matrix 𝑃  ( 𝑃 = 𝑃𝑇 > 0  satisfies the algebraic 

Lyapunov equation 𝑃𝐴𝑟𝑒𝑓 + 𝐴𝑟𝑒𝑓
𝑇 𝑃 = −𝑄  for 

some 𝑄 = 𝑄𝑇 > 0) as follows: 

 

       

 𝜆 = √2𝛼Γ𝑟𝜆𝑚á𝑥(𝐵𝑚
𝑇 𝑃𝐵𝑚) (19) 

 

where 𝛼 = ‖𝑥0‖
2 + 𝑠𝑢𝑝𝑡‖𝑟(𝑡)‖2  and 𝜆𝑚á𝑥  is a 

adjustable parameter. 

3.4 ROVER  

The ROVER algorithm considered in the present 

work can detect in real time the occurrence of the 

PIO phenomena based on the monitoring of four 

parameters:  the amplitude and frequency of the 

pitch rate aircraft response, the amplitude of the 

pilot command and the phase angle difference 

between these signals. If one of these monitored 

parameters exceed the values presented in Table 

(1) the value 1 is set to a corresponded flag. 

When the four flags are set with 1 a severe PIO 

condition occurs. The implemented ROVER 

algorithm gives then a signal which in the PIO 

condition (four flags set) has the value one, 

otherwise it has a zero value.    

 

Table 1. ROVER parameters 

Parameter Threshold value 

Pitch rate magnitude ≥ 12º /s 

Pitch rate frequency 1 – 10 rad/s 

Pilot command ≥ 1.2 peak-to-peak 

(60% of maximum 

deflection) 

Phase difference ≥ 180º 

 

4 Methodology 

In order to investigate the relation between the 

longitudinal stability /control derivatives and the 

resultant proneness of the implemented aircraft 

dynamics to the PIO, simulations of the 

described system are performed in the software 

Matlab. The aircrafts models implemented in the 

simulations are based on the flight data of the 

model Boeing 747-100, derived from [9], in a 

cruising and horizontal flight condition at a fixed 

altitude of 40000 ft at a Mach Number of 0,8. The 

original stability and control derivatives of this 

aircraft model is shown in Table (2).  

 

Table 2. Boeing 747-100 Stability/ 

Control Derivatives 

Derivative Value Derivative Value 

𝐶𝑥𝑢
 -0.108 𝐶𝑚𝛼

 -1.023 

 

𝐶𝑥𝛼
 0.219 𝐶𝑚𝑞

 -23.921 

 

𝐶𝑧𝑢
 -1.414 𝐶𝑚𝛼̇

 -6.315 

 

𝐶𝑧𝛼
 -4.920 𝐶𝑥𝛿𝑒

 -3.818 x 

10-6 

𝐶𝑧𝑞
 -5.923 𝐶𝑧𝛿𝑒

 -0.365 

 

𝐶𝑧𝛼̇
 5.896 𝐶𝑚𝛿𝑒

 -1.444 

 

𝐶𝑚𝑢
 0.104   

 

 

In the first stage of the present work, the 

longitudinal stability /control derivatives derived 

from this flight condition data are then variated 

individually to different values and a state space 

reference model dynamic is then derived from 

these altered values. Simulations are performed 
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considering just the reference model operating in 

a closed loop condition with the LQR system 

architecture described in Section 3 for different 

pilot models. The reference models implemented 

in this stage also include the actuator dynamics 

described in Section 2. The proneness of each 

reference model obtained to the PIO is then 

evaluated based on the output of the ROVER 

algorithm, which is expressed as a percentage 

level of activation of the algorithm in the time 

interval considered. It is expected of these 

simulations a range of values for each derivative 

which must be avoided in order not to occur the 

phenomena.  

In the second stage of the work, sets of 

combination of these derivatives obtained from 

the last stage are derived, with low and high 

proneness to the PIO. Reference models are so 

calculated from these values, and the complete 

control architecture with the M-MRAC system 

described in Section 3 is simulated. The Boeing 

777-200 model implemented in the flight 

simulator software FlightGear is considered as 

the controlled system in this stage. The resultant 

proneness to the PIO of the controlled aircraft is 

then evaluated based on the ROVER activation 

again. These simulations aim to confirm the 

influence of some of the derivatives in the 

resulting response of the controlled system. 

Furthermore, the flight simulator can also 

provide a fast visual method to verify the 

occurrence of oscillations in the resultant system 

response.                  

5 Results 

In the first step, simulations are performed using 

the state space models in order to obtain a range 

of derivatives, with high proneness to PIO,  to be 

avoided for each pilot model considered. These 

ranges obtained, for the stability and control 

derivatives, as result of this process are shown in 

Tables (3) ,(4) and (5) for Tustin, Crossover and 

Precision pilot models respectively. In these 

tables the ROVER range obtained, with its 

minimum and maximum values, for each 

corresponded derivative is also presented. The 

values expressed in parentheses stablishes the 

corresponded derivative value for the PIO level 

stablished.  

