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Abstract  

Transonic airfoil often shows sensitive 

aerodynamic performance to uncertainties of 

flight conditions. To build an effective design 

optimization method for robust transonic airfoil, 

The AIAA RAE2822 airfoil design optimization 

test case is studied by robust design optimization 

(RDO) method. The non-intrusive polynomial 

chaos expansion (NIPCE) method is applied to 

provide efficient and accurate uncertainty 

quantification (UQ). The global evolution 

optimization algorithm combined with surrogate 

model is used to build the RDO framework. As a 

comparison with RDO, deterministic design 

optimization is firstly performed and researched. 

These results show that deterministic 

optimization airfoil is often ill posed and 

suffering from the drastic increase of drag 

coefficient at off-design points, even though the 

drag coefficient of it at design point has been 

reduced by 48.42% from that of RAE 2822 airfoil. 

While the RDO airfoil achieves robust drag over 

a range of Mach numbers and improves the drag-

divergence Mach number by 0.05 from RAE2822 

airfoil. The case demonstrates that the proposed 

RDO method provide an effective approach to 

transonic aerodynamic optimization. 

1 Introduction  

The RDO method is made up of three main parts 

[1]. The first stage consists of identifying and 

quantifying the uncertain parameter associated 

with the problem definition and the analysis 

modules. Probability distribution functions 

(PDFs) are often used to quantifying uncertainty 

of these parameters. The second phase focus on 

the UQ through the analysis approach to obtain 

probabilistic descriptions of the objective 

functions and constraints. Robust descriptions of 

the objectives depend on the numerical 

approximation of their statistical moments 

including expectation and variance, and 

reliability forms of constraints rely on the 

probability the constraint is violated or exceeds a 

reference value. Finally, the third stage defines 

the mathematic model of RDO and searches for 

the optimal shape with robust performance. RDO 

for aerodynamic shape minimizes the mean and 

the standard deviation of objective subject to 

reliability constraints over the range of possible 

values of these uncertain parameters. 

 

This paper focuses on building an effective RDO 

framework to design the robust transonic airfoil 

for a range of Mach number. It mainly resolves 

some issues as following. 

 

Excessive computational cost and unsatisfactory 

accuracy are main difficulties for UQ in second 

stage of RDO. Existing approaches [2, 3] to UQ 

includes Monte Carlo simulation (MCS), Taylor-

based moment propagation, numerical integral, 

stochastic expansion, etc. However, MCS 

method causes very expensive cost for UQ and 

usually needs at least 104  samples for accurate 

estimate of mean and variance of drag coefficient. 

The Taylor-based moment propagation method 

unless restricts the analysis to very small values 

of the input variance its accuracy is often 

unsatisfactory in the frequent case of highly 

nonlinear function, so that it is difficult to be used 
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for aerodynamic shape optimization widely. 

Polynomial chaos expansion (PCE) and 

Stochastic collocation (SC) methods are popular 

stochastic expansion approaches. Due to the 

orthogonality of polynomial terms, PCE method 

is a promising approach to perform this task for 

efficient and accurate UQ in aerodynamic shape 

optimization. However, applying the PCE 

method for UQ, the challenging problem is how 

to select as few collocation points as possible and 

proper polynomial order to obtain accurate 

estimate. For each of collocation points, a true 

value of aerodynamic performance is given to 

determine the unknown polynomial coefficients. 

 

Proper mathematic model of RDO is the most 

critical step in the third stage of RDO. More 

recent RDO work only considers Mach number 

uncertainty and lacks reliability consideration for 

constraints, which is very hard to meet the design 

demand of the transonic airfoil. The transonic 

airfoil shows a strong sensitivity to Mach number, 

AoA, etc. For example, the performance of 

transonic airfoil deteriorates when lift coefficient 

or AOA slightly exceeds the design value, due to 

the occurrence of strong shocks on its surfaces[4]. 

