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Abstract  

Destabilizing effect of longitudinal wall 
oscillation of two-dimensional channel flow is 
investigated numerically and analytically using 
the direct numerical simulation (DNS) and the 
Floquet theory. Walls are oscillated in phase and 
Reynolds number which determined by uniform 
flow velocity and the half distance between two 
walls is 10,000. The velocity of the wall 
oscillation is about 10 % of the uniform flow. 
Under these condition, DNS analysis shows the 
earlier transition to the turbulence and this 
phenomenon is caused by the oblique waves. The 
analytical results using Floqeut theory which 
conducted by use of the time-dependent Orr-
Sommerfeld equation also support the results 
mentioned above. 

1  Introduction 

Laminar-turbulent transition has been studied for 
a long time and the knowledges obtained from 
those studies bring many benefits for engineering 
field, especially for the aircraft industries. In 
general, the skin friction is large when the 
boundary layer flow is turbulent. Thus, from the 
view point of the flow control, our interest is how 
to decrease the turbulent shear stress, or how to 
delay the laminar-turbulent transition. 
      In this context, investigation for the plane 
Poiseuille flow, so called the channel flow, is a 
realistic and useful example because it can be 
described as an exact solution of a linear equation 
derived from the Navier-Stokes equation, and 
some theoretical and numerical investigation 
have revealed its essential futures [1,2]. Thus, 
there are various studies of the plane Poiseuille 
flow aiming at the drag reduction. As for the 

passive control, wavy wall or roughness surface 
were investigated [3,4]. On the other hand, as 
active control, wavy walls, vibrating walls, or 
suction/blowing walls were examined [5-8]. 
      As the study of the active control, Jung et al. 
[9] firstly pointed out about reduction of the wall 
shear stress for a turbulent channel flow due to 
spanwise wall-oscillation. Succeeded study by 
Quadrio and Ricco [10] numerically 
demonstrated the friction-drag reduction of 
44.7%, which corresponds to the net energy 
saving of 7.3%. This modified flow not only has 
the advantage of the amount of the drag reduction, 
but also has an analogy with simple coupling of 
the channel flow with the Stokes layer. Thus, 
many efforts have been devoted to this problem 
[11,12]. 
      Although this modified channel flow with 
spanwise wall-oscillation can be simplified based 
on the Stokes layer, its basic flow is 
fundamentally three-dimensional flow. Thus, for 
the purpose of more simplification, modified 
channel flow with longitudinal wall-oscillation 
should be studied. From this view point, the 
authors focused on the stabilizing effect of the 
longitudinal wall-oscillation on the plane 
Poiseuille flow. Since the Stokes layer is also an 
exact  solution of the linear equation derived 
from the Navier-Stokes equation as same as the 
plane Poiseuille flow, this modified flow can be 
described a superposition of those two exact 
solutions. Therefore, the linear stability analysis 
based on the Floquet theory is applied together 
with the DNS. That is, the DNS can demonstrate 
detail character of the flow field and the Floquet 
analysis can show general feature of the system 
easily. 
      In Section 2, the model flow which is dealt at 
the present study is given. In Section 3, the 

DESTABILIZING EFFECT OF LONGITUDINAL WALL 
OSCILLATION ON OBLIQUE WAVES 

IN 2D CHANNEL FLOW 
 

Takashi Atobe 
JAXA 

 



Takashi Atobe 

2 

2 Uw, Ω 

2 Uw, Ω 

Mean flow 

2 h 

results of the DNS study are presented. In Section 
4, the study using the linear stability analysis 
based on the Floquet theory is described. Finally 
conclusions are given in Section 5. 

2 Model Flow 

Figure 1 shows a model flow considered.  Here, 

Ω and Uw are frequency and amplitude of the 
longitudinal wall-oscillation. Thus, parameters 

describing this system are Ω , Uw, and the 

Reynolds number defined as Re≡h Umax/ν, where 
Umax is the maximum value of the mean  flow, ν 
the kinematic viscosity and h a half distance 
between two walls. In the present study, Re is 
fixed as 10000, which is a supercritical one, for 
convenience. 

The coordinate system of (x,y,z) 
corresponding to the physical space is taken for x 
in the streamwise direction, y in the direction 
normal to the wall, z in the spanwise direction. 
 
