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Abstract  

Wind tunnel testing often requires many costly 

experiment runs, thereby making it one of the 

most cost-intensive experiments known. To 

effectively reduce the required number of 

experiments while maintaining statistical 

accuracy of the results, many researchers have 

extensively studied Adaptive Design of 

Experiment (ADoE). Efficiency of the ADoE is 

highly dependent on an underlying metamodel, 

which is crucial for predicting responses on 

factors where the experiments are not yet 

conducted. However, most studies make use of a 

conventional ADoE using well-known stationary 

GP (ADoE-GP) as its metamodel. Although 

efficient, conventional ADoE has limitations in 

predicting responses when the experiment shows 

highly nonlinear traits. Therefore, in this paper, 

we propose an ADoE with Nonstationary 

Gaussian Process (ADoE-NGP) model instead of 

a conventional ADoE-GP. Using actual wind 

tunnel experiment data in a high angle-of-attack 

region where the responses are highly nonlinear, 

performance of the proposed ADoE-NGP is 

measured against conventional ADoE-GP in 

terms of the required number of experiments 

while satisfying the same statistical accuracy. 

Results indicate that the proposed ADoE-NGP 

show better performance results compared to 

conventional ADoE-GP in both number of 

experiment runs and accuracy. 

 

 

 

1  Introduction  

Design of Experiment (DOE) refers to 

methodologies that utilize statistics to select an 

experiment sequence that guarantees the 

accuracy of the whole experiment while 

minimizing the resources required for such 

experiments. In fields where available resources 

are limited, such as wind tunnel testing, the DoE 

can economically improve the efficiency and 

accuracy of the experiments. The study on the 

application of DoE in the field of wind tunnel 

testing has been carried out by NASA Langley 

Research Center, starting with the preliminary 

experiments led by DeLoach in the late 1990s [1]. 

While many traditional DoE approaches selects a 

set of experiment points prior to conducting 

experiments, Adaptive Design of Experiment 

(ADoE) selects the next experiment points 

sequentially during the experiments based on the 

current best metamodel constructed from the 

currently obtained experiment data. A prior study 

on the application of ADoE to wind tunnel 

testing [2] shows that it can effectively reduce the 

experiment runs while maintaining required 

statistical accuracy.  

 When applying the ADoE to wind tunnel 

testing, it is important to select a proper 

metamodel that captures the key features of the 

underlying aerodynamics of the aircraft. 

However, for many wind tunnel tests, 

experimenters commonly encounter difficulty 

gaining even a slight hint on the aircraft 

aerodynamics, especially in cases where the 

aircraft has a novel configuration or prior 
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knowledge on the aircraft aerodynamics is 

unpredictable. Since wind tunnel tests tend to 

have such little prior knowledge, the Gaussian 

Process (GP) model becomes an attractive option 

for the underlying metamodel. The GP model is 

a data-driven model that does not require any 

fixed form of function that maps given inputs to 

desired outputs. However, the GP model requires 

prior selection of covariance function, or kernel, 

before applying it. Although a common choice is 

a stationary kernel due to its generality and 

simplicity, it sometimes results in prediction 

performance degradation for nonstationary 

datasets. In wind tunnel testing, aerodynamics at 

high angle-of-attack region is considered 

nonstationary, whereas low angle-of-attack 

region shows relatively linear traits.  

In this paper, we suggest an ADoE 

methodology that shows improvements on wind 

tunnel testing, especially under nonstationary 

experiment regions. The proposed ADoE uses 

GP model as its metamodel, whose kernel is a 

nonstationary kernel. An algorithm to obtain the 

nonstationary kernel for wind tunnel testing with 

rapid change of response surface slope is 

suggested based on the gradient analysis of the 

traditional stationary GP model. Finally, 

prediction performance comparison between the 

proposed ADoE with nonstationary GP and that 

with conventional stationary GP are discussed.  

2  Methodology 

2.1 Overview on Three-phase ADoE  

In [2], the authors suggested a three-phase ADoE 

composed of Initial Phase, Adaptive Phase and 

Confirmation Phase. In the Initial Phase, a 

preliminary regression model for the 

aerodynamic coefficients are obtained by the 

experiments at the 𝑁𝐼𝑃 points sampled randomly 

or sampled by a traditional DoE technique. In the 

Adaptive Phase, additional 𝑁𝐴𝑃  points are 

selected sequentially from current experimental 

points using any metamodel such as GP model to 

update the current regression model. Then, the 

reliability of the constructed models is verified in 

the Confirmation Phase through randomly 

selected 𝑁𝐶𝑃  points that has not yet been 

conducted in Initial Phase and Adaptive Phase. 

