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Abstract  

This work focuses in the flight dynamics 

modeling of a VTOL Semi-Tandem Wing UAV 

concept and the study of the transition phase, 

evaluating the trim curves along the flight 

regime, that is, from hovering to cruise flight 

condition. The VTOL UAV concept studied has 

the main feature of tilting both wing and 

horizontal tail, along with the rotors on both 

surfaces. Thus, in order to model the aircraft 

dynamic system the equations of translational 

and angular motion are presented. For this 

aircraft configuration it is appropriate to use 

the multi-body equations of motion, where the 

aircraft is divided in parts so that the wing, 

horizontal stabilizer and rotors are independent 

entities. Additionally, the success of the 

transition phase from hovering to cruise and 

from cruise to hovering can be verified if there 

is the possibility of the aircraft to trim along the 

flight speed regime, in other words, if there is a 

combination of states of motion that keep the 

aircraft stable from hover to cruise condition. 

So, the trim curves expressing the states are 

computed using the minimization of a cost 

function involving the sum of the squares of 

some of the states of motion, defined through the 

equations of motion previously mentioned. Such 

minimization is performed using the Sequential 

Simplex algorithm. Lastly, the resulted trim 

curves are presented. 

1  Introduction  

The control of a VTOL UAV during 

transition phase from hovering to cruise flight 

condition and from cruise to hovering is a 

difficult task, notably in the semi-tandem 

configuration due to the tilt movement of the 

wing and horizontal stabilizer, both with 

spinning propellers, which results in shifting of 

the center of gravity and gyroscopic moments. 

Therefore, the traditional modeling involving 

the 6 degree-of-freedom rigid body equations 

would be an oversimplification of the system. 

In this way, a more complex formulation 

is required. So, it is appropriate to use the multi-

body equations of motion, where the aircraft is 

divided in parts so that the wing, horizontal 

stabilizer and rotors are independent entities. 

This allows the assessment of the linear and 

angular momentum for each part, which are 

subsequently derived to obtain the equations of 

motion. 

 

 

Fig. 1: Concept of VTOL UAV, cruise and hovering 

condition. 
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Therefore, a concept of VTOL UAV was 

designed in order to assess the flight dynamics 

of such configuration, which can be seen in Fig. 

1. Such aircraft would have four propellers at 

the wing and two propellers at the horizontal 

tail, and both surfaces would be able to tilt, so 

that in the cruise configuration both would be 

horizontally positioned, and in the hover 

configuration those would be vertically 

positioned. Such concept is very similar to the 

configuration studied by Fredericks et al [1]. 

This aircraft concept has the properties 

of Table 1. 

MTOW (kg) 20 

Wing area (m
2
) 0.34 

Wing span (m) 1.63 

Wing aspect ratio 7.8 

Wing loading (kg/m
2
) 58.8 

Horizontal tail area (m
2
) 0.15 

Vertical tail area (m
2
) 0.075 

Fuselage length (m) 1.45 

Propellers diameter(m) 0.38 

Table 1: Aircraft sizing results. 

2  Aircraft Dynamic Model  

Most flight dynamic analysis uses the 

hypothesis that the aircraft behaves like a rigid 

body in the air, with the hypothesis that the 

mass of such is constant and there are no 

structural deformations. However, it would be 

an oversimplification of the system to apply the 

6 degree-of-freedom rigid body equations of 

motion to the concept of aircraft of this work, 

since the wing and horizontal tail are supposed 

to tilt along with the spinning rotors, resulting in 

shifting of the center of gravity and gyroscopic 

moments. 

Therefore, we will present a multi-body 

equations of motion that are a more appropriate 

approach, which are much similar to the 

equations presented in the work of Haixu et al 

[2]. So, we will be dividing the aircraft in some 

parts and compute the inertial properties of 

each. Such parts are: the body, which involves 

the fuselage, landing gear, vertical tail and all its 

components; the right and left wing; right and 

left horizontal stabilizers; and each rotor a 

separate part. In this way, we also consider that 

each part has constant mass, even though fuel 

consumption reduces the body part mass over 

time, where the fuel tank would be in the 

fuselage, the weight reduction is too slow to be 

considered in the dynamic analysis. And finally, 

no structure deformations are considered, that 

means that the parts dimensions are constant. 

With the previous hypotheses we are 

able to define the aircraft dynamic system in 

Fig. 2. In this figure we find the origin of the 

Earth fixed inertial reference frame 𝑂𝐸, and the 

origin of the aircraft body coordinate frame 𝑂𝐵, 

which is the position of the center of gravity of 

the aircraft body part, that can shift due to the 

quantity of fuel in the tank, but will not move 

because of the tilt of the wing or horizontal tail. 

 

Fig. 2: Reference frames and aircraft dynamic system. 

The wing and horizontal tail tilts with 

respect to the pivot points 𝑃𝑊  and 𝑃𝐻𝑇 , which 

are fixed, and are positioned on the one quarter 

chord of the exposed root chords. The wing and 

horizontal tail are divided in right and left parts, 

each with its own concentrated mass, positioned 

in the respective center of gravity, with their 

own coordinate frame (𝑂𝑊𝑅 , 𝑂𝑊𝐿 , 𝑂𝐻𝑇𝑅 , 𝑂𝐻𝑇𝐿), 

in this manner, when the wing and horizontal 

tail tilts along the pivot points, their coordinate 

frames follows. Lastly, for every rotor in the 

wing and horizontal tail, there is also a 

coordinate frame (𝑂𝑅1, … , 𝑂𝑅6), which are fixed 

with respect to their wing or horizontal 

stabilizer coordinate frame. 

 Having the aircraft dynamic system 

model, we may proceed deriving the 

translational and angular equations of motion. 
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3 Equations of Motion  

3.1 Translational Motion 

We begin by defining the total linear 

momentum in the Earth fixed inertial reference 

frame, as the sum of the linear momentum of 

each individual part. From now on, the subscript 

B will be referring to the aircraft body part, Wi 

to the right or left, wing or horizontal stabilizer 

part, Rj to the rotors, and the superscript will be 

referring to the reference frame of the vector, 

where in the following equation, E means Earth 

fixed inertial reference frame. So, the aircraft 

total linear momentum in the Earth fixed inertial 

reference frame is,  

𝐺⃗𝑡𝑜𝑡𝑎𝑙
𝐸 = 𝐺⃗𝐵

𝐸 + ∑ 𝐺⃗𝑊𝑖

𝐸𝑁𝑊
𝑖=1 + ∑ 𝐺⃗𝑅𝑗

𝐸𝑁𝑅
𝑗=1         (1) 

The limits in the sum are NW the 

number of aerodynamic surfaces (in our case 4), 

and NR the number of rotors (6 rotors). 