Thus, the RDO problem should be formulated 

simultaneously considering these parameters 

uncertainties. Uncertainties should also be taken 

into account for the estimation of the constraints 

involved in design optimization. The constraints 

should be satisfied for all possible values of 

uncertain parameters, which is not practical for 

aerodynamic shape optimization problems. 

Alternatively, the probability of violating the 

constraints can be restricted within a range as 

small as possible, formulating the constraint in 

terms of reliability. The reliability constraint 

ensures that the optimal shape is within the 

feasible region of constraints with a range of 

tolerances. Thus, a mathematic model of RDO 

considering Mach number uncertainty is built 

subject to reliability constraints, which combines 

the case of transonic airfoil optimization to 

demonstrate the effectiveness of RDO. 

 

The remainder of paper is organized as follows. 

Section. 1 presents the definition of optimization 

case based on AIAA aerodynamic design 

optimization discussion group test cases. Section. 

2 builds a framework of RDO based an NIPCE 

method. This framework combines a global 

particle swarm optimization (PSO) algorithm to 

optimize the resulting airfoil. Section 3 presents 

an efficient algorithm- orthogonal matching 

pursuit (OMP) to construct sparse PC metamodel. 

Section 4 states detailed discussion and 

comparison of optimization results by 

deterministic optimization and RDO. 

2 Optimization case and problem definition  

The aerodynamic optimization problem comes 

from AIAA aerodynamic design optimization 

discussion group test cases [5], Eq. (1) gives the 

problem definition. These work about the case 

represent the discussions and comparisons of 

some single-point optimization results and make 

an attempt of multipoint optimization to 

regularize the ill-posed problem of single-point 

optimization. However, as we know, the 

difficulty of multipoint optimization is how to 

determine the weights and locations of points and 

often needs to do many tries.   
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2.1 Deterministic optimization 

In this section, we combine a global particle 

swarm optimization (PSO) algorithm and 

Kriging surrogate model to optimize the airfoil at 

design point. The class function/shape function 

transformation (CST) is used to deform the 

airfoil. First, we need to strike a balance among 

these requirements: large initial design space, 

refinement search in local space, and short 

optimization time. To circumvent this issue, we 

gradually increase the number of design 

variables at each circle. In detail, 8 variables are 

first used to finish the search until the drag of 

optimized airfoil has converged. Then, based on 

the result of optimization by 8 variables, 12 

variables are used to continue finishing a search 

until the drag cannot be reduced. Next, 16 and 24 

variables are used in turn to find out the optimal 
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result. Table 1 records the results in the 

optimization procedure. It is noticed that when 

24 variables are used the drag coefficient has 

been reduced to 0.11209 with 48.42% drop to the 

initial value and cannot be reduced more. Fig. 1 

gives the comparison of initial and optimized 

airfoils. Fig. 2 shows the comparison of camber 

distributions of these airfoils. It can be seen that 

the camber of optimized airfoil reduces at 

nearing leading edge and increases at nearing 

trailing edge. Fig. 3 gives the comparison of 

pressure distributions among these airfoils. 

Obviously, optimized airfoils have eliminated 

the shock at design point. However, as shown in 

Fig. 4, optimized airfoil achieves a reduction of 

drag coefficient only at design point so that it is 

very difficult to demand the requirements for 

engineering. That is to say that deterministic 

optimization airfoil is often ill posed and 

suffering from the drastic increase of drag 

coefficient at off-design points, even though the 

drag coefficient of it at design point has been 

optimized well. Therefore, in order to achieve a 

consistent reduction of drag coefficient over a 

range of Mach number, e.g., 0.65-0.75, we have 

to resort to RDO. 

Table 1 The aerodynamic characteristics of 

initial and optimized airfoils at design point 
Airfoil CD 

DC   Cm Area CFD 

runs 

RAE2822 0.021714 0 -0.08743 0.077870 0 

8varibles 0.017621 -18.86% -0.09060 0.077888 100 

12varibles 0.012083 -44.35% -0.09184 0.078527 200 

16varibles 0.011460 -47.22% -0.09160 0.078106 500 

24varibles 0.011202 -48.42% -0.08690 0.077918 1000 

 
Fig. 1. Initial and optimized airfoils 

 
Fig. 2. Initial and optimized camber 

distributions of airfoils 

 
Fig. 3. Initial and optimized pressure 

distributions. 

