
 

1 

 

 

Abstract  

Presented are interface specifications and 

implementations aimed at enabling interactive 

early stage systems architecting through tighter 

integration between architecture definition and 

assessment. Specifically, two approaches for 

interfacing the logical and computational 

domains are proposed. The first one employs 

graph theoretic principles to configure steady 

state computational workflows from information 

available in the logical domain. The second 

approach applies model transformation 

techniques for converting the logical flow views 

into Modelica models. An initial evaluation 

indicates that the first approach is faster and is 

better suited to early design studies while the 

second one is more comprehensive. Also outlined 

is the mapping of the fundamental elements of the 

logical and computational domains to the 

MoSSEC (Modelling and Simulation information 

in a Collaborative Systems Engineering Context) 

standard. A number of associations have been 

identified as potential modifications or further 

extensions to the MoSSEC object model. This will 

enable the proposed approaches to be 

implemented while employing MoSSEC as an 

underlying collaboration standard for model-

based systems engineering. 

1 Introduction  

Anticipating future market demands and the 

surge in development of novel technologies, the 

aerospace industry has recognised the need for 

developing the means to rapidly and reliably 

integrate these technologies into the next 

generation viable product solutions. The work 

reported in this paper is a part of a related UK 

industry led research project, APROCONE [1], 

which aims to develop an advanced design 

environment to support the conceptual definition 

and evaluation of complex products, thus 

providing the foundation on which to achieve 

significant improvements within the high value 

design process. 

As part of this process, architecture 

definition and assessment are the two distinct 

activities. According to Maier [2], architecture 

definition (conducted by architects) deals largely 

with unmeasurable entities using non-

quantitative tools and methods such as 

decomposition of requirements and functions, 

allocation of solutions to functions, and 

specification of interfaces between solutions. By 

contrast, architecture assessment (conducted by 

simulation specialists) deals with tools and 

methods involving measurable quantities, such 

as orchestration and execution of computational 

models, component sizing and optimisation. 

Once the architecture is defined by the architect, 

it is passed to the simulation specialists, who 

analyse the performance of the architecture and 

pass key parameters back to the architect. In 

practice, these two activities are performed 

iteratively and are based predominantly on 

manual exchange of technical information. The 

problem with this manual approach is that if the 

architect modifies the architecture (based on 

results obtained from the simulation specialist), 

the whole process needs to be started again. Thus 

efficiency can be hindered significantly.  

AIRCRAFT SYSTEMS ARCHITECTING:  
LOGICAL-COMPUTATIONAL DOMAINS INTERFACE 

 

Marin Guenov*, Arturo Molina-Cristóbal*, Atif Riaz*,  

Sanjiv Sharma**, Adrian Murton**, Judith Crockford** 

* School of Aerospace, Transport, and Manufacturing, Cranfield University, MK43 0AL, UK 

** Airbus Operations Ltd, Filton, Bristol, BS34 7PA, United Kingdom  

 

Keywords: Systems Engineering, System Architecture Definition and Assessment 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

2 

Within this context, the focus of the 

presented work has been on researching interface 

specifications aimed at enabling an interactive 

approach to early stage aircraft architecting. The 

objective is a tighter integration between 

architecture definition and assessment. 

It is assumed that the systems architecting 

process takes place in four domains: 

Requirements, Functional, Logical and Physical 

– referred to as ‘RFLP’ [3]. Within the RFLP 

paradigm, architecture definition involves the 

requirement, functional, logical, and physical 

domains, while architecture assessment deals 

mainly with the logical, physical and 

computational domains, as shown in Fig. 1. 

Although the physical domain (especially 

information regarding the spatial layout) is 

required for architecture assessment, the scope of 

this work is limited to interfacing only the logical 

and computational domains, as shown in Fig. 1. 

The rest of this paper is organised as 

follows. Background terminology is summarised 

in Section 2; State-of-the-art methods and tools, 

and associated research challenges are identified 

in Section 3. Two approaches for interfacing the 

logical and computational domains are described 

in Section 4. The interface specifications are 

evaluated in Section 5 with the help of a case 

study concerning the architecting of an 

environmental control system (ECS). Finally a 

summary and conclusions are presented and 

future work is outlined in Section 6. 