 

 

Table 3. Range with high proneness to 

Tustin Pilot Model 
Stability / 

Control 

Derivative 

Non-dimensional 

range 

ROVER 

Range Level (%) 

𝐶𝑚𝑞
 -20.24 

28.30 

8.40 (-7.25) 

12.82 (-4.07) 

𝐶𝑚𝛼̇
 -3.55 

46.13 

6.19 (-3.30) 

6.34 (45.94) 

𝐶𝑧𝛿𝑒
 -99.11 

-93.03 

10.64 (-95.51) 

10.89 (-94.07) 

𝐶𝑚𝛿𝑒
 1.32 

1.41 

10.47 (1.37) 

12.72 (1.36) 

 

 

Table 4. Range with high proneness to 

Crossover Pilot Model 
Stability / 

Control 

Derivative 

Non-dimensional 

range 

ROVER 

Range Level (%) 

𝐶𝑚𝑞
 -12.49 

28.30 

14.73 (28.30) 

14.81 (-7.25) 

𝐶𝑚𝛼̇
 6.01 

25.21 

14.73 (23.09) 

14.82 (9.76) 

𝐶𝑧𝛿𝑒
 -116.19 

-96.44 

20.70 (-96.44) 

51.30 (-97.56) 

𝐶𝑚𝛿𝑒
 1.22 

1.48 

14.81 (1.47) 

14.87 (1.39) 

 

 

Table 5. Range with high proneness to 

Precision Pilot Model 
Stability / 

Control 

Derivative 

Non-dimensional 

range 

ROVER 

Range Level (%) 

𝐶𝑚𝑞
 -23.25 

28.30 

10.32 (27.20) 

14.70 (-21.10) 

𝐶𝑚𝛼̇
 -5.55 

45.05 

10.31 (44.06) 

10.42 (-4.12) 

𝐶𝑧𝛿𝑒
 -146.79 

-89.08 

10.78 (-146.54) 

61.56 (-93.68) 

𝐶𝑚𝛿𝑒
 1.07 

1.54 

10.36 (1.53) 

15.63 (1.22) 

 

Considering the values obtained for each 

stability/control derivative, general ranges could 

be derived for an independent pilot model 

system. These ranges are presented in Table (6). 
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Furthermore, the proposed method can enable 

one to find also a range of values with low 

proneness to the phenomena. These values are 

presented in Table (7).  

 

Table 6. General range with high 

proneness  

 
Stability / 

Control 

Derivative 

Non-dimensional range 

𝐶𝑚𝑞
 -12.49 

28.30 

𝐶𝑚𝛼̇
 6.01 

25.21 

𝐶𝑧𝛿𝑒
 -99.11 

-96.44 

𝐶𝑚𝛿𝑒
 1.22 

1.41 

 

 

Table 7. General range with low 

proneness 

 

Stability / 

Control 

Derivative 

Non-dimensional range 

𝐶𝑧𝑞
 463.74 

1.15 x 103 

𝐶𝑧𝛼̇
 328.97 

819.48 

𝐶𝑚𝛼
 -2.29 

-1.74 

𝐶𝑚𝑞
 -141.61 

-65.07 

𝐶𝑚𝛼̇
 -89.73 

-51.65 

𝐶𝑧𝛿𝑒
 51.07 

2.12 x 103 

-1.98 x 103 

-299.14 

𝐶𝑚𝛿𝑒
 1.88 

93.28 

-97.90 

-2.02 

 

In the second step simulations were performed 

with the M-MRAC system integrated with the 

flight simulator FlightGear described in section 

(3). The reference models were built applying the 

ranges founded with low and high proneness. 

The original model was also simulated in order 

to compare the PIO level obtained. The high 

proneness model was set with  
𝑪𝒎𝒒

= −𝟔. 𝟗𝟐, 𝑪𝒎𝜶̇
= 𝟏𝟏. 𝟗𝟏, 𝑪𝒛𝜹𝒆

= −𝟗𝟕. 𝟏𝟐 

and 𝑪𝒎𝜹𝒆
=  𝟏. 𝟑𝟐 . The low proneness model 

was set with 𝑪𝒛𝒒
= 𝟕𝟒𝟎. 𝟑𝟑, 𝑪𝒛𝜶̇

= 𝟔𝟏𝟔. 𝟔𝟖and 

𝑪𝒎𝜹𝒆
=  𝟏. 𝟖𝟖  . The others stability/control 

derivatives of these models were maintained with 

its original values. The Figs. (4), (5) and (6) 

present the plot response of the simulations 

performed. In these figures the PIO level 

obtained to each model considered is also shown, 

which was multiplied by a factor of ten to 

facilitate the visualization. 

 

 

 

Figure 4: M-MRAC+ Flight Simulator: 

Tustin Pilot Model 
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Figure 5: M-MRAC+ Flight Simulator: 

Crossover Pilot Model 

6 Discussions 

In the first step of the present work simulations 

were performed with the purpose of obtaining 

ranges for the stability/control derivatives with 

high proneness to PIO. In this stage, the original 

derivatives values (presented in Table (2)) were 

varied and the resultant proneness of the system 

was evaluated. For this intent, a closed loop 

system was simulated consisting in the state 

space model of the aircraft, a LQR controller and 

the ROVER algorithm. The system also included 

a pilot model described function in order to 

simulate a more realistic scenario. In this stage, 

to obtain the high proneness derivatives, the 

system was first simulated with its original 

derivatives values with the pilot gain adjusted on 

the onset of a PIO condition, based on the 

ROVER signal.  