 
Fig. 4. The drag-divergence curves of initial and 

optimized airfoils. 

3 The framework of RDO 

A framework of RDO based on non-intrusive 

polynomial chaos expansion is built. The 
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framework includes three main parts, as shown 

in Fig. 5. The PCE coefficients are obtained by 

point collocation method (PCNIPC). The 

mathematic formulation of RDO about this case 

is defined in Eq. (2). 

 
Fig. 5. General flowchart of RDO 
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4 Establishment of sparse PC representation  

4.1 Orthogonal matching pursuit 
Sparse PC reconstruction can be regularized as 

𝑙1-minimization problem [6], also referred to as 

basis pursuit denoising (BPDN), as shown in 

 2

1 2
, . .min s t  

β

β ψβ Y ，  (3) 

Eq. (3) can be solved by a large number of 

efficient algorithms. These algorithms include 

basis pursuit and greedy algorithms, e.g., OMP 

and least angle regressions (LARs) are widely 

used greedy algorithms. 

 

OMP includes two important steps namely basis 

selection and coefficients update. Starting from 

initial active set 𝐴(0) = 𝜙  and initial residual 

vector 𝛄(0) = 𝐘 , at each iteration 𝑘 , OMP 

identifies only the most correlated basis with the 

current residual from the remaining set Ω −

𝐴(𝑘) namely chosen bases removed from the 

universal set Ω ,to be added to the active set. The 

residual vector 𝛄(𝑘+1) is updated by subtracting 

the contribution of chosen bases of active set 

from the output vector. The iteration procedure is 

continued until the residual tolerance 𝜀  is 

achieved. The following depicts a step-by-step 

implementation of the OMP algorithm. 

Table 2 Orthogonal matching pursuit algorithm 
Algorithm1: OMP 

Input: 𝐘 = {𝑦(𝑗)}𝑗=1
𝑁 , {𝚵(𝑗) = (𝜉1

(𝑗)
, 𝜉2

(𝑗)
, ⋯ , 𝜉𝑛

(𝑗)
)}

𝑗=1

𝑁
, ε > 0. 

Output: 𝐴(𝑘), 𝛃(𝑘) 

Initialization: 𝑘 = 0, 𝐴(0) = 𝜙, 𝛄(0) = 𝐘, Ω = {1,2, ⋯ 𝑀}, 
{𝛙1, 𝛙2, ⋯ , 𝛙𝑀} = {𝜓𝑖(𝚵(𝑗))}𝑁×𝑀 

While 𝑘 < 𝑀 & ‖𝛄(𝑘)‖ ≥ 𝜀 do 

     𝑖+
(𝑘+1)

= arg max
𝑖

|𝚿𝑖
𝑇𝛄(𝑘)|/ ‖𝛙𝑖‖2  (𝑖 ∈ Ω/𝐴(𝑘)) 

     𝐴(𝑘+1) = 𝐴(𝑘)⋃{𝑖+
(𝑘+1)

} 

     𝛃(𝑘+1) = 𝑎𝑟𝑔 min
𝛃

‖𝐘 − 𝚿
𝐴(𝑘+1)
𝑇 𝛃‖ 

     𝛄(𝑘+1) = 𝐘 − 𝚿
𝐴(𝑘+1)
𝑇 𝛃(𝑘+1) 

     𝑘 ← 𝑘 + 1 
end while 

4.2 Numerical example 
A complex scalar function with two 

independent random inputs is formulated as 

 2

1 2 1 2( , ) ln(1 )sin5f x x x x    (4) 

where 𝑥1, 𝑥2  are assumed to be normally 

distributed with the mean 𝜇 = 2.0 and standard 

deviation 𝜎 = 0.4 . We set standard normally 

distributed variables 𝜉𝑖 ∈ 𝑁(0, 12) , and inputs 

can be expressed by 𝑥𝑖 = 2.0 + 0.4𝜉𝑖, (𝑖 = 1,2). 

