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Abstract  

Industrial supercritical wing aerodynamic 

design does not solely pursue minimum cruise 

drag coefficient, but a balance among cruise 

performances, robustness and geometry 

limitations. Although optimization methods have 

been widely applied in optimization designs, 

different methods can have different 

performances. In the present study, gradient 

optimization algorithm and RBF-assisted 

differential evaluation (RADE) algorithm are 

used in a beforehand cruise drag optimization to 

generate initial designs. Then a multi-point 

multi-objective multi-constraint optimization is 

carried out to gain the Pareto front of the drag 

coefficients of 3 flight conditions. Pressure 

distribution and geometry constraints are used to 

ensure robustness and industrial applicability.  

1  Introduction  

Aircraft wing design is a multi-disciplinary 

problem with robustness considerations. 

Designing a state-of-art supercritical wing 

requires comprehensive considerations regarding 

lift/drag ratio, buffet onset, drag divergence 

Mach number, geometry constraints, etc. 

Nowadays, in order to further improve fuel 

consumption efficiency, it becomes more and 

more complex to define the purpose of 

optimization design, and it raised even more 

difficulties in its realization. [1] 

Optimization method has been well developed 

and applied in the industrial aircraft wing designs 

in the past few decades. Although various 

optimization methods have been proposed to 

achieve robust well-performance designs, the 

results gained by optimization algorithms are still 

mostly not feasible for industry usage. It is 

mainly due to the complexity of the practical 

application as well as the high modality of the 

optimization problems. [2,3] 

One of the key problems is the definition of 

objectives and constraints. The supercritical 

wing aerodynamic design needs to compromise 

among cruise performances and off-design 

characteristics under geometry constraints. 

Usually a multi-point multi-objective multi-

constraint optimization is carried out, which has 

a much lower efficiency due to the increase of 

problem modality. On the other hand, engineers 

usually have experiences and requirements that 

cannot be mathematically described. But they are 

usually critical to the industrial designing process, 

without which the optimization usually generates 

results with unsatisfying robustness or other 

drawbacks. [4,5] Therefore, in order to achieve 

these requirements while maintaining efficiency, 

the objectives and constraints need to be properly 

defined, and the optimization process may need 

to be constantly supervised and manipulated. 

There have been several methods developed to 

introduce experiences and judgements into the 

optimization design, which are often based on 

pressure distributions. For example, airfoils’ 

pressure gradient should not be too large so that 

flow separation does not occur, and aft loading 

should be limited in order to avoid unacceptable 

nose-down pitching moment. [6-8] One of these 

methods is “man-in-loop” strategy, it allows  

manual manipulation of the optimization process 

to introduce engineers’ requirement and 

judgement. [1] Another one is pressure 

distribution oriented (PDO) optimization, which 

uses engineer-proposed pressure distribution 

considerations to improve robustness while 
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optimizing performances. ZHANG et. al [9,10] 

studied the performances and robustness of 3 

typical supercritical pressure distributions and 

used pressure distribution constraints to improve 

cruise performances and robustness while 

achieving the proposed weak wave pressure 

distribution. And the PDO method was also used 

to achieve different favorable pressure gradients 

for natural laminar airfoils for different desirable 

performances. [11] 

In this paper, initial designs for a dual-aisle 

aircraft supercritical wing optimization are 

generated via two beforehand optimizations. 

Firstly, a gradient optimization based on adjoint 

method is carried out to reduce cruise drag 

coefficient. Then a RBF-assisted differential 

evaluation (RADE) algorithm [12] is used to 

optimized cruise drag while maintaining 

robustness using constraints and sub- 

optimization about pressure distribution 

considerations, where the sub-optimization on 

RBF response surface predicts well-performance 

designs satisfying pressure distribution 

requirements, and these individuals are added 

into the DE population to improve optimization 

efficiency. After that the initial designs are 

gathered, a 3-point multi-objective optimization 

is carried out to gain a Pareto front formed by 

drag coefficients of 3 flight conditions. 

2  Modeling and Optimization Methods 

2.1 Modeling and Deformation Methods 

In the present paper, a 6th order Bernstein 

polynomial based Class Shape Transformation 

(CST) method is used to construct upper and 

lower surfaces of an airfoil. The wing surface is 

interpolated by 7 span-wise distributed airfoil 

sections, of which the locations are shown in 

Figure 1. The ranges of the variables are the same 

as those in reference [13].  

A structural grid is used for CFD evaluation, and 

only the O-type grids surrounding the wing are 

updated according to the wing surface 

deformation. The surface grid deformation is 

interpolated based on the geometry deformation, 

and the interior grid cells are adjusted 

accordingly. Figure 2 shows the O-grid 

deformation of a wing section. 

 

 

Figure 1 Wing section locations 

 

Figure 2 Geometry and grid deformation 

2.2 CFD and Adjoint Methods 

The wing aerodynamic performances are 

evaluated by NSAWET, an in-house cell-

centered finite volume compressible Reynolds 

average Navier Stokes (RANS) solver. The 

scheme for reconstruction and spatial 

discretization in the present paper are MUSCL 

and Roe’s scheme, respectively. And LU-SGS is 

used for time advancing, and sheer stress 

transport (SST) model is used for turbulence 

modeling. The solver has been validated and 

successfully applied in many industrial designs. 

