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Abstract

To estimate accident probabilities for commercial
airlines, a sampling method called subset simula-
tion is used at the Institute of Flight System Dy-
namics. Thereby, a physical model is utilized that
considers a set of contributing factors and returns
a so-called incident metric which describes the
criticality of the particular flight with respect to a
specific accident category. For accident probabil-
ity estimations, multiple high-dimensional sam-
ples, i.e. virtual flights are generated and the
physical model is applied for them. The goal
of this paper is to integrate vine copula de-
pendence models into the subset simulation im-
plementation. These mathematical dependence
models very flexibly describe high-dimensional
and non-linear dependencies between the con-
tributing factors. Eventually, the prevailing de-
pendence structures of the contributing factors
are recognized during the generation of the sam-
ples leading to more realistic results.

1 Introduction

In civil aviation, safety and methods to quantify
and increase safety are central. Various target
safety levels exist, one of them, set by the Euro-
pean Commission, is to have less than one acci-

dent1 per ten million commercial aircraft flights
by the year 2050, see page 17 of [2]. This cor-
responds to an accident probability of 10−7 per
flight. Another example is the target safety level
of Lufthansa formulated as an accident proba-
bility of less than 10−8 per flight [3]. For the
Lufthansa operation, this corresponds to flying
more than 100 years without an accident based
on the flight numbers of 2009 [3].

Once a target safety level is defined, the cru-
cial question is how to estimate the current safety
level of an airline. Since the accident rates for
a particular airline and also the entire industry
are quite small, the straight forward statistical ap-
proach of dividing the number of accidents by the
number of total flights is not feasible.

The estimation of the current safety level of
an airline is one of the central motives of the
Flight Safety working group at the Institute of
Flight System Dynamics of the Technical Univer-
sity of Munich, see [4] and Section 9 of [5]. To
achieve this, the methodology of subset simula-
tion is used and applied to physical models. Cer-
tain parameters of these models are used as con-
tributing factors whose distributions are drawn
from available flight data. For the work described
in this paper, an existing physical model for the
aviation accident category Runway Overrun is

1The definition of “accident” of the International Civil
Aviation Organization (ICAO) can be found in [1]
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used. It has been mainly developed in [6] and
further developed in [4].

The overall objective of this project is to in-
crease the quality and confidence of the results
from the subset simulation outcomes. With sub-
set simulations, accident or failure probabilities
of very small magnitude can be estimated effi-
ciently. Within this paper, the dependence struc-
tures of the contributing factors are character-
ized by vine copula dependence models, see e.g.
[7, 8]. For the generation of samples, these
dependence structures are taken into account.
First implementations of this idea have been con-
ducted in the Bachelor’s theses [9] and [10] that
have been supervised by the lead author of this
paper.

In the following chapter 2, the characteristics
of the available data are described. Chapter 3
gives an overview of the existing Runway Over-
run model that is one pillar of the research con-
ducted in the given paper. A further basis is the
subset simulation, which is summarized in chap-
ter 4. The central part of this paper is the inte-
gration of vine copula structures into the subset
simulation. A summary of the main theoretical
aspects of vine copulas is given in chapter 5 and
the proposed integration is described in chapter 6.
Chapter 7 reflects the results of the subset simu-
lation runs with integrated vine copula structures
and compares them with the results before the in-
tegration. Finally, chapter 8 concludes the paper
and gives an outlook of future tasks.

2 Recorded Flight Data Characteristics

A civil aircraft records data consecutively during
the entire flight. The recorded time series de-
scribe the current state of the aircraft and mul-
tiple properties of various components. In Fig.
1, a recording of the barometric altitude is illus-
trated. The data is handled, stored, and analyzed
as part of the so-called Flight Data Monitoring
(FDM) activities of an airline, which is manda-
tory by law for commercial operators.

