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Abstract  

This paper explores the use of Multidisciplinary 

Design Optimization (MDO) in the development 

of Unmanned Aerial Vehicles (UAVs) when the 

requirements include a collaboration in a System 

of Systems (SoS) environment. In this work, the 

framework considers models that can capture the 

mission, stealth, and surveillance performance of 

each aircraft, while at the same time, a dedicated 

simulation module assesses the total cooperation 

effect on a given operational scenario. The 

resulting mixed continuous and integer variable 

problem is decomposed with a multi-level 

architecture, and in particular, it is treated as a 

fleet allocation problem that includes a nested 

optimization routine for sizing a “yet-to-be-

designed” aircraft. Overall, the models and the 

framework are evaluated through a series of 

optimization runs, and the obtained Pareto front 

is compared with the results from a traditional 

aircraft mission planning method in order to 

illustrate the benefits of this SoS approach in the 

design of UAVs. 

1 Introduction  

Over the past few years, the market of Unmanned 

Aerial Vehicles (UAVs) has experienced an 

accelerated growth which in turn has created a 

high level of competition among the involved 

companies [1]. In this environment of uncertainty 

and risk, it is important to constantly enhance the 

traditional product development process, and 

thus, state-of-the-art design tools as well as 

methodologies are a promising way to enable 

higher quality and faster completion times. 

Multidisciplinary Design Optimization (MDO) is 

a method that has shown great potential in 

improving the knowledge of the product and in 

turn allowing better decisions to be made earlier 

in the process [2]. Over the years, the field of 

MDO has been constantly expanding, and at 

present, it is possible to solve even more intricate 

design problems by implementing novel 

integration architectures, taking advantage of 

state-of-the-art disciplinary models, and using 

efficient computing strategies [3]. 

To this end, one of the emerging improvement 

directions of MDO is to consider a higher and 

thus more abstract level of interactions where the 

active cooperation of various systems is taken 

into account in order to provide capabilities 

beyond those of each individual system [4]. This 

System of Systems (SoS) formulation has often 

been used in the way customers acquire new 

assets [5], and in this respect, it can be seen as an 

additional enhancement of the optimization 

framework where the traditional sizing task is 

combined with a resource allocation or network 

configuration problem [3]. As expected, this 

significantly more complex formulation raises 

new challenges in terms of problem 

decomposition, while at the same time, it creates 

additional requirements during the development 

of the disciplinary models which now have to be 

expanded in order to capture the physics of a 

collaboration scenario [6]. 

In this light, the main objective of this paper is to 

explore the use of MDO in the development of a 

new UAV design that is intended to contribute 

towards achieving better capabilities in an SoS 

environment. To illustrate the above, this case 

study makes the hypothesis that a potential 

customer is already in possession of two vastly 

different UAV platforms, and investigates if the 

development of an entirely new aircraft can 

improve the overall operational success. The 
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primary goal herein is to improve the search and 

rescue (SAR) capabilities through the use of an 

aircraft swarm that will be able to change the 

number and flight envelope of each asset in order 

to allow for better overall performance in terms 

of cost, surveillance, stealth, and payload 

delivery. On the whole, this work describes the 

development of the disciplinary models and the 

framework architecture for this hybrid MDO and 

SoS problem, whereas a set of optimization 

results is also presented in order to evaluate the 

proposed method and assess the benefits of the 

new additions for the design. 

In total, this paper is comprised of six main 

chapters with the introduction being the first, and 

then followed by a short frame of reference on 

relevant topics. The disciplinary models, the 

framework architecture, and the optimization 

problem are presented in chapter three; while the 

obtained results, a discussion on the work, and a 

conclusive summary are given right after.  