Expanding, we find, 

𝐺⃗𝑡𝑜𝑡𝑎𝑙
𝐸 = 𝑚𝐵𝑉⃗⃗𝐵

𝐸 + ∑ 𝑚𝑊𝑖

𝑁𝑊
𝑖=1 𝑉⃗⃗𝑊𝑖

𝐸 + ∑ 𝑚𝑅𝑗

𝑁𝑅
𝑗=1 𝑉⃗⃗𝑅𝑗

𝐸  (2) 

Differentiation of the total linear 

momentum leads to the force equation in the 

Earth fixed inertial reference frame, where 𝐹⃗𝐸 is 

the net applied force vector.  

𝐹⃗𝐸 =
𝑑

𝑑𝑡
(𝐺⃗𝑡𝑜𝑡𝑎𝑙

𝐸 )                     (3) 

𝐹⃗𝐸 = 𝑚𝐵 𝑉̇⃗⃗𝐵
𝐸 + ∑ 𝑚𝑊𝑖

𝑉̇⃗⃗𝑊𝑖

𝐸𝑁𝑊
𝑖=1 + ∑ 𝑚𝑅𝑗

𝑉̇⃗⃗𝑅𝑗

𝐸𝑁𝑅
𝑗=1  (4) 

Now, in order to pass the equation to the 

body coordinate frame, we will use the theorem 

of Coriolis to compute the acceleration vector 

from Earth fixed inertial reference frame to the 

aircraft body coordinate frame, such derivation 

can be found at Stevens and Lewis [3]. 

𝑉̇⃗⃗𝐵
𝐸 = 𝑉̇⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × 𝑉⃗⃗𝐵

𝐵                  (5) 

Where 𝜔⃗⃗⃗𝐵
𝐵 is the angular velocity vector 

of frame B relative to frame E. This is also the 

aircraft body coordinate frame angular velocity 

vector, 

𝜔⃗⃗⃗𝐵
𝐵 = [𝑃 𝑄 𝑅]𝑇                   (6) 

The velocity vector for the concentrated 

masses of the right and left wing and horizontal 

tail in the Earth fixed inertial reference frame 

have additional term due to the relative 

movement with respect to the aircraft body 

concentrated mass. From Meriam and Kraige 

[4] we have the equation of relative acceleration 

of a moving point A with respect to a moving 

point B, wherein 𝑟𝐴/𝐵  is the position vector of 

point A in relation to point B, 𝑉⃗⃗𝑟𝑒𝑙𝐴/𝐵
 is the 

relative velocity vector of point A in relation to 

point B, and 𝑎⃗𝑟𝑒𝑙𝐴/𝐵
 is the relative acceleration 

vector of point A in relation to point B. 

𝑎⃗𝐴 = 𝑎⃗𝐵 + 𝜔̇⃗⃗⃗𝐵 × 𝑟𝐴/𝐵 + 𝜔⃗⃗⃗𝐵 × (𝜔⃗⃗⃗𝐵 × 𝑟𝐴/𝐵) +

2𝜔⃗⃗⃗𝐵 × 𝑉⃗⃗𝑟𝑒𝑙𝐴/𝐵
+ 𝑎⃗𝑟𝑒𝑙𝐴/𝐵

                                (7) 

So, for the concentrated masses of the 

right and left wing and horizontal tail we have, 

𝑉̇⃗⃗𝑊𝑖

𝐸 = 𝑉̇⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝐵
𝐵 + 𝜔̇⃗⃗⃗𝐵

𝐵 × 𝑟𝑊𝑖/𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 ×

(𝜔⃗⃗⃗𝐵
𝐵 × 𝑟𝑊𝑖/𝐵) + 2𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑊𝑖/𝐵
+ 𝑎⃗𝑟𝑒𝑙

𝐵
𝑊𝑖/𝐵

  (8) 

Similarly, for the concentrated masses of 

the rotors, 

𝑉̇⃗⃗𝑅𝑗

𝐸 = 𝑉̇⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝐵
𝐵 + 𝜔̇⃗⃗⃗𝐵

𝐵 × 𝑟𝑅𝑗/𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 ×

(𝜔⃗⃗⃗𝐵
𝐵 × 𝑟𝑅𝑗/𝐵) + 2𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑅𝑗/𝐵
+ 𝑎⃗𝑟𝑒𝑙

𝐵
𝑅𝑗/𝐵

   (9) 

Thereby, we pass the force equation 

from the Earth fixed reference frame to the 

aircraft body coordinate frame.  

𝐹⃗𝐵 + 𝑚𝐵𝐵𝐸
𝐵𝑔⃗𝐸 + ∑ {𝑚𝑊𝑖

𝐵𝐸
𝐵𝑔⃗𝐸}𝑁𝑊

𝑖=1 +

∑ {𝑚𝑅𝑗
𝐵𝐸

𝐵𝑔⃗𝐸}𝑁𝑅
𝑗=1 = 𝑚𝐵 (𝑉̇⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × 𝑉⃗⃗𝐵

𝐵) +

∑ {𝑚𝑊𝑖
(𝑉̇⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × 𝑉⃗⃗𝐵

𝐵 + 𝜔̇⃗⃗⃗𝐵
𝐵 × 𝑟𝑊𝑖/𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 ×𝑁𝑊
𝑖=1

(𝜔⃗⃗⃗𝐵
𝐵 × 𝑟𝑊𝑖/𝐵) + 2𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑊𝑖/𝐵
+ 𝑎⃗𝑟𝑒𝑙

𝐵
𝑊𝑖/𝐵

)} +

∑ {𝑚𝑅𝑗
(𝑉̇⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × 𝑉⃗⃗𝐵

𝐵 + 𝜔̇⃗⃗⃗𝐵
𝐵 × 𝑟𝑅𝑗/𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 ×𝑁𝑅
𝑗=1

(𝜔⃗⃗⃗𝐵
𝐵 × 𝑟𝑅𝑗/𝐵) + 2𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑅𝑗/𝐵
+ 𝑎⃗𝑟𝑒𝑙

𝐵
𝑅𝑗/𝐵

)}    (10) 

Note that the terms added in the left side 

of the equation are vectors of weight of aircraft 

body, right and left wing or horizontal tail 

concentrated masses and rotors concentrated 

masses. Moreover, the vectors of weight use the 

rotation matrix from Earth fixed referential 

frame to body coordinate frame 𝐵𝐸
𝐵, which is a 

function of the Euler angles: roll (𝜙), pitch (𝜃) 
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and yaw (𝜓). The definition of this matrix is 

found at Stevens and Lewis [3]. 