 

 

 

Figure 6: M-MRAC+ Flight Simulator: 

Precision Pilot Model 

 

The PIO level obtained in this condition 

is then used as a reference to be compared with 

the values obtained with the variation of the 

derivatives. The resultant state space model, 

obtained from the derivatives variation, is then 

considered as a high proneness if leads to a 

response with a greater ROVER level activation. 

For the Tustin pilot model, a gain of  𝐾𝑝 = 1.185 

led the original state space system to a PIO level 

of activation of 0% (percentage of the time 

duration of the simulation). As presented in 

Table (3) the most sensitive derivatives are 𝐶𝑚𝑞
, 

𝐶𝑚𝛼̇
, 𝐶𝑧𝛿𝑒

 and 𝐶𝑚𝛿𝑒
.  This result was partially 

expected, since these derivatives appears directly 

in the expressions of 𝑞 and ∆𝜃0 in the state space 

modelling presented in Section (2). The variation 

of the other derivatives led the model to 

unsatisfactory responses, and then are not 
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considered in the present work. In this case, for 

instance, the adjustment of the derivative 𝐶𝑚𝑞
 to 

a value of 𝐶𝑚𝑞
= − 4.07 leads the system to a 

PIO condition with a ROVER level of 12.82 %. 

For the Crossover Pilot model a gain of 𝐾𝑝 =

6.185 make the original system to operate in a 

PIO level condition of 2%. The most propense 

derivative, in this case, was  
𝐶𝑧𝛿𝑒

= −97.56 which results in a system with a 

ROVER level of 51.30 %. In the last pilot 

describe function considered, the Precision 

model, a gain of 𝐾𝑝 = 4  make the original 

system to operate in a PIO level condition of 

1.93%. The most propense derivative was then 

𝐶𝑧𝛿𝑒
= −93.68, which leads to a system with a 

ROVER level of 61.56 %.  

Once these ranges, with high proneness, 

were obtained, the analysis of the Tables (3), (4) 

and (5) can lead one to determinate a general 

range, for each derivative considered, with high 

proneness to the phenomena, which is 

independent of the pilot model considered. These 

range values are shown in Table (6). The 

relevance of the method developed in the present 

work resides in the fact that it is independent of 

the control system architecture considered. 

Therefore, it can be applied to any control system 

considered, just by varying the derivatives values 

and evaluating the resultant proneness to PIO. 

Besides, the method can enable one also to find 

ranges for the derivatives with low proneness to 

the phenomena. For this case, the pilot gain of the 

models is adjusted with higher values in order to 

obtain a severe PIO condition. The derivatives 

are then variated, and their corresponded values 

are considered to be part of a low proneness 

model if lead the system to a lower ROVER 

activation level. The ranges obtained for this case 

are present in Table (7). As can be noticed by 

comparing the Tables (6) and (7), the same 

derivatives of the high proneness case can lead 

the system to a low proneness condition. The 

difference resides just in the ranges considered.  

In the second stage of the work, 

simulations with commercial flight simulator 

software were performed in order to confirm the 

effectiveness of the proposed method. In this 

step, the M-MRAC control system architecture 

described in Section (3) was applied. The values 

obtained in Table (6) for the derivatives were 

combined, and a high proneness model was 

stablished. In a similar procedure, a low 

proneness model was obtained from the results of 

Table (7). The original state space system and 

these new systems obtained are then used as 

reference models to the M-MRAC system. Each 

resultant system was then simulated with the 

same pilot models considered in the first step 

with high gains to incite a severe PIO condition. 

The controlled plant, in this case, is considered 

the aircraft dynamics model of the flight 

simulator. In fact, as can be noticed from the 

results illustrated in Figs. (4), (5) and (6), the high 

proneness model led the system to a more severe 

PIO condition for the three pilot models 

considered, since the ROVER level was greater 

for this case. On the other hand, the low 

proneness model built made the system to stop 

the PIO occurrence, which confirm the efficacy 

of the method.        

7 Conclusions 

The method proposed in the present work can 

enable one to find the ranges for the 

stability/control derivatives more propense to the 

PIO phenomena. The method can be employed to 

any control system architecture applied to create 

a closed loop system with the state space model 

considered, since it is based on the outputs of the 

resultant system. The proposed system can also 

be applied to determine low proneness models 

and to any pilot model considered. Furthermore, 

its effectiveness can be confirmed with the 

proposed M-MRAC system integrated with 

commercial flight simulators, which can improve 

the analysis of the resultant system by the use of 

the visualization of the aircraft response in real 

time. Besides, considering the system is already 

integrated with a flight-simulator, future works 

can be performed with human pilots using the 

visual feedback provided by a full flight 

simulator, including the architectures integrated 

with movable platforms.   
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