Overall procedure for the three-phase ADoE is 

summarized in Figure 1. In this paper, we mainly 

focus on the Adaptive Phase, because the next 

point selection algorithm during this phase 

highly influences the performance of the ADoE 

methodology.  

 

 

Figure 1. Overall workflow for the three-

phase Adaptive Design of Experiment 

 

2.2 Gaussian Process Regression Model 

Gaussian Process Regression is a Bayesian 

nonparametric nonlinear regression model based 

on Gaussian Process (GP). The GP is a 

generalization of a multivariate Gaussian 

distribution to infinitely many variables [3]. The 

objective of the Gaussian Process is to learn a 

function 𝑓: 𝐱 → 𝑦  from a given data 𝒟 =
{(𝐱1, y1), … , (𝐱N, yN)} = {𝐗, 𝐲}.  

In many regression problems, the generated data 

includes measurement noise and GP has an 

advantage when the noise is Gaussian white 

noise. With the assumption that the measurement 

noise has Gaussian distribution of zero mean and 

standard deviation𝜎𝑛 , prediction of GP model 

(zero mean function) at any test input 𝐱𝑇 based 

on the given data 𝒟 is obtained as follows 

 

 

𝔼(𝐱𝑇) = 𝐾𝑇𝑁[𝐾𝑁𝑁 + 𝜎𝑛
2𝐼]−1𝐲 

Var(𝐱𝑇) = 𝐾𝑇𝑇 

−𝐾𝑇𝑁[𝐾𝑁𝑁 + 𝜎𝑛
2𝐼]−1𝐾𝑁𝑇 + 𝜎𝑛

2𝐼 

(1) 
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where 𝐾∗∗ is a covariance matrix with its element 

𝐾𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗) . Covariance function 𝑘(𝐱𝑖, 𝐱𝑗) , 

or kernel, characterizes the correlation between 

different points in the input space, that is, 

𝑘(𝐱𝑖, 𝐱𝑗) ≡ 𝔼[𝑓(𝐱𝑖)𝑓(𝐱𝑗)] . In order to fully 

define a GP model, selection of the kernel type 

and determination of kernel hyperparameters are 

required. Kernel types are divided into two 

categories: stationary kernel and nonstationary 

kernel.  

 

2.3 Kernel of Gaussian Process 

2.3.1 Stationary Kernel  

Stationary kernel is designed to be a function of 

𝒓 = 𝐱𝑖 − 𝐱𝑗 which implies that the kernel value 

does not change with respect to translations in the 

input space. Most of the known GP kernel types 

such as squared exponential (SE), exponential, 

Matérn or rational quadratic kernel are stationary 

kernels. Among them, the SE kernel is the most 

utilized stationary kernel due to its simplicity and 

smoothness. For D-dimensional input, the 

Automatic Relevance Determination Squared 

Exponential (ARD-SE) kernel shown below is 

widely used as an extended form of the SE kernel 

in a non-isotropic input space.  

 

 

𝑘𝑆(𝐱𝑖 , 𝐱𝑗)   

= 𝜎𝑓
2 exp (−

1

2
∑

(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

𝑙𝑘
2

𝐷

𝑘=1

) 
(2) 

 

The kernel has 𝐷 + 1 hyperparameters to 

be optimized: 𝜎𝑓  and 𝑙𝑘 (𝑘 = 1,2, … , 𝐷) . It is 

known that 𝜎𝑓  affects the amplitude of the 

correlation between two inputs and 𝑙𝑘  reveals 

different length-scale for each input dimension. 

In the remainder of this paper, a GP model with 

the ARD-SE kernel is considered as a reference 

stationary GP model due to its wide applications 

in many engineering fields including terrain 

modeling, aerodynamics and robotics. 

 

2.3.2 Nonstationary Kernel  

In some nonlinear regression problem domains, 

the stationary GP model shows prediction 

performance degradation that cannot be ignored. 

This happens when the regression problem which 

produces a dataset for the GP model construction 

involves highly nonlinear, rough, or irregular 

outputs on a certain subset of the desired input 

space. These kind of problem characteristics are 

against the basic assumption for the stationary 

GP model: stationarity on the entire input space. 

Nonstationary Gaussian Process (NGP) model 

has been introduced in order to overcome the 

shortcomings by adopting nonstationary kernels 

as its covariance function. A typical example of 

nonlinear regression problem using the NGP 

model is terrain modeling, where traditional 

stationary GP model (or, Kriging model) has 

limitations on modeling extremely rough and 

irregular terrain surfaces covering a wide target 

area with several local mountains or cliffs [4]. 