[9-11,13-15] 

A continuous adjoint method solver (NSAWET-

ADJ) with frozen viscosity assumption for 

RANS is developed on NSAWET, of which the 

formulations are mainly based on reference [16]. 

In the present paper, it employs 2nd order upwind 

scheme for reconstruction, Roe’s scheme for 
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spatial discretization, and LU-SGS method for 

time advancing. The pressure and surface 

sensitivity distributions of a supercritical airfoil 

evaluated by NSAWET-ADJ are shown in 

Figure 3. The gradients estimated by adjoint and 

previous mesh deformation method are validated 

with the gradients calculated by finite difference 

method, as shown in Figure 4. The adjoint solver 

can also be applied to 3D cases, Figure 5 shows 

the surface sensitivity distributions of a dual-

aisle aircraft. 

 

(1) Pressure distribution 

 

(2) Surface sensitivity 

Figure 3 Pressure and surface sensitivity 

distributions of a supercritical airfoil 

 

Figure 4 Gradients from NSAWET-ADJ and 

finite difference method 

 

Figure 5 Surface sensitivity distribution of a 

dual-aisle aircraft 

2.3 Optimization Methods 

With the development of surrogate models, 

RADE, Kriging and other models have been 

widely used to improve optimization efficiency. 

In previous studies, a RADE algorithm was 

developed [12] to utilize calculated individual 

information by RBF, then a beforehand sub-

optimization on the RBF response surface was 

conducted to predict excellent individuals for the 

DE algorithm. The predicted individuals are 

added into the current candidate population to 

participate in consequence DE process, and the 

CFD evaluations are still adopted. The basic 

steps can be seen in Figure 6. The sub-

optimization on RBF response surface can have 

different objectives and constraints comparing to 

the main optimization process, so that the RBF 

can be used to guide the main optimization to 

directions engineers prefer. 

X

C
p

0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

S
u
rf

ac
e

S
en

si
ti

v
it

y

0.0 0.5 1.0
-10

0

10

20

Design Variable Index

G
ra

d
ie

n
t

0 5 10 15

-0.05

0.00

0.05

0.10

Adjoint Method

Finite Difference



Runze LI, Miao ZHANG, Meihong ZHANG, Yufei ZHANG, Haixin CHEN 

 

4 

 

Figure 6 Flow chart of the RADE algorithm 

As for the gradient optimization carried out in the 

present paper, Stanford SNOPT [17] toolbox is 

used, where the objectives and gradients are 

evaluated by NSAWET and NSAWET-ADJ, 

respectively. 

3  Optimization Design of a dual-aisle aircraft 

supercritical wing 

The aerodynamic optimization design of a 

supercritical wing needs to compromise among 

cruise performances, off-design characteristics 

and various geometry constraints. Therefore, an 

expensive multi-point optimization is required. 

However, it is too time consuming and unwise to 

conduct multi-objective multi-constraint 

optimizations in the early stage of a designing 

process. And it is reasonable to use single 

objective optimization, such as gradient 

optimization, to generate baselines for further 

optimization design.  

In the present study, a full wing gradient 

optimization for cruise drag reduction using 

SNOPT and NSAWET-ADJ is carried out to 

generate a baseline design. The gradient 

optimization shows great efficiency in drag 

reduction, of which the final result, however, has 

unacceptable off-design characteristics. 

Therefore, a single-objective multi-constraint 

inboard wing optimization based 

 on RADE algorithm is carried out to generate the 

baselines, and the outer wing is gained by a 

previous multi-objective 2.75D airfoil 

optimization [13], of which the pressure 

distribution is shown in Figure 3(1). Then a multi-

objective multi-constraint full wing optimization 

is carried out to gain the Pareto front of 3 flight 

condition drags, where the initial population is 

constructed by previous optimization results and 

random generated ones. The flight conditions of 

3-point optimization are listed in Table 1. 

 

Table 1 The 3 discussed flight conditions 

Cruise 
(Condition 0) 

Drag divergence 
control 

(Condition 1) 

Buffet onset 
control 

(Condition 2) 

𝑀=0.85 𝑀=0.87 𝑀=0.85 
𝐶𝐿=0.48 𝐶𝐿=0.48 𝐶𝐿=0.60 

𝑅𝑒=4 × 107 𝑅𝑒=4 × 107 𝑅𝑒=4 × 107 

3.1 Optimization Process 

The beforehand cruise drag optimizations, i.e. 

gradient optimization and single objective RADE 

optimization, and the 3-point optimization share 

the same geometry constraints, which can be seen 

in Table 2. The full wing gradient optimization 

has no constraints other than the geometry ones. 