Based on the recorded time series, specific
time points of the flight can be determined. The
most important time point for the scope of this
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Fig. 1 Time series recording of barometric altitude

paper is the touchdown of the aircraft [11]. Tak-
ing the time series and the time points together,
so-called measurements or snapshots can be cal-
culated for all available flights. One example is
the ground speed of the aircraft at touchdown.
Measurements and especially their dependencies
are a central aspect of this paper. In particular,
the contributing factors of the Runway Overrun
model that are described in the following chapter
3 are measurements.

3 Runway Overrun Model and Accident
Probability Estimation

The research carried out in this paper is based on
an implemented physical Runway Overrun model
and a subset simulation framework.
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Furthermore, predictive analysis can even be used to 
identify and quantify factors that contribute to incidents that 
were previously unknown. To summarize, predictive analysis 
replaces vague and possibly contradictory statements 
based on subjective perceptions with numerical values. 

THE CHALLENGE OF  
SMALL NUMBERS
As described above, predictive analysis focuses on 
quantifying the probabilities of serious incidents for an 
individual airline. These probabilities are small, yet not equal 
to zero. 
Predictive analysis is based on two steps: Firstly, identifying 
the factors that contribute to these events and compiling 
statistics for these factors during normal flight operation. 
Secondly, using this information to calculate the probability 
of the incident itself in a statistically valid way. In other words, 
predictive analysis means looking at statistics and variations 
that occur during the whole flight operation for a given 
airline in order to quantify incident probabilities. However, 
having a numerical value for a certain incident probability is 
meaningless without accounting for uncertainties. 

Incident Metrics
Before incident probabilities can be quantified, incident 
metrics must to be developed. Incident metrics are used 
to describe the closeness of a single flight to ending in 
a specific incident. Put another way, the incident metric 
describes a safety margin of a particular flight with respect 
to a particular incident. 
Incident metrics have two main characteristics: Firstly, 
incident metrics can be compared to a limit in order to exactly 
determine whether an incident has occurred. Secondly, the 
closer the calculated incident metric is to the limit, the more 
critical the flight regarding that particular incident. These 
kinds of incident metrics can be calculated after each flight 
based on its flight operational data. Examples of such an 
incident metrics are the stop margin, with respect to a 
runway overrun, and the tail clearance, with respect to a 
tailstrike. Figure 2 illustrates the stop margin as a possible 
incident metric.

Figure 2: Using the stop margin as a possible incident metric

In Figure 2, the stop margin is the remaining distance 
between the end of the runway and the stopping position 
of the aircraft. If an overrun takes place, the stop margin is 
negative. 
Though the types of incidents described in the previous 
paragraph only lend themselves to a single definition for the 
incident metric, other incidents can be defined in multiple 
ways. In this situation, the incident metric should be chosen 
in a way that results in the most meaningful information with 
respect to the criticality of the flight. 

For example, there are two aircraft flying close to the face of 
a mountain. Aircraft 1 is flying in a line parallel to the face of 
the mountain. Aircraft 2 is further away from the face of the 
mountain, but its flight path intersects with the face of the 
mountain. Considering the incident type ‘controlled flight 
into terrain’, the incident metric should be defined so that 
it expresses the actual risk that this incident will occur. For 
example, if the incident metric were based on the distance 
to the face of the mountain, Aircraft 1 would appear to be 
at greater risk, though simple logic shows that Aircraft 2 is 
in much greater danger. For this reason, it would be more 
meaningful to base the incident metric on the time to impact, 
which is calculated as the time until impact with the face 
of the mountain, under the assumption that the aircraft will 
follow a straight flight path from its current position, at a 
constant speed.
Turning back to standard flight operation, if an airline tracks 
the stop margin for a thousand landings, it will see some 
variation in the measured values, but all values will fall within 
a completely safe range. This means that while an airline has 
numerically identified when an incident does or does not 
occur, it still needs a more precise method for calculating 
the actual incident probability.