We define now the relative velocity and 

acceleration vectors in the aircraft body 

coordinate frame. In the following equations 

𝑝𝑖𝑣𝑜𝑡𝑖  and 𝑝𝑖𝑣𝑜𝑡𝑗  means the respective pivot 

point of the concentrated masses. 

𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑊𝑖/𝐵
= 𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
               (11) 

𝑉⃗⃗𝑟𝑒𝑙
𝐵

𝑅𝑗/𝐵
= 𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
                (12) 

𝑎⃗𝑟𝑒𝑙
𝐵

𝑊𝑖/𝐵
= 𝑅̈𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
               (13) 

𝑎⃗𝑟𝑒𝑙
𝐵

𝑅𝑗/𝐵
= 𝑅̈𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
                (14) 

Wherein 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖

𝐵 : Position vector of 

right or left wing or horizontal tail concentrated 

mass relative to respective pivot point. 

𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗

𝐵 : Position vector of rotor concentrated 

mass relative to respective pivot point. Wing 

and horizontal tail tilt matrix with respect to 

wing or horizontal tail tilt angle (𝛿𝑊, 𝛿𝐻𝑇), 

𝑅𝑊,𝐻𝑇
𝐵 = [

cos(𝛿𝑊,𝐻𝑇) 0 sin(𝛿𝑊,𝐻𝑇)

0 1 0
− sin(𝛿𝑊,𝐻𝑇) 0 cos(𝛿𝑊,𝐻𝑇)

] (15) 

Moreover, 𝑅̇𝑊,𝐻𝑇
𝐵  and 𝑅̈𝑊,𝐻𝑇

𝐵  are the first 

and second derivatives of 𝑅𝑊,𝐻𝑇
𝐵  with respect to 

time. Additionally, we will be using the 

simplification (Ω𝐵 = 𝜔⃗⃗⃗𝐵
𝐵 ×). Being that, 

Ω𝐵 = (𝜔⃗⃗⃗𝐵 ×   ) = [
0 −𝑅 𝑄
𝑅 0 −𝑃

−𝑄 𝑃 0
]      (16) 

Ω̇𝐵 = (𝜔̇⃗⃗⃗𝐵 ×   ) = [
0 −𝑅̇ 𝑄̇

𝑅̇ 0 −𝑃̇
−𝑄̇ 𝑃̇ 0

]      (17) 

 

Rearranging the equation terms, passing 

the aircraft body acceleration vector in the 

aircraft body coordinate frame to the left size we 

have,  

𝑉̇⃗⃗𝐵
𝐵 = −Ω𝐵𝑉⃗⃗𝐵

𝐵 +
𝐹⃗𝐵

𝐵

𝑀
+ 𝐵𝐸

𝐵𝑔⃗𝐸 − 𝐹      (18) 

Note that the only difference from the 

rigid body equations of motion is the term F 

defined as follows, 

𝐹 =
1

𝑀
∑ {𝑚𝑊𝑖

[(Ω̇𝐵 + Ω𝐵Ω𝐵)𝑟𝑊𝑖/𝐵 +𝑁𝑊
𝑖=1

(2Ω𝐵𝑅̇𝑊𝑖

𝐵 + 𝑅̈𝑊𝑖

𝐵 )𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
]} +

1

𝑀
∑ {𝑚𝑅𝑗

[(Ω̇𝐵 + Ω𝐵Ω𝐵)𝑟𝑅𝑗/𝐵 +𝑁𝑅
𝑗=1

(2Ω𝐵𝑅̇𝑅𝑗

𝐵 + 𝑅̈𝑅𝑗

𝐵 ) 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
]}                         (19) 

In the previous equation we have used 

the following term for the total aircraft mass, 

being the sum of the concentrated masses of 

aircraft body, right and left wing and horizontal 

stabilizers, and rotors. 

𝑀 = 𝑚𝐵 + ∑ 𝑚𝑊𝑖

𝑁𝑊
𝑖=1 + ∑ 𝑚𝑅𝑗

𝑁𝑅
𝑗=1      (20) 

3.2 Angular Motion 

For the aircraft angular motion equation 

we start by defining the total angular 

momentum in the Earth fixed inertial reference 

frame, again, being the sum of the portions of 

the aircraft body, right and left wing and 

horizontal stabilizers, and rotors.  

𝐻⃗⃗⃗𝑡𝑜𝑡𝑎𝑙
𝐸 = 𝐻⃗⃗⃗𝐵

𝐸 + ∑ 𝐻⃗⃗⃗𝑊𝑖

𝐸𝑁𝑊
𝑖=1 + ∑ 𝐻⃗⃗⃗𝑅𝑗

𝐸𝑁𝑅
𝑗=1      (21) 

The terms 𝐼  are the inertia matrices of 

the concentrated masses, with the subscript 

indicating the part, and the superscript the 

reference frame. Expanding, we have, 

𝐻⃗⃗⃗𝑡𝑜𝑡𝑎𝑙
𝐸 = 𝐼𝐵

𝐸 𝜔⃗⃗⃗𝐵
𝐸 + 𝑟𝐵/𝐸 × (𝑚𝐵𝑉⃗⃗𝐵

𝐸) +

∑ {𝐼𝑊𝑖

𝐸 𝜔⃗⃗⃗𝑊𝑖

𝐸 + 𝑟𝑊𝑖/𝐸 × (𝑚𝑊𝑖
𝑉⃗⃗𝑊𝑖

𝐸 )}𝑁𝑊
𝑖=1 +

∑ {𝐼𝑅𝑗

𝐸 𝜔⃗⃗⃗𝑅𝑗

𝐸 + 𝑟𝑅𝑗/𝐸 × (𝑚𝑅𝑗
𝑉⃗⃗𝑅𝑗

𝐸 )}𝑁𝑅
𝑗=1                (22) 