The reference values of mean (𝜇𝑓) and standard 

deviation (𝜎𝑓)  are -0.115369 and 1.141393, 

respectively. Fig. 6 gives the true response of the 

two-dimensional function. To examine the 

performance of OMP, we estimate the stochastic 

performance of 𝑓 by OMP algorithm and full PC 

representation, respectively. The convergence 

procedures of relative error of mean and standard 

deviation with increasing number of collocation 

points for the two methods are shown in Fig. 7 

and Fig. 8, respectively. Their results show that 

OMP algorithm achieves the faster reduction rate 

of error than full PC metamodel. When the 

number of collocation points reaches 20, OMP 

achieves O(10−1)  and O(10−2)  magnitude for 
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relative error of mean and standard deviation, 

respectively. As a contrast, based on 20 

collocation points, the relative error of mean and 

standard deviation by full PC are O(100) and 

O(100) , respectively. Fig. 9 gives the 

comparisons of estimated PDF of building PC 

metamodel by OMP and full PC. The results 

show that sparse PC representations achieve 

more consistency with that by MCS than full PC. 

Hence, these results indicate that the OMP 

method can enhance the sparsity of PCE and 

achieve more accurate estimate of the stochastic 

behavior of a solution. On the other hand, the 

OMP method needs less number of collocation 

points compared with full PC when required the 

same prediction accuracy, largely improving the 

efficiency of probabilistic UQ. 

 
Fig. 6. True response of two-dimensional 

function 

 
Fig. 7. The comparison of relative error in 

estimate mean 

 
Fig. 8. The comparison of relative error in 

estimate standard deviation 

 
Fig. 9. The comparison of estimate PDF by 

OMP and full PC 

5 Results and discussion  

OPT1 and OPT2 are achieved by deterministic 

optimization (Eq. (1)) and robust optimization 

(Eq. (2)) respectively. OPT1 has smaller camber 

near 20% chord and larger camber near 80% 

chord compared with RAE2822 airfoil, while 

OPT2 holds smaller leading edge radius and 

larger camber near trailing edge compared with 

OPT1, as shown in Fig. 10. Fig. 11 shows that 

OPT1 smooths the shock while OPT2 has weak 

shocks occurring on its upper surface. Fig. 12 

shows that a very weak shock occurs on the upper 

surface of OPT2 while a strong shock occurs on 

the upper surface of OPT1. As shown in Fig. 13, 

OPT1 reduces the drag only at the design point 

while OPT2 holds robust drag over a range of 

Mach numbers and improves the drag-

divergence Mach number to 0.755. Table 3 gives 
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the aerodynamic results of initial and optimized 

airfoils. OPT1 and OPT2 achieve a drag 

reduction of 48.42% and 43.34% from the initial 

airfoil respectively at design point (𝑀𝑎 = 0.734,
𝑅𝑒 = 6.5 × 106, 𝐶𝐿 = 0.824) . These results 

indicate that RDO provides an effective approach 

to circumventing the issue occurred in transonic 

airfoil optimization. 

 
Fig. 10. Initial and optimized airfoils 

 
Fig. 11. Initial and optimized pressure 

distributions 

 

Fig. 12. Initial and optimized pressure 

distributions 

 
Fig. 13. Drag-divergence curves of initial and 

optimized airfoils 

Table 3 The aerodynamic characteristics of 

initial and optimized airfoils at design point 
Airfoil CD Cm Area CFD runs 

RAE2822 0.02171 -0.08743 0.077870 0 

Deterministic design 

(OPT1, 24 variables) 
0.01120 -0.08690 0.077918 1000 

Robust design  

(OPT2, 24 variables) 
0.01230 -0.09198 0.077880 1500 
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