Aerodynamics models obtained through wind 

tunnel testing may also reveal nonlinearity and 

irregularity on a set of certain experiment 

conditions and experiment factors. For example, 

lift coefficient at high angle-of-attack region for 

most of aerial vehicles is known to be highly 

nonlinear compared to that at low angle-of-attack 

region. In order to effectively capture the non-

linearity, we apply the following form of the 

nonstationary kernel [5] which is a nonstationary 

version of the stationary ARD-SE kernel.  

 

 

𝑘𝑁𝑆(𝐱𝑖 , 𝐱𝑗) = 𝜎𝑓
2|Σ𝑖|

1
4|Σ𝑗|

1
4 |

Σ𝑖 + Σ𝑗

2
|

−
1
2

∙ 

exp (−(𝐱𝑖 − 𝐱𝑗)
𝑇

(
Σ𝑖 + Σ𝑗

2
)

−1

(𝐱𝑖 − 𝐱𝑗)) 

(3) 

 

Unlike the ARD-SE kernel, hyperparameters of 

the introduced nonstationary kernel are a set of 

matrix Σ𝑖 = Σ𝑖(𝐱𝑖), or local kernel matrix, for all 

input points under interest.  Thus, to apply the 

nonstationary kernel appropriately, it is 

important to develop algorithms to define those 

local kernel matrices Σ𝑖  that fully captures the 

characteristics of the nonlinear regression 

problem to be solved.  

 

2.4 Adaptive Design of Experiment with GP  

ADoE with the stationary GP (ADoE-GP) uses 

only stationary GP model for its metamodel and 

the pseudo code is presented below in Algorithm 

1. The ADoE-GP is the reference ADoE 

algorithm to be compared with the proposed  



UIHWAN CHOI, JUNHONG KIM, YEONGBIN LEE, JAEMYUNG AHN 

4 

Algorithm 1 Adaptive Design of Experiment with 

Stationary Gaussian Process (ADoE-GP) 

inputs : Initial dataset (𝑿0, 𝒚0), measurement noise  

s.d. 𝜎𝑛, a set of target inputs 𝒳𝑞 = {𝐱𝑞,1, … , 𝐱𝑞,𝑄} 

returns : mean & standard deviation for the set of  

target inputs 𝜇𝒳𝑞
, 𝜎𝒳𝑞

 

1:   for 𝑘 = 1: 𝑁𝐴𝑃  do 

2: 𝛩∗ ← optimize hyperparameters of stationary  

kernel 𝑘𝑆 with {𝐗(𝑘−1), 𝒚(𝑘−1), 𝜎𝑛} 

3: for 𝑖 = 1: 𝑄 do 

4:      {𝜇𝑞,𝑖
(𝑘)

, 𝜎𝑞,𝑖
(𝑘)

} ← prediction at 𝐱𝑞,𝑖 using GP  

with {𝐗(𝑘−1), 𝒚(𝑘−1), 𝑘𝑆|𝛩∗, 𝜎𝑛}  

5: end  

6: 𝑖𝑀𝑜𝑠𝑡𝐼𝑛𝑓𝑜 ← argmax𝑖 𝜎𝑞,𝑖
(𝑘) 

7: 𝐱𝑛𝑒𝑥𝑡 ← 𝐱𝑞,𝑖𝑀𝑜𝑠𝑡𝐼𝑛𝑓𝑜
 

8: y𝑛𝑒𝑥𝑡 ← 𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭(𝐱𝑛𝑒𝑥𝑡) 

9: 𝐗(𝑘) ← [𝐗(𝑘−1), 𝐱𝑛𝑒𝑥𝑡], 𝒚(𝑘) ← [𝒚(𝑘−1), y𝑛𝑒𝑥𝑡] 

10:   end 

11:   𝜇𝒳𝑞
← {𝜇𝑞,1

(𝑁)
, … , 𝜇𝑞,𝑄

(𝑁)
}, 𝜎𝒳𝑞

← {𝜎𝑞,1
(𝑁)

, … , 𝜎𝑞,𝑄
(𝑁)

} 

ADoE with Nonstationary GP (ADoE-NGP), 

whose pseudo code is given in Algorithm 2. 

