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Abstract

In this work we deal with the problem of trail-
ing edge noise scattered by a flat elastic plate.
We use a model based on a boundary element
method that couples the acoustic problem with
the fluid-structure interaction and takes into ac-
count structural damping. The solution is ob-
tained using the modal basis of the free vibration
problem. The objective of this paper is to ex-
pand the acoustic scattering analysis for different
damped plates to increase knowledge about the
effects of structural damping and to identify po-
tential benefits of using inherently damped struc-
tures, such as viscoelastic materials. It is found
that there is a range of damping coefficients, ca-
pable of reducing peaks in the acoustic spectra
associated with structural resonance, while man-
taining the reduction of scattered sound due to
elasticity. When the damping coefficient is in-
creased above this range, the rigid-plate limit is
recovered and acoustic benefits are reduced. The
present results allow the selection of optimally-
damped structures with respect to acoustic radia-
tion.

1 Introduction

Trailing edges of airfoils and other flow control
surfaces are known to be important sources of
high frequency sound [1]. When the surface is
compliant the turbulent edge-flow also excites
structural modes of vibration. In conditions of

heavy fluid loading, the energy imparted to the
structural motions can be large, and the subse-
quent scattering of flexural waves at mechani-
cal discontinuities is frequently an important sec-
ondary source of sound. The waves scattered by
the discontinuities can interfere with the waves
that are directly scattered by the trailing edge,
and depending on the phase between these waves,
this interference can be destructive, which con-
tributes to the reduction of the trailing edge noise;
however, when such interference is constructive,
as in the case of structural resonance, increases
of the radiated sound can be obtained. In our
previous work [2] we have developed a model
of the acoustic field scattered by a flat poroe-
lastic flexible plate considering the effect of the
structural damping, which can potentially allevi-
ate increases of radiated sound due to structural
resonance. Calculations were carried out using
a boundary element method (BEM) [3]. It was
verified that the structural damping modifies the
interference patterns through a mechanism of at-
tenuation of the bending waves in the surface, as
can be seen in Figure 1, where the plate is repre-
sented by a red line and in grayscale we observe
the normalized pressure field, which has a har-
monic temporal dependence.

Since damping attenuates plate displace-
ments, it may contribute to reduce the significant
changes that occur in acoustic scattering when a
plate is excited near the resonance conditions. In
our previous work [2], we verified that the struc-
tural damping can reduce and even eliminate the
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(a)

(b)

Fig. 1 Scattered pressure fields for an aluminum
plate immersed in water (ε = 0.135), with k0 =
20: (a) elastic plate without damping, (b) elastic
plate with damping. [2]

peaks in far-field spectra, as shown in Figure 2.
For the non-compact limit in which the acoustic
wavelength is much smaller than the plate, an-
other important conclusion that can also be ob-
served in Figure 2 is that in addition to atten-
uating the peaks of sound radiation, the damp-
ing contributes with a modest reduction of the
off-resonance radiated sound (between peaks in
spectra).

The objective of this work is to apply the
previously developed model, with the proposed
structural damping parameter, for different fluid-
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Fig. 2 Change in power level radiated by elastic
plates relative to the rigid limit as a function of
bending wave Mach number Ω for k0 = 10 and
different values of damping. [2]

structure interaction cases and to identify general
characteristics of a system that can be represented
by this model, such as a potentially critical damp-
ing condition above which plate vibrations de-
crease amplitude. This would potentially allow
a selection of optimally damped structures with
respect to their acoustic radiation.

2 Mathematical model

The problem of acoustic scattering by a flexible
plate is modeled using a point quadrupole source
S positioned near the trailing edge of an elastic
plate, which has finite chord and infinite span, as
shown in Figure 3. The plate has the leading edge
clamped and trailing edge free, but other combi-
nations of structural boundary conditions are also
possible.

An incident quadrupolar sound field is gen-
erated by a turbulent eddy in the vicinity of the
trailing edge. A quadrupole in free field is mainly
characterized by a near-field pressure that does
not propagate to the far acoustic field. However,
the proximity of the source and the edge makes
the acoustic scattering by the plate considerable.
Thus, the near-field pressure is now scattered by
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Fig. 3 Schematic of a rectangular elastic plate
with finite chord and infinite span, where one
edge is clamped along the z axis and the other
edge is free, subject to acoustic radiation from
source S. [3]

the plate and radiates to the far-field. The far-field
noise is increased because the scattered sound ra-
diates as a more efficient field, whose directivity
can be a dipole or a cardioid according to the in-
cident frequency [4, 5].