2 Frame of reference 

2.1 Unmanned aircraft optimization 

A multidisciplinary optimization framework for 

aircraft design should be first and foremost able 

to capture the mission performance [7], and thus, 

the most common development approach is to 

include a set of basic aeronautical disciplines in 

order to estimate the weight, the aerodynamic, 

the propulsion, and the stability characteristics 

[8], [9], [10], [11]. Moreover, a critical conside-

ration is to align the fidelity of the models with 

the development stage that the MDO framework 

aims to enhance [12], and in this respect, an 

accepted methodology in conceptual design is to 

use simple tools that can enable a sufficient level 

of detail at a minimum computational expense 

[10], [11]. To this end, it can be seen that in UAV 

conceptual design weight estimation if computed 

by using empirical sizing formulas [11]; 

aerodynamics are calculated with analytical 

expressions or panel codes [10]; propulsion is 

evaluated by means of statistical or historical 

data [9]; and finally, stability and mission 

performance are assessed through systems of 

balance and energy equilibrium equations [8]. 

2.2 Electromagnetic and cost models 

Although the above may be adequate for a basic 

aircraft performance MDO, the study of complex 

scenarios, like SAR operations, may often 

require further models in order to capture the 

extended design space [2]. An example of this are 

models from the field of electromagnetics for 

simulating the sensor coverage and radar 

signature of the aircraft [13], while at the same 

time, a cost model can also help to increase 

knowledge of the economic implications and 

bridge the gap between the engineering and 

marketing departments [14]. Here, the radar 

signature is usually studied in one direction (or 

“threat sector” or “view angle”) of interest [15], 

however, in more complex scenarios it is 

possible but also necessary to monitor two or 

even more critical directions [13], [16], [17]. 

Accordingly, the sensor performance can be 

captured with high-fidelity tools for establishing 

the communication performance [18] or with 

analytical electromagnetic formulas for 

predicting the area coverage [17] as well as the 

target detection probability [13]. Finally, as far as 

cost is concerned, there are in general limited 

alternatives due to the lack of available pricing 

information, and to this date, some of the 

possible solutions are to express it with simple 

weight-based empirical equations [8] or with 

regression models that use performance metrics 

as inputs in order to make predictions based on 

historical data [14]. 

2.3 System of systems applications 

In general, a typical SoS problem is a time-

dependent problem that is comprised of three 

levels and allows information to flow upwards to 

the top-level and downwards to the system and 

sub-system levels [6]. An SoS formulation with 

considerable interest for many organizations is 

the mixed continuous and integer variable 

problem where an optimization and analysis 

framework is used to investigate the benefits of 

adding a “yet-to-be-designed” aircraft to an 

existing fleet [5]. In its most common form, this 

problem aims to allocate new and old aircraft to 

specific routes in order to minimize the cost [19], 

[20], [21], [22], [23], [24], while a further 

variation is the minimization of aircraft noise by 
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optimizing the landing approach procedures [6]. 

To tackle the advanced complexity of those 

problems, significant work is typically required 

in terms of decomposition, and it has been shown 

that this kind a mixed variable problem can be 

effectively solved by implementing an 

architecture which considers both an aircraft 

sizing but also an allocation domain [22], [24]. 

Overall, the aforementioned problems have been 

examined under several modifications, and some 

examples of this include a concurrent aircraft 

sizing, fleet allocation, and network route 

configuration [19], [23]; a simultaneous aircraft 

sizing and fleet allocation by considering 

uncertainty and risk sources like passenger 

demand [5], [20]; and lastly, a fleet allocation by 

taking into account both a traditional aircraft 

sizing and an aircraft family design task [21].  

3 Problem formulation 

3.1 Overview 

The aim of the present work is to assess the 

capabilities of a fleet that is comprised of existing 

and yet-to-be-designed UAVs in a typical SAR 

operation. In this hypothetical scenario, all the 

activities are assumed to take place over a large 

area in the Mediterranean Sea that has been 

identified as a crossing point for refugees who 

are on their way to Europe’s mainland. Here, the 

aim is to be able to provide good surveillance 

over the region of interest, whereas some 

additional considerations include the ability to 

quickly deliver medical supplies, to conceal the 

operations from other actors in the area, and to 

keep the monetary cost as low as possible.  