2 Background  

In this section a definition of some basic terms 

related to architecture definition and assessment 

is presented. 

Logical Flow (View): A schematic diagram 

with components and their connections is 

referred to as logical flow view. The fundamental 

elements of the logical domain are components, 

ports, and connections. 

Components: A component is a technical 

solution, e.g. part, subsystem, or even the whole 

system/product, which fulfils a particular 

required function.  

Ports and Connections: A port describes 

the interface of a component with other 

components and the environment, including the 

type of the flow passing through the interface 

(e.g. energy, material, signal, etc.) and the 

direction, which can be either ‘input’ or ‘output’.  

A connection describes the link between two or 

more components. 

 Parameter: A parameter is an engineering 

quantity that describes some characteristics of a 

component or port. For instance, compression 

ratio γ is an example of a parameter associated to 

the compressor component.  

Computational Model: A computational 

model is a mathematical description of a 

component for predicting its behaviour or 

performance characteristics. Computational 

models can be static or dynamic: the former 

calculates the behaviour at steady-state 

Fig. 1. Domains involved in architecture definition and assessment 



 

3  

        AIRCRAFT SYSTEMS ARCHITECTING: LOGICAL-COMPUTATIONAL DOMAINS INTERFACE    

(equilibrium) condition, whereas the latter 

accounts for the time-dependent changes in the 

component’s behaviour.  

Connection Model: The purpose of a 

connection model is to maintain consistency of 

the aggregable quantities ‘transferred’ between 

the ports of connected components (e.g. mass, 

pressure, temperature, etc.). Connection models 

are created dynamically, i.e. if the architect 

modifies links between components in the logical 

view, the corresponding connection models will 

be modified. 

Computational Workflows: An ordered 

network of computational models intended to 

produce a meaningful result is generally referred 

to as computational workflow. Automatic 

(dynamic) methods [4] [5] can be employed to 

generate computational workflows. 

Computational Domain: The collection of 

parameters, computational models, and 

workflow constitute a virtual domain, which is 

referred to as the computational domain in this 

paper.  

3. Literature Review 

A state-of-the-art review and challenges 

associated with interfacing architecture 

definition and assessment (logical to 

computational domain) are presented in this 

section. 

3.1 Architecture Definition (Descriptive 

Modelling) 

Various tools and languages have been proposed 

for descriptive modelling of systems 

architectures, such as, architecture analysis and 

design language (AADL) [6], systems modelling 

language (SysML) [7], logical flow view (LFV) 

[3] [8], object process methodology (OPM) [9]. 

Due to their relation to the presented below 

interface specification, only the Logical flow 

view and SysML are of concern to this work.  

SysML is a general-purpose modelling 

language for specifying, analysing, designing, 

and verifying complex systems. It is a de-facto 

standard, proposed by OMG, for systems 

engineering and is widely used for architecture 

definition. SysML reuses a subset of UML2 [10], 

and defines its own extensions (new diagram 

types specific to systems modelling), with a total 

of nine diagrams. These diagrams are generally, 

categorized into four types, i.e. structure, 

behavior, requirements, and packaging. The 

structure diagrams, which describe the logical 

(schematic) view of the architecture, includes 

two diagrams, i.e. block definition and internal 

block. 

 

3.2 Logical domain mapping to MoSSEC 

object model 

The proposed MoSSEC standard (ISO/AWI 

22071) [11] is designed to provide a capability to 

share Modelling and Simulation information in a 

collaborative Systems Engineering Context. This 

is to enable full traceability and re-use of 

modelling and simulation information 

throughout the product lifecycle and independent 

of the specific IT applications used across 

collaborating enterprises. The standard targets to 

cover a core subset of AP239 [12] systems 

engineering information content and related 

information services, that can be readily 

implemented and deployed  to support 

engineering collaboration. The MoSSEC objects 

related to logical domain are listed in Table 1. 