Structural bending waves along the plate are
also excited by the source; these waves propa-
gate along the surface, hit the clamped leading
edge of the plate and are reflected towards the
trailing edge. Furthermore, the leading edge is
a structural discontinuity that generates scattered
acoustic waves from the incident bending waves.
The addition of structural damping can mitigate
this phenomenon, as shown in reference [2].

As in [2, 3], to obtain the scattered sound, we
solve an inhomogeneous Helmholtz equation,

∇
2 p̃+ k̃2

0 p̃ =−S̃, (1)

where S̃ is the acoustic source function, k̃0 is
the acoustic wavenumber, given as ω̃/c̃0 for an-
gular frequency ω̃ and speed of sound c̃0. The
overhead tildes indicate dimensional terms, and
an exp(−iω̃t̃) time dependence is implicitly as-
sumed. At the fluid-structure interface, the ve-
locity of the vibrating plate is equal to that of the
fluid in its vicinity, so the plate displacement (η̃)
and fluid displacement are related to the pressure
at the plate surface by the linearised Euler equa-

tion as

ρ̃ f ω̃
2
η̃ =

∂ p̃
∂ỹ


ỹ=0

, (2)

where ρ̃ f is the fluid density. The equation for
a harmonic load applied to a thin elastic damped
plate is

B̃∇
4
η̃− m̃ω̃

2
η̃− iω̃c̃η̃ = ∆p̃ (3)

where B̃ is the effective bending stiffness of the
plate, m̃ is the mass per unit area, c̃ is the damping
per unit area, and ∆p̃ is the applied pressure load
in the positive ỹ direction.

In order to obtain non-dimensional equations,
we follow the procedure adopted by Jaworski &
Peake [6] and Crighton & Innes [7] by defining
the coincidence frequency,

ω̃c =

√
m̃c̃4

0
B̃

, (4)

the vacuum bending wave Mach number,

Ω =

√
ω̃

ω̃c
=

k̃0

k̃B
, (5)

the intrinsic fluid loading parameter,

ε =
ρ̃ f k̃0

m̃k̃2
B
=

ρ̃ f c̃1

ρ̃sc̃0

√
1−2ν

12(1−ν)2 , (6)

where k̃B is the bending wavenumber, c̃1 is the
speed of longitudinal compression waves in the
solid, ρ̃s is the plate density, related to the mass
per unit area as ρ̃s = m̃/h̃, and h̃ is the thickness
of the plate. In our previous work [2] we intro-
duced the damping coefficient,

2ξ =
c̃

m̃ω̃c
, (7)

written in a convenient form as

ξ̄ =
ξ

Ω2 . (8)

To identify the remaining non-dimensional
variables, we use the reference chord length of
the finite elastic plate, ˜̀,

η = η̃/ ˜̀, (9a)
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k0 = k̃0 ˜̀, (9b)

p = p̃/(ρ̃ f c̃2
0), (9c)

S = S̃/(ρ̃ f c̃2
0

˜̀2), (9d)

(x,y,z) = (x̃, ỹ, z̃)/ ˜̀, (9e)

leading to the non-dimensional equations

∇
2 p+ k2

0 p =−S, (10)

∇
4
η−

k4
0

Ω4 η(1+2iξ̄) = ε
k3

0
Ω6 ∆p (11)

k2
0η−=

∂p
∂y


y=0

. (12)

The acoustic problem is represented by Equa-
tion 10 subject to boundary conditions 11 and 12,
which relate the pressure and its normal deriva-
tive on the plate surface. It is necessary to pro-
vide two boundary conditions for the vibration
problem 11 at each end of the plate to close the
problem. For the cantilever plate configuration of
figure 3, these conditions are

η(0) =
∂η(0)

∂x
=

∂2η(1)
∂x2 =

∂3η(1)
∂x3 = 0. (13)

2.1 Solution of problem using a structural
modal basis

In order to solve the fluid-structure interaction
problem, we rewrite equation 11 as

L(η)−
k4

0
Ω4 η(1+2iξ̄) = ε

k3
0

Ω6 ∆p. (14)

where L = ∇4. Now let us consider the auxiliary
eigenvalue problem

L(η) = β
4
η, (15)

subject to the same boundary conditions of equa-
tion 13. Solutions of this eigenvalue problem lead
to a complete orthonormal basis φi for functions
satisfying the boundary conditions of the prob-
lem, such that

L(φi) = β
4
i φi, where 〈φi,φ j〉= δi j.