In this application, the search zone is represented 

by a rectangular shape, and therefore, the 

deployed UAVs are expected to fly around it by 

following a racetrack pattern (See Figure 1). All 

the assets in this mission are scheduled to takeoff 

from a nearby military base, then cruise towards 

the search area, and finally, participate in the 

surveillance activities for as long as the 

endurance Ei of each aircraft type allows.  

In the first variation of the problem, there are 

only two types of UAVs which will be denoted 

as type A and type B, whereas in the second 

variation, the fleet is expanded by using an 

entirely new aircraft which will be denoted as 

type C. For this case study, types A and B 

correspond to two vastly different aircraft that 

aim to satisfy a diverse set of requirements (See 

Table 1), while the specifications of type C are 

set in a way that can cover a range of the design 

space which lies between the two existing assets. 

 

Fig. 1. Overview of the SAR scenario. 

 Type A Type B 

Wing span [m] 38 18 

Wing root chord [m] 2.6 1.4 

MTOW [kg] 12000 1000 

Fuel weight [kg] 6000 500 

Payload [kg] 900 300 

Max endurance [hrs] 26 20 

Sensor range [m] 36000 22000 

RCS [m2] 1.6 0.8 

Table 1. The specifications of type A and type B aircraft. 

The decomposition of the problem is similar as 

shown in [5], [20], [21], [23], [24], and takes 

place in two levels which are the aircraft sizing 

and the SoS optimization (See Figure 2). The 

process starts with an optimizer which generates 

the design (fleet allocation) variables xg that have 

a direct effect at a SoS-level (See Table 2), and 

then based on those values the aircraft sizing 

finds the design that has the best performance g 

based on a set of local variables xl and subject to 

constraints c. Once the type C aircraft has been 

fully defined by the sizing process, its endurance 

EC, weight WC, and RCS σC values become 

available, and finally, all the UAVs are simulated 

together so that the problem objectives can be 

calculated and evaluated by the optimizer. 

Since an SAR mission has many different aspects 

that need to be simultaneously considered, this 

leads in a multi-objective formulation where 

several metrics need to be monitored. Hence, 

each objective is normalized by using a reference 

maximum value which is denoted with the 

subscript 0, and then the objectives are divided 
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into two sets f1 and f2 which are combined in an 

aggregated function f by means of two user-

defined weight factors ω1 and ω2 (See Equation 

1). The first set of objectives f1 is in respect to the 

desired positive elements of the mission, and it 

includes the average coverage time of each point 

within the search zone tcov (a metric of 

surveillance efficiency measured in seconds) as 

well as the average amount of payload weight 

that can be delivered at each point within one 

minute wpay (a metric of rescue abilities measured 

in kg). The second set of objectives is about the 

negative elements that this type of SAR mission 

may have, and those are namely the acquisition 

costs Cacq (the price of the entire SoS measured 

in M$), the operating costs Cope (the price to fly 

each mission measured in K$), and lastly, the 

mean radar cross section (RCS) of the deployed 

aircraft σave calculated at the exposed view angles 

(a metric of detectability measured in m2). 

 

Fig. 2. The decomposition of the SoS problem. 

Number of A, B, C [-] 0 1 2 3 4 

Type A altitude [m] 14500 16000 17500 

Type B altitude [m] 4500 6000 7500 

Type C altitude [m] 9500 11000 12500 

Type A speed [m/s] 185 190 195 

Type B speed [m/s] 65 70 75 

Type C speed [m/s] 125 130 135 

Type C payload [kg] 450 600 750 

Type C sensor range [m] 27000 29000 31000 

Table 2. The SoS-level (fleet allocation) design variables. 