Main features of the ADoE-NGP are 1) 

local kernel matrix adaptation part (line 3-8) and 

2) prediction with a set of nonstationary kernel 

matrices part (line 9-11). The theoretic base for 

the first local kernel matrix adaptation part 

originates from [4]. However, to apply the 

original idea in the context of ADoE where 

initially there are only a few and sparse data 

points, normalized gradient vector calculation 

(line 5) and learning rate calculation with 

prediction uncertainty (line 6) are newly 

modified and kernel matrix update (line 7) is 

done only one time for the algorithm to possess 

advantage in computation time. The second part 

is identical to line 3-5 in Algorithm 1 except the 

part where the required kernel 𝑘𝑁𝑆|(Σ1, … , Σ𝑄) 

are a set of local kernel matrices representing 

nonstationary smoothness along the input space 

instead of 𝑘𝑆|𝛩∗.  

 

Algorithm 2 Adaptive Design of Experiment with Nonstationary Gaussian Process (ADoE-NGP) 

inputs : experiment dataset (𝐗, 𝒚), measurement noise standard deviation 𝜎𝑛, a set of target inputs 𝒳𝑞 =

{𝐱𝑞,1, … , 𝐱𝑞,𝑄} 

returns : mean & standard deviation for the set of target inputs 𝜇𝒳𝑞
, 𝜎𝒳𝑞

 

1:   for 𝑘 = 1: 𝑁𝐴𝑃  do 

2: 𝛩∗ ← optimize hyperparameters of stationary kernel 𝑘𝑆 with {𝐗(𝑘−1), 𝒚(𝑘−1), 𝜎𝑛} 

3: for 𝑖 = 1: 𝑄 do 

4:  {𝜇𝑞,𝑖
(𝑘)

, 𝛻𝜇𝑞,𝑖
(𝑘)

, 𝜎𝑞,𝑖
(𝑘)

} ← prediction at 𝐱𝑞,𝑖 using GP with {𝐗(𝑘−1), 𝒚(𝑘−1), 𝑘𝑆|𝛩∗, 𝜎𝑛} 

5:                       𝛻𝜇̂𝑞,𝑖
(𝑘)

← [
𝜕1𝜇𝑞,𝑖

(𝑘)

(𝜎𝑓
∗ 𝜆𝑥1

∗⁄ )
,

𝜕𝐷𝜇𝑞,𝑖
(𝑘)

(𝜎𝑓
∗ 𝜆𝑥2

∗⁄ )
, … ,

𝜕𝐷𝜇𝑞,𝑖
(𝑘)

(𝜎𝑓
∗ 𝜆𝑥𝐷

∗⁄ )
]

𝑇

, where 𝜕𝑗𝜇𝑞,𝑖 ≡
𝜕𝜇

𝜕𝑥𝑗
|

𝐱𝑞,𝑖

, 𝑗 = 1, … , 𝐷 

6:                       𝜖 ← 𝜖𝑚𝑖𝑛 + (𝜖𝑚𝑎𝑥 − 𝜖𝑚𝑖𝑛) exp (− 𝜎𝑞 (
𝜎𝑛+𝜎𝑓

∗

2
)⁄ )  

7:                       Σ𝑖 ← (1 − 𝜖) diag(𝜆𝑥1
∗ 2, … , 𝜆𝑥𝐷

∗ 2) +  𝜖 diag(𝜆𝑥1
∗ 2 exp(−|𝛻𝜇̂𝑞,𝑖

(𝑘)
|) , … , 𝜆𝑥𝐷

∗ 2 exp(−|𝛻𝜇̂𝑞,𝑖
(𝑘)

|)) 

8: end  

9: for 𝑖 = 1: 𝑄 do 

10:  {𝜇𝑞,𝑁𝑆,𝑖
(𝑘)

, 𝜎𝑞,𝑁𝑆,𝑖
(𝑘)

} ← prediction at 𝐱𝑞,𝑖 using GP with {𝐗(𝑘−1), 𝒚(𝑘−1), 𝑘𝑁𝑆|(Σ1, … , Σ𝑄), 𝜎𝑛} 

11: end 

12: 𝑖𝑀𝑜𝑠𝑡𝐼𝑛𝑓𝑜 ← argmax𝑖 𝜎𝑞,𝑁𝑆,𝑖
(𝑘)

 

13: 𝐱𝑛𝑒𝑥𝑡 ← 𝐱𝑞,𝑖𝑀𝑜𝑠𝑡𝐼𝑛𝑓𝑜
 

14: y𝑛𝑒𝑥𝑡 ← 𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭(𝐱𝑛𝑒𝑥𝑡) 

15: 𝐗(𝑘) ← [𝐗(𝑘−1), 𝐱𝑛𝑒𝑥𝑡], 𝒚(𝑘) ← [𝒚(𝑘−1), y𝑛𝑒𝑥𝑡] 