(16)

φi is called the modal basis; these modes are used
as an auxiliary basis to solve the fluid-loaded
plate problem. The eigenvalues of this problem
are real and positive, and βi is identified as the
bending wavenumber of a vibration mode φi of
the plate.

Since the modal basis is a complete orthonor-
mal set for functions satisfying the boundary con-
ditions of the problem, we can use it to write the
plate displacement η and from equation 12 obtain
the following equation, that relates the pressure
difference between the two sides of the plate ∆p
with the transverse pressure gradient evaluated at
the plate surface ∂p/∂y|y=0,

∂p
∂y


y=0

=
εk5

0
Ω6

〈∆p,φ j〉

β4− k4
0

Ω4 (1+2iξ̄)
φ j. (17)

3 Numerical procedure

3.1 Vibration problem

The eigenvalue problem 16 is solved using a
pseudo-spectral method [8]. We employ a dis-
cretisation using 321 Chebyshev polynomials.
The numerical solution gives values of the modes
on the Chebyshev grid; the modes are then sam-
pled using barycentric interpolation at a grid xi of
N points, with locations chosen to be appropri-
ate for the application of the boundary element
method for the acoustic problem.

3.2 Boundary element formulation

The problem of acoustic scattering is solved by a
boundary element method. A fundamental solu-
tion for the Helmholtz equation (eq.1) is the free
space Green function, G(x,y), written for a two-
dimensional formulation as

G(x,y) =
i
4

H(1)
0 (k0|x−y|). (18)

Here, H(1)
0 stands for the Hankel function of the

first kind and order zero. Using Green’s second
identity, one can write the following boundary in-
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tegral equation

T (x)p(x) =
∫

Γ

[
∂p(y)
∂ny

G− ∂G
∂ny

p(y)
]

dΓ

− ∂2G
∂zim∂zin

S(zi) (19)

where T (x) = 1/2 when x is on a smooth bound-
ary surface Γ, and T (x) = 1 when x is a field
point anywhere in the fluid region. The deriva-
tives with respect to the inward normal direction
of the boundary surface are represented by ∂/∂n
and n is an inward unit normal. The ith source lo-
cation is zi and the incident quadrupolar field are
computed as the second derivative of the Green’s
function.

The scattering surface, Γ, is discretized into
a finite number of elements with polynomial re-
constructions for the unknowns in each element.
Then, equation 19 is solved for each of these el-
ements through the solution of a linear system of
equations, written in compact form as

[H]{p}− [G]{∂p/∂n}= {S}. (20)

The coefficients of matrix [H] are given by hi j =

1/2 for i = j and hi j =
∫

Γ

∂G(xi,x j)
∂n j

dΓ for i 6= j.
The coefficients of matrix [G] are written as gi j =∫

Γ
G(xi,x j)dΓ. The boundary conditions speci-

fied on the surface of the plate are calculated us-
ing equation 17. One can rewrite the system of
equations 20 in terms of the acoustic pressure and
obtain a direct solution of the coupled problem.
Hence, the new linear system is given by

([H]− [G][D]){p}= {S}, (21)

where [D] is a matrix relating {p} and {∂p/∂n}.

4 Results

To study the acoustic scattering problem we have
calculated the sound radiated by the free edge of
an elastic plate near a lateral point quadrupole
source of unit intensity. The free edge is located
at (x,y) = (1,0), and the quadrupole source is
placed at (x,y) = (1,0.004). We calculate the

change in acoustic power due to effects of struc-
tural damping for observers in the acoustic far-
field located 50 chords from the plate trailing
edge; the polar angle θ is measured according to
the schematic in Figure 3. In this work we have
worked with a plate with thickness h equals to
0.2% of its chord. When considering elasticity,
we are referring to an aluminium plate immersed
in the air, and under these conditions, the fluid
loading parameter ε = 0.0021, according to the
literature [9]. Following the procedure of Cav-
alieri et al [3] we used one hundred in vacuo
bending modes and 802 boundary elements in the
plate discretisation for all simulations.