𝑚𝑎𝑥 𝑓(𝑥𝑔) = 𝜔1 × 𝑓1 − 𝜔2 × 𝑓2 = 

= 𝜔1 × (
𝑡𝑐𝑜𝑣

𝑡𝑐𝑜𝑣,0
+

𝑤𝑝𝑎𝑦

𝑤𝑝𝑎𝑦,0
) − 

−𝜔2 × (
𝐶𝑎𝑐𝑞

𝐶𝑎𝑐𝑞,0
+

𝐶𝑜𝑝𝑒

𝐶𝑜𝑝𝑒,0
+

𝜎𝑎𝑣𝑒

𝜎𝑎𝑣𝑒,0
) 

(1) 

3.2 Sizing 

The objective of the sizing module is to identify 

the best aircraft design that will fit the needs of 

each evaluated SoS combination. Since the SoS-

level optimization poses requirements on both 

mission efficiency and cost, it is important that 

those are cascaded to the local sizing problem as 

well. To this end, the costs, the coverage, and the 

payload abilities can be represented by the 

endurance as it includes weight, aerodynamic, 

and propulsion terms, while in addition to this, 

the local fitness function g needs to also have an 

RCS term so that the stealth features are equally 

expressed in the design (See Equation 2). 

Apart from that, and in order to increase the 

realism and ensure a flyable concept, a set of 

constraints was also added to the problem 

formulation. First, the balance and stability 

constraints make sure that each configuration is 

trimmed (ΣF, ΣM) but also that aircraft with a 

similar static margin (SM) are being compared, 

and secondly, the space constraints guarantee 

that there is enough room to accommodate the 

sensor system (lS) and the selected engine unit 

(lE). 

𝑚𝑖𝑛 𝑔(𝑥𝑙) = (−
𝐸𝐶

𝐸𝐶,0
+

𝜎𝐶

𝜎𝐶,0
) 

(2) 
     𝑠. 𝑡.   𝑐(𝑥𝑙):     𝛴𝐹 = 𝛴𝑀 = 0 

                           0 < 𝑆𝑀 < 15 

𝑙𝑆 < 𝑙𝑆,𝑎𝑣 

𝑙𝐸 < 𝑙𝐸,𝑎𝑣 

As far as the general configuration of the yet-to-

be-designed UAV is concerned, this is comprised 

of features that will enable good mission but also 

surveillance performance. More specifically, the 

selected baseline airframe was set to have a 

slender fuselage and wings of high aspect ratio in 

order to increase endurance, whereas, a V-tail 

stabilizer as well as a fuselage-integrated 

turbofan engine were considered in order to 

reduce the radar signature (See Figure 3). For 

reasons of simplicity but also weight balance, all 

the sensor electronic units were assumed to be 

placed in a dedicated space in the front of the 

fuselage, while the surveillance was achieved by 

using patch-type apertures which were fixed on 

the skin of the fuselage.  

Here, the aircraft sizing (local) design variables 

xl, are a representative sample of parameters that 

is expected to have a significant effect on the 

mission performance and the cost of the aircraft. 

For this case study, only a small number of wing 

and fuselage parameters were taken into 



 

5  

MULTIDISCIPLINARY OPTIMIZATION OF UNMANNED AIRCRAFT 

IN A SYSTEM OF SYSTEMS CONTEXT  

consideration, while the upper and lower bounds 

were set to be in-between the values which were 

defined for types A and B (See Table 3). 

 

Fig. 3. The baseline CAD model of the type C aircraft. 
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Upper 1.1 0.9 10 24 1.8 0.3 0 

Baseline 1.3 1.1 11 28 2.0 0.4 10 

Lower 1.5 1.3 12 32 2.2 0.5 20 

Table 3. The bounds of the sizing design variables. 

Overall, the aircraft sizing module consists of 7 

disciplinary models which were developed by 

using low- to medium-fidelity computational 

tools and software solutions. The proposed 

framework is herein oriented towards fast 

evaluation times which are necessary for 

conceptual design, however, it has also been 

developed as a flexible platform that also allows 

for higher-fidelity codes to be considered if this 

is deemed necessary.  