The terms 𝜔⃗⃗⃗ are angular velocity vector 

with subscript indicating the part and 

superscript the reference frame. Passing the 

angular motion equation in the Earth fixed 

inertial reference frame to the aircraft body 

coordinate frame, 

𝐻⃗⃗⃗𝑡𝑜𝑡𝑎𝑙
𝐵 = 𝐼𝐵

𝐵 𝜔⃗⃗⃗𝐵
𝐵 + ∑ {𝐼𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝐵 +𝑁𝑊
𝑖=1

𝑟𝑊𝑖/𝐵 × (𝑚𝑊𝑖
𝑉⃗⃗𝑊𝑖

𝐵 )} + ∑ {𝐼𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝐵 + 𝑟𝑅𝑗/𝐵 ×𝑁𝑅
𝑗=1

(𝑚𝑅𝑗
𝑉⃗⃗𝑅𝑗

𝐵 )}                                                     (23) 

From Meriam and Kraige [4] we have 

the equation of relative velocity of a moving 

point A with respect to a moving point B. 

𝑉⃗⃗𝐴 = 𝑉⃗⃗𝐵 + 𝜔⃗⃗⃗𝐵 × 𝑟𝐴/𝐵 + 𝑉⃗⃗𝑟𝑒𝑙𝐴/𝐵
        (24) 

Therefore, we have the velocity of the 

concentrated masses with respect to the aircraft 

body coordinate frame, 
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𝑉⃗⃗𝑊𝑖

𝐵 = 𝑉⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑟𝑊𝑖/𝐵 + 𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
   (25) 

𝑉⃗⃗𝑅𝑗

𝐵 = 𝑉⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑟𝑅𝑗/𝐵 + 𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
     (26) 

The net torque 𝑇⃗⃗𝐵
𝐵  acting at the aircraft 

body coordinate frame comes from the rate of 

change of angular momentum. The added terms 

in the left side of the equation are the weights 

torques of the concentrated masses with respect 

to the body coordinate frame. 

𝑇⃗⃗𝐵
𝐵 + ∑ {𝑟𝑊𝑖/𝐵 × 𝑚𝑊𝑖

𝐵𝐸
𝐵𝑔⃗𝐸}𝑁𝑊

𝑖=1 + ∑ {𝑟𝑅𝑗/𝐵 ×𝑁𝑅
𝑗=1

𝑚𝑅𝑗
𝐵𝐸

𝐵𝑔⃗𝐸} =
𝑑

𝑑𝑡
(𝐻⃗⃗⃗𝑡𝑜𝑡𝑎𝑙

𝐵 )   (27) 

Expanding the derivative of the total 

angular momentum, separated in aircraft body, 

right and left wings and horizontal stabilizers, 

and rotors terms, we find, 

𝑑

𝑑𝑡
(𝐻⃗⃗⃗𝐵

𝐵) = 𝐼𝐵
𝐵 𝜔̇⃗⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × (𝐼𝐵

𝐵 𝜔⃗⃗⃗𝐵
𝐵)     (28) 

∑
𝑑

𝑑𝑡
(𝐻⃗⃗⃗𝑊𝑖

𝐵 )𝑁𝑊
𝑖=1 = ∑ {

𝑑

𝑑𝑡
(𝐼𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝐵 ) + 𝜔⃗⃗⃗𝐵
𝐵 ×𝑁𝑊

𝑖=1

(𝐼𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝐵 ) + 𝑚𝑊𝑖
[𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
×

(𝑉⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑟𝑊𝑖/𝐵 + 𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
) + 𝑟𝑊𝑖/𝐵 ×

(𝑉̇⃗⃗𝐵
𝐵 + 𝜔⃗⃗⃗𝐵

𝐵 × 𝑉⃗⃗𝐵
𝐵 + 𝜔̇⃗⃗⃗𝐵

𝐵 × 𝑟𝑊𝑖/𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 ×

(𝜔⃗⃗⃗𝐵
𝐵 × 𝑟𝑊𝑖/𝐵) + 2𝜔⃗⃗⃗𝐵

𝐵 × 𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
+

𝑅̈𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
)]}                                            (29) 

∑
𝑑

𝑑𝑡
(𝐻⃗⃗⃗𝑅𝑗

𝐵 )𝑁𝑅
𝑗=1 = ∑ {

𝑑

𝑑𝑡
(𝐼𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝐵 ) + 𝜔⃗⃗⃗𝐵
𝐵 ×𝑁𝑅

𝑗=1

(𝐼𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝐵 ) + 𝑚𝑅𝑖
[𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
× (𝑉⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 ×

𝑟𝑅𝑗/𝐵 + 𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
) + 𝑟𝑅𝑗/𝐵 × (𝑉̇⃗⃗𝐵

𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 ×

𝑉⃗⃗𝐵
𝐵 + 𝜔̇⃗⃗⃗𝐵

𝐵 × 𝑟𝑅𝑗/𝐵 + 𝜔⃗⃗⃗𝐵
𝐵 × (𝜔⃗⃗⃗𝐵

𝐵 × 𝑟𝑅𝑗/𝐵) +

2𝜔⃗⃗⃗𝐵
𝐵 × 𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
+ 𝑅̈𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
)]}        (30) 

Because of wing and horizontal tail tilt, 

the inertia matrices of such surfaces and rotors 

respective to aircraft body coordinate frame are 

variables. The inertia matrices of the 

concentrated masses, with respect to the body 

coordinate frame, are obtained from the inertia 

matrices with respect to their own coordinate 

reference frames by translating and rotating the 

reference. This operation is demonstrated in the 

next equations for the concentrated masses of 

the panels and rotors respectively. There we 

have [𝑇] and [𝑇]𝑇 the inertia rotation matrix and 

its transpose, and 𝑅̃𝐵  the translation matrix to 

the body coordinate frame.  

𝐼𝑊𝑖

𝐵 = [𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇   (31) 

𝐼𝑅𝑗

𝐵 = [𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇     (32) 

Moreover, the angular velocity vector in 

the body coordinate frame of the part is the sum 

of the angular velocity vector of the part with 

respect to its own reference frame, tilted to 

adjust the reference orientation, summed with 

the angular velocity vector of the body part with 

respect to its own reference frame. 