We consider first the scattering of an acous-
tic quadrupole in the vicinity of the trailing edge
of a rigid plate, which can be seen in Figure 4,
this case is obtained when the transverse pres-
sure gradient evaluated at the plate surface is null,
∂p/∂y|y=0 = 0. Figure 4 also shows results for
an elastic undamped plate. An apparent feature
is the presence of sharp peaks, which correspond
to resonances of the fluid-loaded plates. These
ressonance conditions are relevant since they can
lead to significant changes to acoustic scattering,
with increases or decreases of the radiated sound
depending on the phase between acoustic excita-
tion and structural response. Reduction of these
sharp increases was our motivation to study the
effects of the structural damping on the problem
at hand. In what follows some sample values
of the acoustic wavenumber will be chosen from
the graph of Figure 4, and we will analyze what
happens when we add damping by means of the
damping coefficient of the equation 7.

The first value chosen for the acoustic wave
number is k0 = 0.1, number that represents the
compact limit, i.e. the acoustic wavelength is
much larger than the characteristic length of the
plate. In order to evaluate the damping effect, a
sweep in the damping coefficient was performed,
and the results are shown in Figure 5. For this
value of k0 it is possible to observe that the damp-
ing does not bring any benefit in terms of sound
radiation reduction. This is explained by the fact
that k0 = 0.1 does not correspond to a resonance
point, as can be seen in Figure 4. For k0� 1, it is
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Fig. 4 Sound Power radiated by rigid and non-
damped elastic plates as a function of k0

seen that the damping acts exclusively by atten-
uating the peaks corresponding to the resonance
conditions.
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Fig. 5 Sound Power radiated by damped elastic
plates as a function of ξ and k0 = 0.1

Now consider k0 = 0.2, which is in the region
of the first resonance peak shown in Figure 4. Re-
sults for the damped case are shown in Figure 6.
Let us analyze the graph starting from the left; at
low values of ξ, we observe that the sound radi-
ation surpasses the rigid case, as we are dealing
with a resonance. As we increase ξ, the acoustic
scattering reduces to values that are smaller than
the rigid case until reaching a minimum value,

and as we continue to increase ξ, the behavior of
the curve approaches the rigid limit.
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Fig. 6 Sound Power radiated by damped elastic
plates as a function of ξ and k0 = 0.2

To represent the non-compact limit (plate
chord considerably larger than the acoustic wave-
length), consider k0 = 10, a value that does
not correspond to a region of resonance and for
which the results are shown in Figure 7. What
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Fig. 7 Sound Power radiated by damped elastic
plates as a function of ξ and k0 = 10.0

is possible to observe is that there is a range of
damping values for which the acoustic scattering
is lower than that of the purely elastic plate even
though it is not a resonance condition. Within
this range, there is a damping value for which
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the reduction of the sound radiation is maximum.
Therefore, besides the acoustic benefit given by
the elasticity, there is a small contribution given
exclusively by the damping. We examine di-
rectivities for the three values of k0 in Figure
8. As the Helmholtz number is increased, the
directivity shape moves from that of a compact
dipole to a cardioid; backscattering by the lead-
ing edge [5, 10] is related to additional lobes in
the directivity in Figure 8(c).

Another feature that can be observed by an-
alyzing the graphs of Figures 5, 6, 7 and also of
the figures presented in the Appendix with other
values of k0 is that the rigid limit is always recov-
ered for values of ξ≥ 1. To understand why this
happens, let us rewrite equation 17 using equa-
tion 8,

∂p
∂y


y=0

=
εk5

0
Ω6

〈∆p,φ j〉

β4− k4
0

Ω4 (1+2i ξ

Ω2 )
φ j, (22)

analyzing only the term in parentheses (1 +

2i ξ

Ω2 ), we observe that if ξ � Ω2 the absolute
value of the denominator in the equation 22 be-
comes large, and therefore ∂p/∂y at plate surface
approaches zero, which corresponds exactly to
the rigid limit.

5 Conclusions

Structural damping is found to produce signif-
icant changes in the scattered field of elastic
plates. There is a range of damping coefficients,
capable of reducing peaks in the acoustic spec-
tra associated with structural resonance, while
mantaining the reduction of scattered sound due
to elasticity. This is the main effect for k0 �
1. However, when analyzing the other extreme,
k0� 1, we observe that in addition to the reduc-
tion of acoustic scattering due to elasticity there
is also a slight reduction that is due exclusively to
damping. Another conclusion that has been ob-
served is that the introduction of damping above
a certain threshold can cause the behavior of the
elastic plate to approximate that observed for a
rigid plate, in terms of sound radiation.
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Appendix

Sound power radiated by damped elastic
plates with different values of k0
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