16:  end 

17:  𝜇𝒳𝑞
← {𝜇𝑞,𝑁𝑆,1

(𝑁)
, … , 𝜇𝑞,𝑁𝑆,𝑄

(𝑁)
}, 𝜎𝒳𝑞

← {𝜎𝑞,𝑁𝑆,1
(𝑁)

, … , 𝜎𝑞,𝑁𝑆,𝑄
(𝑁)

} 
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3 Results 

3.1 Reference Wind Tunnel Experiment Data 

In order to verify the metamodeling performance 

of the ADoE with the proposed nonstationary GP, 

wind tunnel experiment data of the variant of 

unmanned combat aerial vehicle (UCAV) 1303 

[6] is used as a reference One-Factor-at-a-Time 

(OFAT) data. UCAV 1303 has a tailless delta-

wing, and it is known that such a vehicle 

configuration usually reveals very complex 

aerodynamic phenomena especially when it 

encounters flow at a high angle-of-attack. We 

focus on the roll moment coefficient 𝐶𝑙  with 

respect to both angle-of-attack α and angle-of-

sideslip 𝛽.  Figure 2 is the OFAT data points of 

𝐶𝑙 = 𝐶𝑙(𝛼, 𝛽)  for 𝛼 ∈ {0𝑑𝑒𝑔, 1𝑑𝑒𝑔, … ,24𝑑𝑒𝑔} 

and 𝛽 = {0𝑑𝑒𝑔, 2𝑑𝑒𝑔, … ,20𝑑𝑒𝑔} . These 275 

data points are considered as a true reference 

model for the stationary and nonstationary GP 

model.  

 

Figure 2. OFAT data (275 points) of roll 

moment coefficient  

 

3.2 Comparison of ADoE Performance  

To compare the stationary GP model and the 

nonstationary GP model in the perspective of 

ADoE, the  ADoE-GP (Algorithm 1) and ADoE-

NGP (Algorithm 2) are applied to randomly 

sampled 𝑁𝐼𝑃 = 15  initial data points (Initial 

Phase) to obtain 𝑁𝐴𝑃 = 150 adaptive data points 

(Adaptive Phase). For each k-th run in the 

Adaptive Phase, prediction on mean of 𝐶𝑙 =
𝐶𝑙(𝛼, 𝛽) obtained from the stationary GP model 

and the nonstationary GP model are compared 

with the OFAT data by calculating their root-

mean-square-error (RMSE) with the 275 OFAT 

data points. To account for the effect of 

measurement noise during the wind tunnel 

experiment, every initial and adaptive include a 

uniform noise 𝑛𝐶𝑙
~𝒰(−0.001,0.001) . These 

whole procedures are repeated for 500 times to 

obtain meaningful statistical results considering 

measurement noise error and several random 

combinations of initial points. The simulation 

results are shown through Figures 3-4. 

 

 

Figure 3. Comparison of ADoE metamodel 

prediction accuracy for all OFAT data points 

 

Figure 4. Comparison of ADoE metamodel 

prediction accuracy for high angle-of-attack 

data points 

 

In Fig. 3, early runs of the Adaptive Phase 

show little difference between the ADoE-GP and 

the ADoE-NGP. However, after approximately 

30 runs in the Adaptive Phase, ADoE-NGP 
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shows better performance than ADoE-GP in 

terms of the RMSE with the original OFAT data. 

Also, when the Adaptive Phase runs are 

conducted more than 100 times, it turns out that 

the RMSE of the ADoE-NGP gradually 

approaches the standard deviation of the known 

measurement noise which can be considered as 

the rough lower bound of the metamodel 

prediction performance. This trend appears more 

strongly when the metamodel predictions of both 

ADoE-GP and ADoE-NGP are compared with 

only the OFAT points with α > 15 𝑑𝑒𝑔. In the 

high angle-of-attack region, the aerodynamic 

coefficients are very nonlinear and irregular. 

Therefore, it can be seen in Fig. 4 that the ADoE-

NGP outperforms ADoE-GP even in the early 

runs of the Adaptive Phase. 

 

4 Conclusions 

In order to improve the stationary GP model used 

for the underlying metamodel of the ADoE in 

wind tunnel testing experiments, nonstationary 

GP model with nonstationary kernel is proposed. 

Then, overall nonlinear regression performance 

improvement is observed based on the Monte-

Carlo simulations with realistic wind tunnel data. 

The proposed ADoE process shows better 

performance especially for high angle-of-attack 

region data where aerodynamic responses are 

expected to be nonlinear and irregular. However, 

the proposed ADoE method has some limitations 

such as instability in the early runs of the 

Adaptive Phase. Our future works will cover the 

drawbacks of the proposed ADoE with 

nonstationary GP model.  
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