𝜔⃗⃗⃗𝑊𝑖

𝐵 = 𝑅𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝜔⃗⃗⃗𝐵
𝐵             (33) 

𝜔⃗⃗⃗𝑅𝑗

𝐵 = 𝑅𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 + 𝑅𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝜔⃗⃗⃗𝐵
𝐵       (34) 

Where, [𝑇]𝑊𝑖
and [𝑇]𝑅𝑗

: Inertia rotation 

matrix: rotates the wing, horizontal tail or rotor 

inertia matrix to the aircraft body coordinate 

frame. 𝑅̃𝑊𝑖

𝐵  and 𝑅̃𝑅𝑗

𝐵 : Inertia translation matrix: 

transfers the wing, horizontal tail or rotor inertia 

matrix to the aircraft body coordinate frame. 

𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 : Right or left wing or horizontal tail 

concentrated mass angular velocity vector in 

respect to its own reference frame. 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗
: Rotors 

concentrated mass angular velocity vector in 

respect to its own reference frame. 

We can assume from axes alignment that 

the wing and horizontal tail angular velocity 

vector is fully aligned with the aircraft body y 

coordinate, so that, 

𝑅𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 = [0 𝛿̇𝑊𝑖
0]

𝑇
          (35) 

 And for the rotors we have, 

𝑅𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 = 𝑅𝑅𝑗

𝐵 [𝜔𝑅𝑗
0 0]

𝑇
         (36) 

 So that, 𝜔𝑅𝑗
 is the rotor rotation speed.  

Additionally we have, 
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[𝑇]𝑊𝑖
= [𝑇]𝑊𝑖

𝑇 = [

cos(𝛿𝑊,𝐻𝑇𝑖
) 0 0

0 1 0
0 0 cos(𝛿𝑊,𝐻𝑇𝑖

)

]    (37) 

[𝑇]𝑅𝑗
= [𝑇]𝑅𝑗

𝑇 = [

cos (𝛿𝑊,𝐻𝑇𝑗
) 0 0

0 1 0

0 0 cos (𝛿𝑊,𝐻𝑇𝑗
)

]  (38) 

 

And their derivatives, 

[𝑇̇]
𝑊𝑖

= [𝑇̇]
𝑊𝑖

𝑇
=

[

−𝛿̇𝑊,𝐻𝑇𝑖
sin(𝛿𝑊,𝐻𝑇𝑖

) 0 0

0 0 0
0 0 −𝛿̇𝑊,𝐻𝑇𝑖

sin(𝛿𝑊,𝐻𝑇𝑖
)

]     (39) 

[𝑇̇]
𝑅𝑗

= [𝑇̇]
𝑅𝑗

𝑇
=

[

−𝛿̇𝑊,𝐻𝑇𝑗
sin (𝛿𝑊,𝐻𝑇𝑗

) 0 0

0 0 0

0 0 −𝛿̇𝑊,𝐻𝑇𝑗
sin (𝛿𝑊,𝐻𝑇𝑗

)

]  (40) 

Also, considering the position vector 

between the concentrated mass and the 

reference frame origin being 𝑟 = [x y z]𝑇 , 

we have the inertia translation matrix from the 

parallel axis theorem, 

𝑅̃ = [

y2 + z2 −xy −xz

−yx x2 + z2 −yz

−zx −zy x2 + y2

]     (41) 

 Additionally, it is necessary to derive the 

following terms, 

𝑑

𝑑𝑡
(𝐼𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝐵 ) =
𝑑

𝑑𝑡
(𝐼𝑊𝑖

𝐵 )𝜔⃗⃗⃗𝑊𝑖

𝐵 + 𝐼𝑊𝑖

𝐵 𝑑

𝑑𝑡
(𝜔⃗⃗⃗𝑊𝑖

𝐵 )  (42) 

 So that, 

𝑑

𝑑𝑡
(𝐼𝑊𝑖

𝐵 ) = [𝑇]̇ 𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 +

[𝑇]𝑊𝑖
𝑚𝑊𝑖

𝑑

𝑑𝑡
(𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 + [𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]̇ 𝑊𝑖

𝑇                                               (43) 

𝑑

𝑑𝑡
(𝜔⃗⃗⃗𝑊𝑖

𝐵 ) = 𝑅̇𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝑅𝑊𝑖

𝐵 𝜔̇⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝜔̇⃗⃗⃗𝐵
𝐵   (44) 

 Similarly for the rotors concentrated 

masses we find, 

𝑑

𝑑𝑡
(𝐼𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝐵 ) =
𝑑

𝑑𝑡
(𝐼𝑅𝑗

𝐵 ) 𝜔⃗⃗⃗𝑅𝑗

𝐵 + 𝐼𝑅𝑗

𝐵 𝑑

𝑑𝑡
(𝜔⃗⃗⃗𝑅𝑗

𝐵 )   (45) 

𝑑

𝑑𝑡
(𝐼𝑅𝑗

𝐵 ) = [𝑇]̇ 𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 +

[𝑇]𝑅𝑗
𝑚𝑅𝑗

𝑑

𝑑𝑡
(𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 + [𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 +

𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]̇ 𝑅𝑗

𝑇                                                (46) 

𝑑

𝑑𝑡
(𝜔⃗⃗⃗𝑅𝑗

𝐵 ) = 𝑅̇𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 + 𝑅𝑅𝑗

𝐵 𝜔̇⃗⃗⃗𝑅𝑗

𝑅𝑗 + 𝑅̇𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 +

𝑅𝑊𝑖

𝐵 𝜔̇⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝜔̇⃗⃗⃗𝐵
𝐵                                               (47) 

 Substituting the terms and rearranging 

we can write the angular motion equation in the 

simplified form, 

𝑇⃗⃗𝐵
𝐵 + 𝑀𝑃 = 𝐴𝜔̇⃗⃗⃗𝐵

𝐵 + 𝐵𝜔⃗⃗⃗𝐵
𝐵 + 𝐶𝑉̇⃗⃗𝐵

𝐵 + 𝐷𝑉⃗⃗𝐵
𝐵 + 𝐸 

(48) 