 The CAD model was developed in CATIA 

(See Figure 3), and it includes a number of 

morphological parametrization features as 

well as a surface mesh function that allows it 

to be used in the RCS calculations. 

 The aerodynamic performance is calculated 

with TORNADO which is a vortex lattice 

method implemented in MATLAB [25]. 

TORNADO gives good predictions for the 

lift and induced drag, while the parasite, 

interference, and friction drag components 

are calculated with analytical formulas that 

can be found in [26]. 

 The weight and the mission parameters are 

estimated with empirical sizing equations 

[27] which have been implemented in the 

MATLAB-based tool DIBA that was 

developed by SAAB Aeronautics. 

 The propulsion specifications are defined by 

means of available statistical data that can be 

found in DIBA, and then they are represented 

as “rubber” engines that can be scaled up or 

down to fit each application. 

 The stability and trim are assessed through 

basic balance equations within an iterative 

loop that changes the wing and tail incidence 

angles as well as their apex positions until the 

desired conditions have been achieved.  

 The sensor efficiency uses an electro-optical 

sensor model that has been based on linear 

electromagnetic formulas [28] in order to 

calculate properties such as the gain, the 

range, and the power.  

 The RCS is calculated by analyzing the CAD 

representation of the UAV (See Figure 3) 

with the Physical Optics tool POFACETS 

which was developed by the US Naval 

Postgraduate School [29]. Compared to the 

other framework models, this process is 

much more computationally expensive, and 

thus, metamodels of the RCS for each one of 

the studied view angles were herein created 

as shown in [13], [17].   

The integration of the aforementioned models 

was done in modeFRONTIER and it was based 

on the Multi-discipline Feasible (MDF) 

architecture [30]. Here, instead of using 

additional constraints, the couplings are resolved 

through the use of an iterative loop which 

guarantees feasibility of the obtained solution at 

every iteration of the optimizer (See Figure 4).  

 

Fig. 4. The aircraft sizing decomposition architecture. 

On the whole, the process starts with an 

optimizer that generates the local design 

variables xl; then it moves on to the iterative loop 

where the coupled models are evaluated 

repeatedly until the stability and balance 

constraints (SM, ΣF, ΣM) have been met; and 
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finally, it concludes with an analysis of the 

uncoupled models followed by an evaluation of 

the objective function g and the constraints c. 

3.3 Simulation 

The simulation module is a MATLAB code that 

was developed for assessing the performance of 

UAV swarms in a SAR scenario. In the current 

version, the module receives the characteristics 

of each UAV type as well as the mission 

specifications, and then it calculates important 

SoS metrics through the use of discrete time step 

simulations. For each time step, the simulation 

tool uses the position of each aircraft and the 

sensor properties to compute the coverage of the 

area (See Figure 5), while in addition to this, it 

takes into account the speed, altitude, and 

available payload in order to determine the 

amount of rescue supplies that can be delivered 

at each point within a certain amount of time.  

 

 

 

Fig. 5. The accumulated coverage time at 1sec (up), 600sec 

(center), and 1200sec (down) for NA=2, NB=4, NC=3. 

Furthermore, the simulation tool provides an 

estimation of the total cost and total RCS of each 

fleet. The cost is calculated with statistical data 

regressions which are expressed in the form of 

weight- and endurance-based equations that are 

given in [27] as well as [31], and it is divided into 

two components which are namely the 

acquisition (airframe, sensor system, ground 

equipment) and the operating (personnel, 

maintenance, fuel) costs. The stealth features of 

each asset are defined by using the signal to noise 

ratio (SNR) that the ground radar receives based 

on the radar-range equation which illustrates the 

relation between the transmitted power Pt, the 

aircraft RCS σ, and the distance R (See Equation 

3). Once the SNRs of the deployed aircraft have 

been computed, the radar-range equation is used 

again in order to compute the normalized RCS σi 

of each asset that the ground radar system can 

“see” at its maximum range Rmax, and then the 

average RCS of the entire fleet σave is calculated.  