 

Table 1 : Mapping of logical domain elements to 

MoSSEC objects 

Logical 

Domain 

Elements 

MoSSEC Classes/Objects 

Components 

BreakdownElement 

BreakdownElementStructural

Association 

BreakdownElementAssociati

on 

Ports 
InterfacePortType 

InterfacePortInstance 

Connections 
InterfaceConnectionType 

InterfaceConnectionInstance 

 

Three objects, i.e. BreakdownElement, 

BreakdownElementStructuralAssociation and 

BreakdownElementAssociation are primarily 

used to define the components of the logical 

domain, but are also used to define objects in the 

functional domain. The BreakdownElement 

objects represent the components, whereas the 

two association objects, 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

4 

BreakdownElementStructuralAssociation and 

BreakdownElementAssociation, represent the 

components relations. The 

BreakdownElementStructuralAssociation is used 

between elements in the same Breakdown to 

define the composition, e.g. if a component is 

comprised of two subcomponents, then there will 

be BreakdownElementStructuralAssociation 

objects between parent and child components. 

The BreakdownElementAssociation is used 

between elements in different breakdowns, e.g. if 

a component fulfils a particular function, then 

BreakdownElementAssociation is used to 

represent the mapping between function and 

component. The remaining four objects, i.e. 

InterfacePortType, InterfacePortInstance, 

InterfaceConnectionType and 

InterfaceConnectionInstance, are used to define 

components’ connections (interfaces) to other 

components. The mappings between the logical 

domain elements and the MoSSEC objects are 

listed in Table 1. 

It appears that in the current MoSSEC 

object model, a few of the components’ 

associations, related to systems architecting, are 

missing, or need further usage guidance. For 

instance, suppose that the architect selects a 

component to fulfil a function, and that 

component has an associated additional required 

(derived) function. Using the 

BreakdownElementAssociation to describe this 

could lead to confusion. One proposal is to use 

the classifiedBy property available on all 

MoSSEC objects to classify the 

BreakdownElementAssocation as a “derived” 

association. This proposal needs further 

investigation to assess its suitability, and an 

agreed set of classifications for a collaboration 

context. Finally, MoSSEC objects “Component” 

and “ComponentAssemblyUsage” need to be 

investigated to see if they can be used to define a 

component type, e.g. where there are two engine 

components created which are of the same type 

(let’s say, Turbofan). In this particular case, the 

same set of computational models can be used for 

all engines of the same type. Component and 

ComponentAssemblyUsage have not been 

exercised before so it is unclear how they should 

be used in to represent types. 

3.3 Architecture Assessment (Analytical 

Modelling) 

Architecture assessment involves generating 

mathematical (analytical) models of the 

architecture in order to estimate its performance. 

Several tools and languages are used to create 

mathematical models, e.g. Matlab/Simulink [13], 

Modelica [14], Mathematica [15], Amesim [16], 

etc.  

Recently, there has been a strong interest in 

generating analytical (simulation) models 

automatically from the descriptive models 

[17][18] [19]. In most of these efforts, the UML 

profiling mechanism is used to embed simulation 

properties into SysML models. Simulation-

specific profiles are employed in popular SysML 

modeling tools, such as MagicDraw [20] to 

annotate SysML models with simulation 

properties appropriate for the specific simulation 

environment. Next, enriched SysML models are 

transformed to executable simulation code for 

the specific environment. Model transformation 

languages, such as ATL [21] and QVT [22], are 

often utilized to transform SysML models to 

computational models represented in XMI, an 

XML representation language for UML/SysML 

models.  

Although, the process of generating 

computational models is similar, it is not 

standardised. Also (full) automation is limited by 

the availability of pre-defined computational 

model libraries. 