 
 
 
 
 
 
 
 
 

Fig.1 The modified channel flow. 

3 DNS Analysis 

The numerical space is set as x ∈ [0,4π],  y ∈ 

[-1,1], z∈[0,2π]. The flow filed is described as a 
superimposition of the disturbance u=u(u,v,w) on 
the basic flow U(y,t). If the pressure can be 
written as pRx e  /2 , the dimensionless 
equation for u is obtained from the Navier-Stokes 
equation, 
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here, ex denotes an unit vector in x the direction. 
The incompressible condition is adopted. The 
velocity u is expanded by the Fourier series for x, 
z directions on the Chebyshev collocation points 
yj. 
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Then, Eq.(2) is calculated by the Fourier-
Chebyshev spectral method [13] for u(kx,yj,kz,t) 
with the initial disturbances given as, 
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where ε is a small parameter and q is a random 
function which satisfied the solenoidal condition. 
Energy norm for the Fourier modes (kx,kz) per 
unit mass is defined as the follow. 


1

1

2
),,(

4

1
),( dykykkkE zxzx u  (4) 

 
Fig. 2 Variation of energy for each Fourier mode 
for the case of (Ω, Uw)=(0,0)  
 

A typical results is shown in Fig.2 for the 
case of (Ω,Uw)=(0.0,0.0) which corresponds to 
the genuine plane Poiseuille flow. The curves in 
this figure represent the time variation of energy 
for each Fourier mode E(kx,kz). The solid lines 
correspond to two-dimensional disturbance, 
namely E(kx,0), and the dotted lines correspond 
to three-dimensional ones. In this calculation, the 
simulation has been started with the initial 
disturbances of order 109, but a specific 
disturbance with relatively large amplitude of 
order 105. This large disturbance is a Fourier 
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Fig. 3 Variation of energy for each Fourier 
mode for the case of (a) (Ω, Uw)=(0.25,0.3), (b) 
(0.15,0.3), (c) (0.15,0.2). 

mode of E(1,0), which is called the Tollmien-
Schlichting (TS) wave. Because it is well known 
that the TS mode is dominant and leads to the 
laminar-turbulent transition under the flow 
condition considered here, the large TS mode is 
initially added to the initial disturbance in order 
to save the computing time-cost. In the present 
study, all of the simulation examined are 
including this TS mode. 

From this figure, it can be seen that after 
the transient phase the energy of each mode 
develop with time and the laminar-turbulent 
transition occurs at about t=230 in this case. 

Some results with wall-oscillation are 
shown Fig.3 for the case of (Ω,Uw)=(0.25,0.3), 
(0.15,0.3), and (0.15,0.2).  The result of Fig.3 (a) 
seems to almost same as non-oscillating case of 
Fig.2 except for oscillation in the time variation 
of the energy for each Fourier mode. It can be 
easily supposed that this oscillation is caused by 
the oscillation of the walls. Actually, it was 
confirmed that the period of the oscillation 
appearing on the time variation of the energy 
coincides with that of the wall-oscillation.  

In Fig.3 (b), the laminar-turbulent 
transition is accelerated and it takes about 150 
non-dimensional time for the transition. It seems 
that the rapidly transition is caused by other than 
E(1,0) mode, namely the oblique mode. On the 
other hand, the result of the Fig.3 (c), the 
transition to turbulent is slightly delayed. In this 
case, the growth of oblique mode is not strong 
compared to the case of Fig.3 (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Results of the parametric study. 
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It is found from the parametric study that the 
laminar-turbulent transition of the flow can 
roughly be grouped in three patterns depending 
on the wall-oscillation. Result of this parametric 
study is shown in Fig.4. The circles correspond 
to the accelerated cases, the diamonds to the 
decelerated, and square to the less affected cases. 
It seems that the accelerated cases exist in small 
Ω region. 

4 Floquet Analysis 

As mentioned before, the modified flow dealt 
here can be thought as a superposition of the 
exact solutions of a linear government equation 
as the follows, 

x

p

z

U

y

U

t

U

















 1

)(
2

2

2

2
 (5) 

here ρ is the dencity. This equation is derived 
from the incompressible Navier-Stokes equation 
under the parallel flow assumption. In this 
context, the flow can be represented as 
U=U(U(y,t),0,0), and U(y,t) is, 
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here, 2/k , and i denotes the imaginary unit. 
The former part of Eq.(6) is contribution of the 
plane Poiseuille flow, and the latter is the Stokes 
layer. In the Floquet analysis, Eq.(6) is used as 
the basic flow. 