𝑆𝑁𝑅 =
𝑃𝑡𝐷𝑔

2𝜎𝜆2

(4𝜋)3𝑅4𝑘𝐵𝑛𝑇𝑠
 (3) 

4 Results 

The SoS-level optimization problem of Equation 

1 was solved through a metaheuristic approach as 

also shown in [6], [19], [20], [21], [22], [23], and 

in particular, with the non-dominated sorting 

genetic algorithm (NSGA-II). The NSGA-II 

algorithm can handle both continuous (“real 

coded”) and discreet (“binary coded”) variables, 

while at the same time, it also enables the 

concurrent evaluation of independent individuals 

which can significantly reduce the computational 

burden if parallel processing is implemented. For 

this application, the settings included an initial 

population of 100 individuals, which was 

allowed to evolve for 100 generations, whereas 

the cross-over and mutation probabilities where 

set to be 50% and 90% respectively. 

Moreover, the aircraft sizing optimization that is 

presented in Equation 2 was performed with a 

gradient-based method, since it is a much smaller 

problem than the one in the SoS-level. Here, the 

adaptive filter sequential quadratic programming 

(AFilterSQP) algorithm was used as it can reduce 

the total number of evaluations but also 

guarantee fast convergence when the gradients 

can be computed with high-precision. 

In total, the results that are presented herein 

include 7 optimization runs of the SoS-level 

problem for both the A+B as well as the A+B+C 

formulation (See Table 4 and 5). For each run, a 

different combination of objective weights ω1 

and ω2 is used, and by means of this “weighted-

sum” method it is possible to generate a Pareto 

front of non-dominated solutions between the 

desired f1 and the non-desired f2 characteristics of 

the design (See Figure 6). Note here, that the 

A+B formulation can only use a maximum of 8 

aircraft (12 in A+B+C), and therefore, it can only 

cover a much smaller area of the design space. 
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(ω1,ω2) (2,8) (3,7) (4,6) (5,5) (6,4) (7,3) (8,2) 

f [-] -4.96 -4.47 -3.46 -1.04 4.71 13.46 24.68 

tcov [sec] 1670 3483 5155 6694 7828 9255 10106 

wpay [kg] 2.2 4.9 8.7 9.6 12.3 15.1 17.9 

Cacq [M$] 29.3 58.7 88.6 117.4 151.2 185.1 219.0 

Cope [K$] 25.3 50.3 85.2 101.8 129.9 156.9 185.3 

σave [m2] 0.95 0.99 1.12 1.07 1.11 1.17 1.09 

NA [-] 0 0 1 1 2 2 3 

NB [-] 2 3 1 3 4 1 4 

NC [-] 1 2 2 3 2 4 3 

HA [km] - - 17.5 17.5 16 14.5 16 

HB [km] 7.5 4.5 4.5 6 7.5 7.5 6 

HC [km] 9.5 12.5 11 12.5 9.5 11 11 

VA [m/s] - - 185 190 185 195 190 

VB [m/s] 70 70 65 75 65 75 70 

VC [m/s] 130 135 135 125 125 130 135 

PC [kg] 450 750 750 600 450 750 600 

RC [km] 31 30 31 31 31 29 31 

Table 4. The SoS-level results in the A+B+C formulation. 

(ω1,ω2) (2,8) (3,7) (4,6) (5,5) (6,4) (7,3) (8,2) 

f [-] -5.31 -4.62 -4.45 -1.75 2.43 8.38 16.26 

tcov [sec] 1128 1471 1899 3033 3575 4362 4974 

wpay [kg] 1.5 4.9 8.1 8.3 12.2 13.6 16.5 

Cacq [M$] 21.6 47.6 67.2 82.1 108.4 129.6 149.4 

Cope [K$] 11.8 28.6 49.7 63.9 83.3 90.4 113.3 

σave [m2] 0.89 1.04 1.51 1.24 1.46 1.22 1.43 

NA [-] 0 1 2 2 3 3 4 

NB [-] 3 2 0 2 1 4 2 

HA [km] - 14.5 17.5 14.5 16 17.5 17.5 

HB [km] 6 7.5 - 4.5 6 4.5 6 

VA [m/s] - 185 195 185 190 195 190 

VB [m/s] 70 75 - 70 65 70 75 

Table 5. The SoS-level results in the A+B formulation. 