And the coefficients are, 

𝐴 = 𝐼𝐵
𝐵 + ∑ {[𝑇]𝑊𝑖

(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 −𝑁𝑊
𝑖=1

𝑚𝑊𝑖
𝑟𝑊𝑖/𝐵 × 𝑟𝑊𝑖/𝐵 ×} + ∑ {[𝑇]𝑅𝑗

(𝐼𝑅𝑗

𝑅𝑗 +𝑁𝑅
𝑗=1

𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 − 𝑚𝑅𝑗
𝑟𝑅𝑗/𝐵 × 𝑟𝑅𝑗/𝐵 ×}         (49) 

𝐵 =

Ω𝐵𝐼𝐵
𝐵 + ∑ {[𝑇]̇ 𝑊𝑖

(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 +𝑁𝑊
𝑖=1

[𝑇]𝑊𝑖
𝑚𝑊𝑖

𝑑

𝑑𝑡
(𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 + [𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]̇ 𝑊𝑖

𝑇 + Ω𝐵[𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 − 𝑚𝑊𝑖
[(𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
×

𝑟𝑊𝑖/𝐵 ×) + (𝑟𝑊𝑖/𝐵 × Ω𝐵𝑟𝑊𝑖/𝐵 ×)]} +

∑ {[𝑇]̇ 𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 +𝑁𝑅
𝑗=1

[𝑇]𝑅𝑗
𝑚𝑅𝑗

𝑑

𝑑𝑡
(𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 + [𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 +

𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]̇ 𝑅𝑗

𝑇 +

Ω𝐵[𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 −

𝑚𝑅𝑗
[(𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
× 𝑟𝑅𝑗/𝐵 ×) + (𝑟𝑅𝑗/𝐵 ×

Ω𝐵𝑟𝑅𝑗/𝐵 ×)]}                                                 (50) 

𝐶 = ∑ {𝑚𝑊𝑖
𝑟𝑊𝑖/𝐵 ×}𝑁𝑊

𝑖=1 + ∑ {𝑚𝑅𝑗
𝑟𝑅𝑗/𝐵 ×}𝑁𝑅

𝑗=1       

(51) 

𝐷 = ∑ {𝑚𝑊𝑖
[(𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
×) + 𝑟𝑊𝑖/𝐵 ×𝑁𝑊

𝑖=1

Ω𝐵]} + ∑ {𝑚𝑅𝑗
[(𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
×) + 𝑟𝑅𝑗/𝐵 ×𝑁𝑅

𝑗=1

Ω𝐵]}                                                               (52) 
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𝐸 = ∑ {([𝑇]̇ 𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 +𝑁𝑊
𝑖=1

[𝑇]𝑊𝑖
𝑚𝑊𝑖

𝑑

𝑑𝑡
(𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 + [𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]̇ 𝑊𝑖

𝑇 ) 𝑅𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 + [𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 (𝑅̇𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 + 𝑅𝑊𝑖

𝐵 𝜔̇⃗⃗⃗𝑊𝑖

𝑊𝑖) +

Ω𝐵[𝑇]𝑊𝑖
(𝐼𝑊𝑖

𝑊𝑖 + 𝑚𝑊𝑖
𝑅̃𝑊𝑖

𝐵 )[𝑇]𝑊𝑖

𝑇 𝑅𝑊𝑖

𝐵 𝜔⃗⃗⃗𝑊𝑖

𝑊𝑖 +

𝑚𝑊𝑖
[𝑅̇𝑊𝑖

𝐵 𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
× 𝑅̇𝑊𝑖

𝐵 + 𝑟𝑊𝑖/𝐵 ×

(2Ω𝐵𝑅̇𝑊𝑖

𝐵 + 𝑅̈𝑊𝑖

𝐵 )]𝑟𝑊𝑖/𝑝𝑖𝑣𝑜𝑡𝑖
} +

∑ {([𝑇]̇ 𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 +𝑁𝑅
𝑗=1

[𝑇]𝑅𝑗
𝑚𝑅𝑗

𝑑

𝑑𝑡
(𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 + [𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 +

𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]̇ 𝑅𝑗

𝑇 ) (𝑅𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 + 𝑅𝑊𝑗

𝐵 𝜔⃗⃗⃗𝑊𝑗

𝑊𝑗) +

[𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 (𝑅̇𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 +

𝑅𝑅𝑗

𝐵 𝜔̇⃗⃗⃗𝑅𝑗

𝑅𝑗 + 𝑅̇𝑊𝑗

𝐵 𝜔⃗⃗⃗𝑊𝑗

𝑊𝑗 + 𝑅𝑊𝑗

𝐵 𝜔̇⃗⃗⃗𝑊𝑗

𝑊𝑗) +

Ω𝐵[𝑇]𝑅𝑗
(𝐼𝑅𝑗

𝑅𝑗 + 𝑚𝑅𝑗
𝑅̃𝑅𝑗

𝐵 ) [𝑇]𝑅𝑗

𝑇 (𝑅𝑅𝑗

𝐵 𝜔⃗⃗⃗𝑅𝑗

𝑅𝑗 +

𝑅𝑊𝑗

𝐵 𝜔⃗⃗⃗𝑊𝑗

𝑊𝑗) + 𝑚𝑅𝑗
[𝑅̇𝑅𝑗

𝐵 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
× 𝑅̇𝑅𝑗

𝐵 + 𝑟𝑅𝑗/𝐵 ×

(2Ω𝐵𝑅̇𝑅𝑗

𝐵 + 𝑅̈𝑅𝑗

𝐵 )] 𝑟𝑅𝑗/𝑝𝑖𝑣𝑜𝑡𝑗
}                         (53) 

𝑀𝑃 = ∑ {𝑟𝑊𝑖/𝐵 × 𝑚𝑊𝑖
𝐵𝐸

𝐵𝑔⃗𝐸}𝑁𝑊
𝑖=1 +

∑ {𝑟𝑅𝑗/𝐵 × 𝑚𝑅𝑗
𝐵𝐸

𝐵𝑔⃗𝐸}𝑁𝑅
𝑗=1                               (54) 

Therefore, we have the aircraft angular 

motion equation in the body coordinate frame, 

𝜔̇⃗⃗⃗𝐵
𝐵 = −𝐴−1𝐵𝜔⃗⃗⃗𝐵

𝐵 − 𝐴−1𝐷𝑉⃗⃗𝐵
𝐵 − 𝐴−1𝐶𝑉̇⃗⃗𝐵

𝐵 +

𝐴−1(𝑇⃗⃗𝐵
𝐵 + 𝑀𝑃 − 𝐸)                                       (55) 

3.3 Transformation between Reference Axes 

We have previously defined the 

equations of translational and angular motion 

relative to the body coordinate frame, or body 

axes, it is now necessary to define the equations 

of motion with respect to wind axes in order to 

make it easier the introduction of the 

aerodynamic forces and moments, which are 

defined with respect to these axes. 