4 Interfacing Logical and Computational 

Domains  

In this section two approaches for interfacing 

logical and computational domains are 

presented, as shown in Fig. 2. The approaches are 

not identical in the sense that the first is aimed at 

early design and utilises fast steady-state 

computational models, while the second one is 

aimed at employing dynamic models and is better 

suited for more detailed simulation. Both 

approaches assume that the requisite 

computational models (steady-state or dynamic) 

are available. 



 

5  

        AIRCRAFT SYSTEMS ARCHITECTING: LOGICAL-COMPUTATIONAL DOMAINS INTERFACE    

4.1 Approach I 

The input to this method is the logical flow view 

and the associated behaviour models for each 

component (which may be black boxes). The 

logical flow view is used to extract source-sink 

relations between the connected components and 

subsystems, which enable to determine the target 

values from one subsystem on other subsystems. 

The extracted source-sink relations are then used 

to obtain the workflow of the computational 

models. More details of the method are presented 

in reference [5]. 

This approach allows dynamic 

reconfiguration of the computational workflow, 

depending on the set of inputs/outputs specified 

by the systems architect. This feature is very 

useful for enabling design exploration. 

4.2 Approach II 

The second approach is comprised of two main 

steps. In the first step, the logical flow view is 

converted into SysML block definition [bdd] and 

internal block [ibd] diagrams. The second step is 

to employ SysML4Modelica profile to convert 

the SysML model to Modelica model. 

For the second step, model transformation 

concept is used to automatically convert the 

SysML models into the executable models (e.g. 

Modelica [14] models). One of the common 

ways to transform SysML models into 

executable models is to use SysML profiles and 

extensions. SysML profiles and extensions 

transform the semantics of a simulation 

language/tool into the SysML semantics by 

defining stereotypes and tag definitions which 

are applied to specific model elements such as 

classes, attributes, operations and activities. 

Many such profiles have already been developed. 

The two most well-known profiles for linking 

SysML to Modelica are ModelicaML [23] and 

SysML4Modelica [18]. ModelicaML includes 

Modelica elements in UML but the problem with 

this profile is that the whole Modelica program 

has to be implemented in UML. By contrast, in 

SysML4Modelica, the Modelica code is 

automatically generated from a diagram in 

SysML and does not require to be directly written 

in SysML. This profile is employed in the second 

step of Approach II to transform SysML models 

into Modelica models. 

Fig. 2. Specification for interfacing logical and computational domains 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

6 

5 Evaluation 

The two approaches are evaluated via a common 

case study concerning the definition and 

assessment (sizing) of a baseline and alternative 

(electric) architecture of environmental control 

system (ECS) pack. As specified in Fig. 2 the 

process starts with the logical flow view depicted 

in Fig. 3. A conceptual sizing study involving the 

compressor, heat exchanger and turbine 

components is considered. 

 

Fig. 3. Logical flow view of the conventional 

ECS or baseline architecture 

 

 

A prototype tool, AirCADia Architect [8], 

is used to demonstrate Approach I. Approach II 

is implemented by employing AirCADia 

Architect (logical view), a SysML4Modelica 

plugin [18] for the software tool MagicDraw 

[20], and the Modelon environmental control 

library [24]. 

5.1 Approach I (Steady state model) 

The component models of the ECS baseline are 

steady state and are based on the air-cycle 

bootstrap system. The relationships between 

temperatures of the air-cycle are given by the 

isentropic law applied to both compression and 

expansion [25]. The computational workflow is 

shown in Fig.4. The initial conditions and i/o 

nomenclature are shown in Table 2 and Table 3. 

In Table 2, the efficiency of the compressor, 

turbine and heat exchanger were set to be close 

to the ones used in the Modelica models of 

approach II. The flight conditions were assumed 

for take-off segment (sea-level altitude and Mach 

number of 0.3). 