When the flow field is described by the 
basic flow U and the small disturbance u’ and p’, 
the linearized disturbance equation for u’ can be 
derived from the Navier-Stokes equation as the 
follows. 
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Now, we assume that the small disturbance 
can be described as a modal plane wave, 
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here α, γ are real wave number in x, z direction, 
respectively. Substituting Eq.(8) into Eq.(7) with 
the equation of continuity, we obtain time-

dependent Orr-sommerfeld equation, which 
takes the form of 
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where D is the differential operator in y direction. 
      If Eq.(9) can be rewritten as the form, 
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Then using Chebyshec spectral collocation 
method, Eq.(10) can be shown 
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Because of periodicity of the present system, 
Eq.(11) is rewritten  

)()(ˆ tetv Qt  (12) 

Here Φ(t) is an arbitrary periodic function with 
the period T, and Q consists of N Floquet 
exponents μi. If the real part of μi is positive, the 
system should be unstable. 
 

 
Fig. 5 Variation of μ for E(1,0) with various 
(Uw,Ω ). 
 
Figure 5 shows variation of the Floquet exponent  
μi  of 2D TS wave for several cases of (Uw,Ω ). 
The blue line corresponds to the normal 2D 
cannel flow. The critical Re is 5,772 which is 
consistent with the result of Orszag [1]. It seems 
that the effects of wall oscillation are both of 
stabilize and destabilize depending on the value 
of (Uw,Ω ). 



 

5  

DESTABILIZING EFFECT OF LONGITUDINAL WALL OSCILLATION
ON OBLIQUE WAVES IN 2D CHANNEL FLOW

Results of the parametric study is shown in 
Fig. 6 as a contour map on Ω-Uw plane. The 
warm color represents the positive area of the 
Floquet exponent, which corresponds to the 
unstable region, and the cool corresponds to the 
stable one. It can be seen that the stable region 
exists as a deep crevasse along Uw axis. From the 
comparison with Fig. 4, the bottom of the stable 
region agrees well with decelerated region 
estimated by the DNS. Although the unstable 
region near the Uw axis also corresponds to each 
other, some portion of the accelerated region by 
the DNS exists in the stable crevasse. This 
discrepancy might come from a reason that DNS 
can reproduce the nonlinear phenomena. From 
analogy of the Stokes layer, it can easily 
speculate that the condition with small Ω is 
equivalent to with large disturbance. Thus some 
cases estimated as the acceleration by DNS 
correspond to the transient growth with large 
disturbances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Results of the parametric study of the 
Floquet exponents. The warm color corresponds 
to the unstable, and the cool corresponds to stable. 
 
Figure 7 shows the overtaking of the Floquet 
exponents of 2D TS mode by the oblique TS 

mode. There are 4 cases of [ (Uw,Ω ),(α,γ)]. 
The overtaking of the oblique TS mode appears 
no matter whether the two walls oscillates of not. 
However the wall oscillation suppresses the 
Floquet exponents and the oblique TS mode can 
be unstable earlier than the 2D TS mode.   
 
 

 
 
Fig. 7 Variation of μ of 2D:(α,γ)=(1.0,0.0), and 
3D:(0.95,0.05)  TS modes with/without wall 
oscillation:(Uw,Ω)=(0.2,0.2). 

5 Conclusion 

The effect of longitudinal wall-oscillation on the 
plane Poiseuille flow is studied by direct 
numerical simulation (DNS) and the Floquet 
analysis based on the linear stability analysis. 
From the DNS, the laminar-turbulent transition is 
accelerated or decelerated depending on the 
frequency of the wall-oscillation Ω and its 
amplitude Uw. Also it seems that the acceleration 
of the transition is caused by the oblique mode. 
The result obtained by the Floquet analysis 
agrees well with the DNS analysis and a deep 
stable crevasse appears in the parameter space. 
Furthermore, it is shown that the wall oscillation 
affects more stable and then the oblique TS 
modes can be rapidly unstable than 2D TS mode. 
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