The transformation matrix between body 

axes to wind axes are defined the same way as 

in Stevens and Lewis [3], so that the velocity 

vector in wind axes are given by, 

𝑉⃗⃗𝐵
𝑊 = 𝑆𝑉⃗⃗𝐵

𝐵                      (56) 

 Being that, 

𝑆 = [
cos 𝛼 cos 𝛽 sin 𝛽 sin 𝛼 cos 𝛽

− cos 𝛼 sin 𝛽 cos 𝛽 − sin 𝛼 sin 𝛽
− sin 𝛼 0 cos 𝛼

] (57) 

Also, we define the aircraft velocity 

vector in the aircraft body coordinates frame 

(𝑉⃗⃗𝐵
𝐵), and its components, and 𝑉𝑇  is the flight 

speed. 

𝑉⃗⃗𝐵
𝐵 = [𝑈 𝑉 𝑊]𝑇            (58) 

𝑉⃗⃗𝐵
𝑊 = [𝑉𝑇 0 0]𝑇             (59) 

 Analogously, we have the aircraft 

angular velocity vector in the wind axes, 

𝜔⃗⃗⃗𝐵
𝑊 = 𝑆𝜔⃗⃗⃗𝐵

𝐵 = [𝑃𝑊 𝑄𝑊 𝑅𝑊]𝑇    (60) 

Now, we define the net force vector in 

the wind axes, 

𝐹⃗𝐵
𝑊 = 𝑆𝐹⃗𝐵

𝐵 = {
−𝐷
𝑌

−𝐿
} + 𝑆 ∑ (𝑅𝑅𝑗

𝐵 {
𝑇𝑗

0
0

})𝑁𝑅
𝑗=1   (61) 

 And the net torque vector, 

𝑇⃗⃗𝐵
𝑊 = 𝑆𝑇⃗⃗𝐵

𝐵 = {
𝐿̅
𝑀
𝑁

} + 𝑆 ∑ (𝑅𝑅𝑗

𝐵 {
𝜆𝑗𝑄𝑗

0
0

} +𝑁𝑅
𝑗=1

𝑟𝑅𝑗/𝐵 × 𝑅𝑅𝑗

𝐵 {
𝑇𝑗

0
0

})                                           (62) 

Being the aerodynamic force vector 

composed by drag (D), side force (Y) and lift 

(L), and the aerodynamic roll (𝐿̅), pitch (M) and 

yaw (N) moments. Additionally, we define each 

propeller thrust 𝑇𝑗   and torque 𝑄𝑗  defined as 

follows, 

𝑇𝑗 = 𝑘𝑇𝜔𝑗
2                        (63) 

𝑄𝑗 = 𝑘𝑄𝜔𝑗
2                        (64) 

 Moreover, 𝜆𝑗 is each propeller rotation 

direction index, being 1 for counter-clockwise 

and -1 for clockwise. 

Then, after handling the equations in a 

manner very similar as described in Stevens and 

Lewis [3], but with the concentrated masses 
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terms, we finally get to the equations of motion 

in the wind axes. First for the translational 

motion, 

{

𝑉̇𝑇

𝛽̇𝑉𝑇

𝛼̇𝑉𝑇 cos 𝛽

} = −Ω𝑊 {
𝑉𝑇

0
0

} + 𝑆𝐵𝐸
𝐵𝑔⃗𝐸 − 𝑆𝐹 +

1

𝑀
{
−𝐷
𝑌

−𝐿
} +

1

𝑀
𝑆 ∑ (𝑅𝑅𝑗

𝐵 {
𝑘𝑇𝜔𝑗

2

0
0

})𝑁𝑅
𝑗=1              (65)  

Wherein, 

Ω𝑊 = 𝑆Ω𝐵 = [

0 −𝑅𝑊 𝑄𝑊

𝑅𝑊 0 −𝑃𝑊

−𝑄𝑊 𝑃𝑊 0
]  (66) 

 Next we define the angular motion 

equation in the wind axes, making use of the 

transformation matrix between body axes to 

wind axes, we get to the following equation,   

{

𝑃̇𝑊

𝑄̇𝑊

𝑅̇𝑊

} = −(𝐴𝑊
−1𝐷𝑊 + 𝐴𝑊

−1𝑆𝐶𝑆̇𝑇) {
𝑉𝑇

0
0

} −

(Ω𝑅 + 𝐴𝑊
−1𝐵𝑊) {

𝑃𝑊

𝑄𝑊

𝑅𝑊

} + 𝑆𝐴−1𝑆𝑇 {
𝐿̅
𝑀
𝑁

} +

𝑆𝐴−1 ∑ (𝑅𝑅𝑗

𝐵 {
𝜆𝑗𝑘𝑄𝜔𝑗

2

0
0

} + 𝑟𝑅𝑗/𝐵 ×𝑁𝑅
𝑗=1

𝑅𝑅𝑗

𝐵 {
𝑘𝑇𝜔𝑗

2

0
0

}) + 𝐴𝑊
−1(𝑀𝑃𝑊

− 𝐸𝑊) −

𝐴𝑊
−1𝐶𝑊 {

𝑉̇𝑇

0
0

}                                                   (67) 

 Wherein, 

Ω𝑅 = 𝑆𝑆̇𝑇 = [

0 −𝛽̇ −𝛼̇ cos 𝛽

𝛽̇ 0 𝛼̇ sin 𝛽
𝛼̇ cos 𝛽 −𝛼̇ sin 𝛽 0

] 

(68) 

 Furthermore, we make use of the 

following simplifications: 𝑆𝐴𝑆𝑇 = 𝐴𝑊 ,𝑆𝐵𝑆𝑇 =
𝐵𝑊 , 𝑆𝐶𝑆𝑇 = 𝐶𝑊 , 𝑆𝐷𝑆𝑇 = 𝐷𝑊 , 𝑆𝐸 = 𝐸𝑊 , 

𝑆𝑀𝑃 = 𝑀𝑃𝑊
. 