 

Fig. 4. Workflow of the ECS steady state model 



 

7  

        AIRCRAFT SYSTEMS ARCHITECTING: LOGICAL-COMPUTATIONAL DOMAINS INTERFACE    

Table 2 : Initial conditions of the dynamic 

model and input variables to steady state 

model 

Input variables Numerical 

value 

𝑇𝑅𝑎𝑚𝐴𝑖𝑟 
Ram air temperature [k],  

296.75 

𝑇𝑐𝑜𝑚𝑝𝐼𝑛 

Bleed air temperature [K],  

440.65 

𝑃𝑐𝑜𝑚𝑝𝐼𝑛 

Bleed air pressure [kPa],  

512.5 

𝑇𝑐𝑜𝑚𝑝𝑂𝑢𝑡 

Turbine output pressure [kPa] 

166.151 

𝜂𝑐 
Compressor efficiency 

0.64  

𝜂𝐻𝑋 
Heat exchanger efficiency 

0.86  

𝜂𝑡 
Turbine efficiency 

0.825 

𝛾 
Ration of specific heat of air 

1.4 

𝑃𝐻𝑋𝑑𝑟𝑜𝑝 

Pressure drop [kPa] 

1 

𝑃𝑀𝑖𝑠𝑐_𝑑𝑟𝑜𝑝 

Pressure drop due to friction 

[kPa] 

36.151 

𝑃𝐶𝑎𝑏𝑖𝑛 
Cabin pressure [kPa] 

130 

 

Table 3: Nomenclature of the steady state 

model output variables 

Output variables Symbol 

Temperature after isentropic 

compression 
𝑇𝑐𝑜𝑚𝑝𝑂𝑢𝑡

′
  

Compression temperature 

output 
𝑇𝑐𝑜𝑚𝑝𝑂𝑢𝑡   

Compressor pressure output 𝑃𝑐𝑜𝑚𝑝Out  

Heat exchanger temperature 

output 
𝑇𝐻𝑋𝑜𝑢𝑡  

Heat exchanger pressure output 𝑃𝐻𝑋𝑜𝑢𝑡  
Turbine pressure output 𝑃𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑂𝑢𝑡 
Temperature after isentropic 

expansion 
𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑂𝑢𝑡′ 

Turbine pressure output 𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑂𝑢𝑡 
Turbine or compressor work 𝑊𝑖𝑛/𝑊𝑜𝑢𝑡 

 

The logical view (Fig5a) is input to the 

orchestration phase. Then workflow composition 

of the baseline ECS is created (Fig5b). 

 

Fig. 5. Architectural views of the Approach I 

in AirCADia Architect 

5.2 Approach II (Dynamic model) 

Approach II starts with the logical view (Fig.6a). 

The first part (direction) of the interface is to 

convert from logical view to SysML diagrams. 

To this purpose, a parser utility program was 

implemented in AirCADia Architect. It converts 

the logical flow view from proprietary project 

file into an “.xml” format. This file contains all 

the data structures required for the SysML ibd 

diagram. Fig.6b shows a subsystem of the ECS 

architecture, which is the internal block diagram 

of the ECS-Pack. 

The second step is to convert the ibd diagram 

(Fig. 6b) to Modelica. This was realised with the 

SysML4Modelica plugin, while the Modelica 

models for each component were employed from 

the Modelon library for Dymola (see Fig.6c). The 

assessment is performed by executing the 

Modelica models so that transient or time 

responses are obtained. The results are discussed 

in the next subsection. 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

8 

 

Fig. 6. Architectural views of the Approach II 

5.3 Discussion  

A semi quantitative comparison between the two 

approaches is presented in this section. It is based 

on two criteria described below. 

5.3.1 Suitability for early stage systems sizing 

indicated by the computational effort 

The pressure and temperature simulation results 

for each component of the baseline architecture 

are shown in Fig. 7, Fig. 8 and Table 4. The CPU-

time (Intel i7-6820HQ, CPU @ 2.7GHz) for 

solving the computational workflow in approach 

I (steady state model) was 0.171s and 0.429s for 

approach II (dynamic model).  That is, approach 

II is ~2.5 times more ‘expensive’. For small-scale 

models this difference is negligible, however, it 

has been reported that for large-scale models 

with higher number of algebraic equations (1000 

or more unknowns), Modelica tools face 

efficiency issues (high computational cost). This 

is due to the presence of non-linear algebraic 

loops and low performance of integrator 

(solvers) when a system has to track fast 

dynamics with small step sizes [26], [27]. 