And to gain more robust results, several measures 

are taken in the single-objective inboard wing 

optimization. Firstly, the outboard wing sections 

use the same airfoil gained by previous study, 

which is well balanced between cruise 

performances and robustness , details can be seen 

in reference [13]. Then the inboard wing is 

optimized by a single-objective optimization with 

pressure distribution considerations embedded 

via RADE sub-optimization and constraints, and 

the detail settings can be seen in Table 2. 
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Table 2 Inboard wing optimization settings 

 Main optimization Sub-optimization 

Objectives   
 cruise drag 𝐶𝑑0 cruise drag 𝐶𝑑0 
  Summation of shockwave strengths ∑∆𝐶𝑝,𝑖 

  Summation of suction peak absolute pressure coefficients ∑|𝐶𝑝,𝑠𝑢𝑐|𝑖
 

Constraints   
Amount of double 
shock sections 

< 2 < 1 

Pitching moment < 0.065 
Leading edge radius  > critical values for 3 sections, respectively 
Maximum thickness > critical values for 3 sections, respectively 
Others Several constraints about pressure distribution considerations [10] 

 

In order to gain a fully developed Pareto front, the 

full wing 3-point optimization has no or loosen 

pressure distribution constraints comparing to the 

inboard wing optimization. And the convergence 

history of cruise drag coefficient 𝐶𝑑0  in 3 

optimizations are shown in Figure 7. Only the 

individuals of which the cruise drag are further 

reduced during the optimization are shown in the 

Figure 7, and the 3-point optimization 

convergence history starts form ID of 150 since 

its initial population is constructed by results from 

previous optimizations. And the plateau in the 3-

point optimization is mainly the result of the 

development of Pareto front.  

 

Figure 7 Convergence history of 3 optimization 

processes 

In order to demonstrate the processes of the three 

optimizations, the optimization process and the 

Pareto front are plotted in 2 dimensions  (Figure 

8), i.e. the cruise drag coefficient 𝐶𝑑0  and the 

average drag coefficient of the other two flight 

conditions. The results of two beforehand 

optimizations are also plotted. Figure 8 shows that 

the inboard wing optimization with robust 

outboard wing installed can gain more robust 

results than the gradient optimization, whereas the 

gradient optimization has much more efficiency, 

as shown in Figure 7. The reason that inboard 

wing optimization could not gain a better result is 

mainly due to the limitation of the pre-optimized 

outboard wing. Although 2.75D method can gain 

an excellent airfoil for the outboard wing in a 

significantly small cost, the actual 3D effects, 

such as cross flow, installation effect, etc., still 

have a quite great influence on the overall 

performances. Therefore, the outboard wing 

gained via 2.75D method should only be used as 

an initial design, and it needs further adjustment 

in the full wing optimization to improve the 

performances. 

 

Figure 8 Optimization process and Pareto front 

of 3 point optimization 
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3.2 Selected Results and Robustness Analysis 

The 3-point optimization is carried out in order to 

gain a well-balanced design among cruise 

performances and robustness. Usually, when a 

Pareto front is gained, engineers can choose the 

preferred design from these individuals basing on 

their own judgements. Three designs are selected 

from the Pareto front, which are flagged by red 

circles in  Figure 8. From left to right, the three 

designs are named as 001, 002, and 003, and their 

pressure distributions of cruise condition are 

compared in Figure 9.  

 

Figure 9 Cruise pressure distributions of 3 

designs on Pareto front 

Figure 10 (1) shows the 𝐶𝑚 − 𝐶𝐿 curves of the 3 

results. Figure 10 (2) shows the 𝐶𝑑0 −𝑀 curves. 

The inflection in 𝐶𝑚 − 𝐶𝐿  curve can be used to 

define the buffet onset [18], and the 𝐶𝑑0 −𝑀 

curve can be used to determine the drag 

divergence Mach number. The results show that 

002 has low drag and good buffet and drag 

divergence performances. And although the 

cruise drag coefficient of 001 is slightly smaller 

than 002, its nose-down pitching moment is much 

larger, so that the trim drag may compromise its 

advantage. Furthermore, the buffet and drag 

divergence robustness of 001 are worse than 002, 

therefore, it is not always a good idea to pursue 

the optimized cruise drag coefficient. As for 003, 

though the design has excellent robustness, the 

overall drag coefficients are too large, and the 

pressure distributions are not satisfying, either. 

Therefore, 002 is the preferred design on the 

Pareto front. 

 
(1) 𝐶𝑚 − 𝐶𝐿 

 
(2) 𝐶𝑑0 −𝑀 

Figure 10 Buffet and drag divergence 

characteristics 

4  Conclusion 

Different optimization methods have different 

performances in supercritical wing aerodynamic 

optimization designs. Gradient optimization is 

most efficient in single objective cruise drag 

reduction, however, its results tend to have 

unsatisfying robustness, and engineers have 

difficulty to manipulate its process to guide the 

optimization to the preferred direction. RADE 

algorithm with pressure distribution as constraints 

and sub-objectives can guide the single objective 

cruise drag optimization to the preferred direction 

so that they can ensure the wing robustness.  

In the present paper, beforehand single objective 

optimizations are carried out to generate initial 

designs. Then, a 3-point multi-objective 

optimization is conducted to gain the Pareto front. 

The performances and robustness of the final 
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results on Pareto front are compared, and the 

results show that weak shockwave pressure 

distribution is a satisfactory balance between 

cruise drag and robustness. 
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