4 Aircraft Trim  

 The aircraft trim condition, or steady-

state condition, is the combination of state 

variables that make all the state derivatives 

𝑉̇𝑇 , 𝛽̇, 𝛼̇, 𝑃̇𝑊, 𝑄̇𝑊, 𝑅̇𝑊  identically zero. In our 

dynamic system we have the following state 

variables: 𝑉𝑇 , 𝛽 , 𝛼 , 𝜙 , 𝜃 , 𝜓 , 𝑃𝑊 , 𝑄𝑊 , 𝑅𝑊 , 𝛿𝑓 

(flap angle), 𝛿𝑒  (elevator angle), 𝛿𝑟  (rudder 

angle), 𝛿𝑎𝐿
 (left aileron angle), 𝛿𝑎𝑅

 (right 

aileron angle), 𝛿𝑊  (wing tilt angle),  𝛿̇𝑊 , 𝛿𝐻𝑇 

(horizontal tail tilt angle), 𝛿̇𝐻𝑇 , 𝜔1
2 ,…, 𝜔6

2 

(propellers angular speed squared). Therefore 

for each specific flight condition we must be 

able to find the combination of state variables 

that meets with all null state derivatives. 

We achieve this goal with a numerical 

algorithm in the following way. First we define 

a cost function from the sum of the squares of 

the state derivatives [3] previously mentioned, 

which is the following equation. 

𝒥 = 𝑉̇𝑇
2 + 𝛽̇2 + 𝛼̇2 + 𝑃̇𝑊

2 + 𝑄̇𝑊
2 + 𝑅̇𝑊

2     (69) 

In the trim condition the cost function 

should be zero, because the state derivatives 

must be zero. Thus, if we successively compute 

the value of the cost function for some chosen 

state vector 𝑋⃗  using the translational and 

angular motion equations to compute the state 

derivatives, in order to gradually approach the 

cost function to zero, it would be possible to 

find the state vector for the specific flight 

condition that nullifies the cost function. 

An effective algorithm to solve this 

problem is the Sequential Simplex, described in 

Walters et al. [5] and Nelder and Mead [6], 

which is based on the search of optimum from 

sequential experimentation and measurement of 

system outcome from a combination of 

variables. The algorithm starting procedure 

implemented was the Corner Initial Method, 

described in Walters et al. [5], and the stopping 

criterion used was cost function value less than 

1e-15. Moreover, for the hover condition we 

must use the equations of motion in the aircraft 

body coordinate frame. 
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5 Trim Results  

Trim curves were computed for the 

conceptual VTOL UAV previously described, 

being that the aerodynamic forces and moments 

were estimated using methods from Datcom [7], 

Hoerner [8] and Houghton and Carpenter [9]. 

In this paper we will present results only 

for the steady-state longitudinal flight, where 

some states are zeros (𝛽, 𝑃𝑊, 𝑄𝑊, 𝑅𝑊, 𝜙, 𝜓, 𝛿𝑟, 

𝛿𝑎𝐿
, 𝛿𝑎𝑅

), which are inputs for the algorithm. It 

was also considered flap angle zero to trim the 

aircraft, in order to reduce the number of 

variables. 

Additionally, it was established that for 

every flight condition the wing and horizontal 

tail tilt angle must be as in Fig. 3, which was 

obtained using the trim algorithm and 

smoothing the curves for wing and horizontal 

tilt angle as functions of flight speed, which 

were used for ensuing recalculation of the other 

states, for the condition of full load and flight 

path angle zero. Therefore, for every other flight 

condition the wing and horizontal tail tilt angle 

were inputs to compute the other states. 

 

Fig. 3: Wing and horizontal tail tilt angle x flight 

speed. 

The curves express that from 0 to 12 m/s 

the wing and horizontal tail tilt angle are the 

same, starting in the hovering condition at 90° 

where the propellers are all pointing upwards. 

From 12 m/s forward, the curves differ, being 

that the wing tilts more until the wing tilt angle 

becomes zero at 33 m/s, while the horizontal tail 

zeroes in 36 m/s.  

In the Fig. 4 we find the aircraft angle of 

attack versus flight speed, which is equivalent to 

the pitch angle for flight angle zero. Next, the 

elevator angle as a function of flight speed in 

the Fig. 5. The elevator is only used from 16 

m/s forward, since for low flight speeds there is 

not much dynamic pressure in the aerodynamic 

controls and the wing and horizontal tail tilt 

together with propellers thrust is enough to trim 

the aircraft. 

 

 

Fig. 4: Aircraft angle of attack x flight speed. 

 

Fig. 5: Elevator angle x flight speed. 

For the longitudinal flight it has been 

determined that the four propellers in the wing 

will have the same command, thus the same 

steady power, being the same for the two 

propellers at the horizontal tail. Propeller 

performance data was obtained at Brandt, J. B 

[10], so that we compute the power required.  

From Fig. 6 we can see that in the hover 

condition there is high power required from the 

wing and tail propellers. As the flight speed 

increases the power required is lowered, since 

some of the lift force is transferred to 

aerodynamic lift. Also, from 16 m/s on the tail 

propellers are turned off and the elevator 

assumes the role to trim the aircraft. It is 

necessary to do so because there is a limit on 

propeller RPM, thus it is not possible to adjust 
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all of the six propellers at the desired advance 

ratio at high speeds in order to trim the aircraft. 

In high speeds the aircraft aerodynamic drag 

increases thus requiring more power from the 

propellers, therefore, there is a range of flight 

speed with minimum total power required, 

which happens between 14 and 16 m/s. 

 

Fig. 6: Total power required and each wing and tail 

propeller power. 

6 Conclusion  

The multi-body equations of motion for 

the proposed VTOL UAV concept were 

developed which were used to compute the trim 

curves for the transition phase from hovering to 

cruise condition. Such computations were 

performed using the Sequential Simplex 

algorithm to minimize a cost function. 

The results showed that the transition 

phase is possible for this aircraft concept, 

provided that the aircraft control system would 

be able to stabilize the aircraft around the 

steady-states computed, once subjected to 

disturbances. 

Moreover, the proposed multi-body 

equations of motions could be applied to various 

configurations of aircraft with moving 

aerodynamic surfaces and rotors, in order to 

study not only the trim conditions, but the flight 

dynamic performance and control system. 
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