 

Fig.7. Pressure results of components from 

the baseline ECS architecture 

 

 

Fig. 8. Modelica model of the alternative 

(eECS) architecture 

 



        AIRCRAFT SYSTEMS ARCHITECTING: LOGICAL-COMPUTATIONAL DOMAINS NTERFACE 

 
9  

 

Table 4 : Numerical comparison of the pressures and temperature for each component of the 

baseline ECS architecture 

 Pressure [kPa] Temperature [K] 

 Dynamic 

model 

results at 40s 

Steady 

State 

model 

results 

relative 

difference 

[%] 

Dynamic 

model 

results at 40s 

Steady 

State 

model 

results 

relative 

difference 

 [%] 

Compressor 

Output 

703.33 824.6  ~14.7% 505.218 540.9  ~6.5% 

Heat exchanger 

output 

701.191 823.6  ~14.8% 324.528 

 

330.9  

 

~1.9% 

Turbine output 166.151 166.151 -  239.286 230.7  ~3.5% 

Except for the pressure output of the 

turbine, which is an initial condition to approach 

I, it can be seen, that the numerical results of the 

steady state models (approach I), and dynamic 

simulation (approach II) converge to different 

numerical values. The larger relative differences 

are with the pressure (~14.7%) and temperature 

(~6.5%) of the compressor output, the smallest 

relative difference is with heat exchanger 

(~1.9%) and the turbine (~3.5%) pressure.  Since 

the Modelica compressor and turbine models are 

lookup tables of the efficiency maps, this 

numerical difference at steady state was 

expected. It has to be emphasised that finding an 

exact single-point solution is not the aim in early 

design. Rather, the designer’s  priority at this 

stage is to be able to swiftly explore possible 

alternative architectures [28]. The steady-state 

results here are sufficient to obtain an 

approximated size of the ECS-pack components. 

These considerations apply to other applications, 

for example, aircraft electrical networks [28]. 

5.3.2 Efficiency indicated by the amount of input 

information and effort required to orchestrate 

the sizing studies 

It is known that replacing pneumatic systems 

with electrical one has potential benefits on 

power off-takes [29]. Thus, assume that during 

the conceptual phase there is a need to investigate 

an electrical ECS architecture. The changes 

required to be made to convert the baseline ECS 

into an electrical (e-ECS) one are performed in 

the logical view. Fig.9 depicts how the architect 

can interactively add or delete components by 

dragging and dropping. 

After defining the alternative architecture, 

the computational workflow is created by using 

the automated link between architecture 

definition and assessment with approach I or II. 

In the case of approach I, the workflow 

composition was achieved within the AirCADia 

Architect design environment (Fig 9). 

 

 

 
Fig. 9. Modifying ECS baseline architecture 

to an alternative architecture 

Similarly, in approach II, the required 

changes are made in the logical domain. Then the 

above described two-step process of files 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

 

10 

conversion (as depicted in Fig.6) is applied. The 

resulting Modelica model of the eECS is 

illustrated in Fig.10. 

 
Fig. 10. Computational domain: Modelica 

model of the alternative (eECS) architecture. 

A summary of the advantages and 

limitations of the two approaches is presented in 

Table 5. 

6. Summary, Conclusions and Future Work  

Presented in this document are interface 

specifications aimed at enabling interactive early 

stage aircraft architecting through tighter 

integration between architecture definition and 

assessment. 

 

The focus is on specifications of the 

interface between the logical and the 

computational domains, where the latter is 

assumed to be an orchestration of analytical tools 

for (airframe) architecture assessment at systems 

and at aircraft level.  