 

Fig. 6. The Pareto front for A+B+C as well as A+B. 

Finally, for each one of the identified non-

dominated designs, there is a unique type C 

configuration that was specifically developed for 

that particular SoS combination. The airframe 

configuration of the recommended yet-to-be-

designed type C aircraft is presented visually in 

Figure 7 by using an overlapping outer mold line 

sketch of the top- and front-view, while the 

performance specifications (Endurance E, RCS 

σ, maximum takeoff weight WTO, and fuel weight 

WFL) are given in Table 6. 

 

Fig. 7. Design visualization of the various type C aircraft. 

(ω1,ω2) (2,8) (3,7) (4,6) (5,5) (6,4) (7,3) (8,2) 

E [hrs] 24 23 22 24 22 23 22 

σ [m2] 1.2 1.4 1.2 1.3 1.1 1.0 1.4 

WTO [kg] 6324 6724 6512 5992 7342 6612 6604 

WFL [kg] 3470 3534 3182 3156 3629 3350 3300 

Table 6. Performance specs of the various type C aircraft. 

5 Discussion 

To begin with, the obtained results from the 

proposed hybrid SoS and MDO formulation 

show a significant improvement in the SAR 

capabilities if a yet-to-be-designed UAV is taken 

into account in the traditional fleet allocation 

problem. This is first supported by comparing the 

numerical results regarding the value of the 

objective f, where it can be seen that for all 

combinations of ω1 and ω2 the A+B+C 

formulation illustrated a better fitness function 

than the A+B (See Tables 4 and 5). Although 

there can be no direct visual comparison between 

the aforementioned optimization runs, it can also 

be clearly seen in the Pareto front of Figure 6 that 

the desired mission characteristics are generally 

better when a type C aircraft is considered. More 

specifically, the A+B+C formulation illustrates a 

better f1 value for the same f2 value, which means 

that it is possible to spend more time on each 

point and deliver more payload for the same cost 

and radar signature as in the A+B approach.  

As far as the SoS-level variables in the A+B+C 

formulation are concerned, there is no distinct 
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pattern that can be observed, apart from the fact 

that in every combination there is at least one 

type C aircraft (See Table 4). To no surprise, the 

above can be attributed to the predefined design 

specifications of type C, which in this case study 

were set to be in-between those of type A and B 

(See Table 6). As a result, this makes it possible 

to cover a much broader area of the design space, 

and in turn, it allows the optimizer to locate a 

much better set of f1 and f2 points through the use 

of more suitable fleet combinations.  

What is more, it can be seen that the fleet 

combinations which result in better area 

coverage and payload delivery capabilities tend 

to depend more on type A as the weight ω1 

increases (See Table 4 and 5). As stated before, 

type A is associated with high endurance but also 

higher costs (See Table 1), and therefore, it is 

preferred by the optimizer in the upper segments 

of the Pareto front where the aforementioned 

mission characteristics are more important than 

costs and radar signature. Accordingly, in the 

lower part of the Pareto front there is the opposite 

tendency, and thus, it can be inferred that in order 

to minimize the undesirable effects of an SAR 

mission it is recommended to use multiple 

smaller assets than just a few big ones.   

Furthermore, concerning the rest of the SoS-level 

variables there is no concrete conclusion to be 

made regarding the altitude and speed, which 

according to Tables 4 and 5 do not appear to 

follow any particular trend. In general, in both 

the A+B and the A+B+C formulation, the 

aforementioned variables take several values 

within the given bounds, which is a good 

indication that the algorithm was able to capture 

the underlying cooperation effects between the 

involved assets. On the same note, it can be 

observed that various combinations of payload 

and sensor range are used to define the yet-to-be-

designed UAV (See Table 4), which can be 

viewed as a further indication that each time there 

is a need for a different “optimal” aircraft in order 

to compliment the operations of the swarm.  