 Two approaches are presented. The first 

one is intended for computations comprised of 

“black box” (fast/low order) computational 

models which allow the composition of 

dynamically reconfigurable computational 

workflows. The second approach employs model 

transformation techniques for converting the 

logical flow into Modelica models. It was 

demonstrated that the first approach is potentially 

faster, but the level of computation is limited to 

steady state models. This however is seen as 

appropriate for pre competitive or early 

conceptual studies. The second approach is 

computationally more expensive, but provides 

transient responses which are needed at 

preliminary design and system verification 

stages. 

Future work includes the specification and 

prototype implementation of interfaces between 

the logical and physical and the physical and the 

computational domains, respectively. A more 

extensive investigation of scaling and associated 

computational cost of the two approached will be 

conducted. 

Table 5: Summary of advantages and disavantages of the presented approaches 

 Approach I Approach II 

A
d
v
an

ta
g
es

 

 Low computational, allowing fast 

architecture assessment 

 Less information intensive; can 

handle “black box” (fast/low order 

and steady state) computational 

models. 

 The effort required to orchestrate the 

sizing studies is low due to the ability 

to handle composition of dynamically 

reconfigurable computational 

workflows 

 Higher Level of detail. Transient information is 

available and can be used for preliminary design 

stages. 

 Suitable for time response performance 

investigation and frequency domain studies. For 

example, at system (hardware) verification 

phase where the objective will be to 

demonstrate realistic integration of alternative 

architectures [28]. 

 Modelica is becoming a de facto standard. A 

large community is developing the language 

D
is

ad
v
an

ta
g

es
  Limited to steady state response. 

(However, for early conceptual stage 

this level of information is sufficient). 

 Sizing studies considering several 

operating conditions or entire mission 

are not yet available. 

 Computational cost of dynamic simulations 

tends to be higher for large-scale models [26], 

[27]. 

 The orchestration of sizing studies depends on 

the availability of “white-box” (dynamic 

equations or source code) models. 



 

11  

        AIRCRAFT SYSTEMS ARCHITECTING: LOGICAL-COMPUTATIONAL DOMAINS NTERFACE 

 

Already underway is the mapping of the 

fundamental elements of the logical and 

computational domains to the MoSSEC standard.  

So far a number of areas have been identified for 

potential further investigation within the 

MoSSEC object model. This will enable the 

proposed specification to be implemented while 

employing MoSSEC as an underlying 

collaboration standard. The proposed areas for 

investigation include a) derived function, b) 

components to parameters mapping, c) 

components to computational models mapping, 

and d) component types. 

7 Acknowledgments 

The research leading to these results has received 

funding from the Aerospace Technology Institute 

(ATI) in the UK, under the Advanced Product 

Concept Analysis Environment (APROCONE) 

project (Ref no. 113092). 

References 

[1] “Advanced Product Concept Analysis 

Environment (APROCONE) - Aerospace 

Technology Institute (ATI) Research Project.” 

[2] M. W. Maier, “Developments in System 

Architecting,” in Proceedings of ICECCS ’96: 

2nd IEEE International Conference on 

Engineering of Complex Computer Systems (held 

jointly with 6th CSESAW and 4th IEEE RTAW), 

1996, pp. 139–142. 

[3] S. Kleiner and C. Kramer, “Model Based Design 

with Systems Engineering Based on RFLP Using 

V6,” in Smart Product Engineering, Proceedings 

of the 23rd CIRP Design Conference, Bochum, 

Germany, March 11th - 13th, 2013, 2013, pp. 93–

102. 

[4] L. K. Balachandran and M. D. Guenov, 

“Computational workflow management for 

conceptual design of complex systems,” J. Aircr., 

vol. 47, no. 2, pp. 699–703, 2010. 

[5] Y. Bile, A. Riaz, M. D. Guenov, and A. Molina-

Cristobal, “Towards Automating the Sizing 

Process in Conceptual (Airframe) Systems 

Architecting,” in AIAA/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials, 

2018. 

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The 

architecture analysis & design language (AADL): 

An introduction,” 2006. 

[7] OMG, “Systems modeling language (sysml) 

specification—version 1.5,” 2017. 

[8] M. Guenov et al., “Aircraft Systems Architecting 

- a Functional-Logical Domain Perspective,” in 

16th AIAA Aviation Technology, Integration, and 

Operations Conference, 2016. 

[9] D. Dori, Object-process methodology: A holistic 

systems paradigm. Springer Science & Business 

Media, 2011. 

[10] OMG, “Unified Modeling Language (UML) 2.0 

Specification,” 2005. 

[11] “Modeling and Simulation information in a 

collaborative Systems Engineering Context 

‘MoSSEC.’” [Online]. Available: 

http://www.mossec.org/. 

[12] “ISO 10303-239 ‘Product Life Cycle Support.’” 

[Online]. Available: http://www.ap239.org/. 

[Accessed: 16-May-2018]. 

[13] “MathWorks Matlab/Simulink.” [Online]. 

Available: https://www.mathworks.com. 

[Accessed: 16-May-2018]. 

[14] “Modelica - Object-oriented modeling language.” 

[15] “Wolfram Mathematica.” [Online]. Available: 

https://www.wolfram.com/mathematica/. 

[Accessed: 16-May-2018]. 

[16] “Simcenter Amesim.” [Online]. Available: 

https://www.plm.automation.siemens.com/global/

en/products/simcenter/simcenter-amesim.html. 

[Accessed: 16-May-2018]. 

[17] O. Batarseh and L. F. McGinnis, “System 

modeling in SysML and system analysis in 

Arena,” in Proceedings - Winter Simulation 

Conference, 2012. 

[18] “SysML-Modelica Transformation 

SysML4Modelica Profile.” 

[19] G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. 

Anagnostopoulos, “An integrated framework for 

automated simulation of SysML models using 

DEVS,” Simulation, vol. 90, no. 6, pp. 717–744, 

2014. 

[20] “MagicDraw.” [Online]. Available: 

https://www.nomagic.com/products/magicdraw. 

[Accessed: 16-May-2018]. 

[21] “ATL - a model transformation technology.” 

[Online]. Available: https://www.eclipse.org/atl/. 

[Accessed: 16-May-2018]. 

[22] “OMG MOF Query/View/Transformation QVT 

Specification Version 1.1.” [Online]. Available: 

https://www.omg.org/spec/QVT/1.1. [Accessed: 

16-May-2018]. 

[23] “ModelicaML UML Profile.” 

[24] “Dassault Systèmes 3DExperience Release 

2018x.” [Online]. Available: 

https://www.3ds.com/products-

services/3dexperience/. [Accessed: 23-Apr-2018]. 

[25] R. C. Arora, Refrigeration and air conditioning. 

PHI Learning Pvt. Ltd., 2012. 

[26] F. Casella, “Simulation of large-scale models in 

modelica: State of the art and future 



Marin Guenov, Arturo Molina-Cristóbal, Atif Riaz, Sanjiv Sharma, Adrian Murton, Judith Crockford 

 

12 

perspectives,” in Proceedings of the 11th 

International Modelica Conference September 

21-23, 2015, pp. 459–468. 

[27] F. Jorissen, L. Helsen, and M. Wetter, 

“Simulation speed analysis and improvements of 

Modelica models for building energy simulation,” 

in Proceedings of the 11th International Modelica 

Conference, 2015, pp. 59–69. 

[28] M. R. Kuhn and Y. Ji, “Modelica for large scale 

aircraft electrical network VandV,” in 

Proceedings of the 10 th International Modelica 

Conference; March 10-12; 2014; Lund; Sweden, 

2014, no. 096, pp. 747–756. 

[29] T. Jomier, “Final public More Open Electrical 

Technologies (MOET) Technical Report,” 2009. 

 

Copyright Statement 
The authors confirm that they, and/or their company or 

organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they 

have obtained permission, from the copyright holder of 

any third party material included in this paper, to publish 

it as part of their paper. The authors confirm that they 

give permission, or have obtained permission from the 

copyright holder of this paper, for the publication and 

distribution of this paper as part of the ICAS proceedings 

or as individual off-prints from the proceedings. 
 