In view of this, the results from aircraft sizing 

reveal that the included MDO process was able 

to tackle this part of the problem by locating a 

fitting design for each set of requirements which 

were cascaded from the SoS-level (See Figure 7 

and Table 6). Here, it can be seen that a larger 

wing span and root chord are necessary when a 

higher payload needs to be carried, whereas the 

wing surface area is relatively smaller for low 

payload and sensor range requirements in order 

to make further weight savings. Additionally, 

since flying at a low altitude is expected to 

increase the chances of being detected, is can be 

observed that in those instances this ended up 

driving the final design by generating 

configurations which had compact wing 

dimensions. On the whole, the general trend in all 

optimization runs is a preference towards high 

aspect ratio wings as well as a long and slender 

fuselage since those characteristics can result in 

an increased endurance, while at the same time, 

the radar signature is herein expressed by means 

of swept back wings and a flattened hexagonal 

fuselage shape that combines minimum height 

with maximum width values.  

Finally, regarding the decomposition of the 

problem, it can be argued that the proposed two-

level architecture was able to tackle the fleet 

allocation and aircraft sizing in an efficient but 

also robust way. The analysis of the performance 

showed that on an average each evaluation of the 

SoS-level required 180 seconds (120 for sizing 

and 60 for simulation), which indicates that a 

nested optimization loop combined with low-

fidelity tools can be a suitable solution for the 

early stages of the development process. For this 

application, a multi-objective formulation was 

avoided since the goal was to compare specific 

design points, however, this is clearly an 

additional possibility that can be used at a 

relatively small time penalty when the aim is to 

generate a complete Pareto front.  

Future investigations on the existing framework 

include the change in the execution order (first 

sizing and then allocation) as seen in [19], [20], 

[21], [23], while a point of further interest would 

be to evaluate the performance of different 

algorithms and the use of response surfaces. 

Overall, the present work aims to give the end-

user the freedom to navigate through the design 

space whilst having full control over the models 

and the architecture, and in this respect, this 

framework should be seen as a first but also 

modular approach towards capturing the effects 

of multidisciplinary UAV design within a SoS 

context.   
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6 Conclusions 

The work that is presented in this paper addresses 

the issue of UAV design when a higher and thus 

more complex level of fleet interactions needs to 

be taken into account. To illustrate the above, a 

hypothetical search and rescue scenario is herein 

introduced, and it is investigated whether or not 

a yet-to-be-designed aircraft can improve the 

mission performance.  

First, this paper presents the development details 

of the disciplinary models that are needed in 

order to be able to capture the physics of this 

scenario. For this conceptual design stage simple 

aeronautical analysis tools are employed to 

calculate the field performance, while at the same 

time, this works extends to the development of 

electromagnetic codes and a mission simulation 

module which aim to explore the design space 

when search activities are considered.   

At a secondary level, this paper elaborates on a 

two-level decomposition architecture, and in 

particular, it shows that the problem can be 

efficiently tackled by dividing it into two parts 

which are namely the fleet allocation and the 

aircraft sizing. The proposed strategy enables 

designers to consider SoS formulations that 

include mixed continuous and integer variables, 

whereas in addition to this, it is also possible to 

perform a quick optimization by means of a 

metaheuristic search like genetic algorithms.  

Finally, this paper concludes by presenting a set 

of optimization results which aim to verify the 

functionality of the framework and evaluate this 

hybrid SoS and MDO formulation against other 

design approaches. Overall, several optimization 

runs are herein performed to generate a Pareto 

front between cost and mission efficiency, and it 

is found that better capabilities can be achieved 

when the traditional fleet allocation includes a 

“yet-to-be-designed” UAV. 
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