Contributing Factors
The hypothesis in this method is that a given incident can 
be described as a sum of its constituent parts, so-called 
contributing factors. When considered individually, an 
excessive value for a contributing factor is often benign. 
For example, aircraft landings are often conducted with an 
approach speed that is slightly higher than normal, with a 
slightly longer flare than normal, or a little higher tailwind 
than usual. While any of these deviations itself is harmless, 
an overrun is usually a result of a combination of a too-high 
approach speed, a slightly higher tailwind, etc.
Figure 3 illustrates some of the contributing factors for a 
runway overrun. Every airline that has implemented a flight 
data monitoring (FDM) program is capable of obtaining 
information for these factors. In fact, many of the contributing 
factors are standard measurements, monitored by standard 
FDM programs, such as the landing weight.

Figure 3: Contributing factors as the input for an incident model

As the distribution for each of the contributing factors in 
Figure 3 shows, these values vary during flight operation 
while remaining within a completely safe and overrun-free 
operation. But if there were a description (model) of the 
relationships between these contributing factors and how 
they lead to a runway overrun, these benign variations could 
be fed into the incident model to calculate the very small 
probability of the overrun itself occurring.

Fig. 2 Overview Runway Overrun model,
source: Figure 3, Section 9 of [5]

On the left side of Fig. 2, the contributing fac-
tors are illustrated. The twelve contributing fac-
tors of the utilized Runway Overrun model are
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atmospheric temperature and pressure at touch-
down, headwind at touchdown, aircraft landing
mass at touchdown, duration from touchdown to
spoiler deployment, duration from touchdown to
start braking, duration from touchdown to re-
verser deployment, duration from touchdown to
end of braking, distance from threshold to touch-
down point, approach speed deviation in a speci-
fied time window, average reverse N1 during ac-
tive reverse, and the commanded aircraft decel-
eration, see also [12]. Since the entire operation
and not only single flights shall be investigated,
the contributing factors are described by statisti-
cal distributions.

The utilized physical model describes the de-
celeration performance of the aircraft on the run-
way. The sum of all forces acting on the air-
craft are split up into gravitation, aerodynamics,
propulsion, and landing gear forces. Each of
these components are described by further phys-
ical models. It is not within the scope of this pa-
per to describe any detail of the Runway Overrun
model. As an example, the equation for the brak-
ing force FB is given.

FB = µ ·FN = µ · (m ·g−L) =

µ ·
[
m ·g− 1

2
·ρ ·V 2 ·S · (CL,0 +CL,sp(tsp))

]
(1)

In Equation 1, the following nomenclature is
used. The friction coefficient is denoted by µ,
the normal, i.e. vertical force acting on the land-
ing gear FN , aircraft mass m, gravity g, lift force
L, atmospheric density ρ, aircraft true airspeed
V , reference wing area S, zero lift coefficient
CL,0, spoiler lift coefficient CL,sp, and the time
of spoiler deployment tsp. Any further details re-
garding the physical model can be found in [6, 4].

The outcome of the physical model is the stop
margin, which equals the runway length minus
the landing distance, see Fig. 3. In other words,
it is the remaining runway after a (virtual) stop
of the aircraft on the runway. The stop margin
can be considered as an indicator for the Runway
Overrun risk of a particular flight. The smaller
the stop margin, the closer the flight is to a Run-
way Overrun accident. In case the stop margin is

negative, a Runway Overrun accident occurred.
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an overrun is usually a result of a combination of a too-high 
approach speed, a slightly higher tailwind, etc.
Figure 3 illustrates some of the contributing factors for a 
runway overrun. Every airline that has implemented a flight 
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As the distribution for each of the contributing factors in 
Figure 3 shows, these values vary during flight operation 
while remaining within a completely safe and overrun-free 
operation. But if there were a description (model) of the 
relationships between these contributing factors and how 
they lead to a runway overrun, these benign variations could 
be fed into the incident model to calculate the very small 
probability of the overrun itself occurring.

Fig. 3 Stop margin of the Runway Overrun
model, source: Figure 2, Section 9 of [5]

The estimation of the Runway Overrun prob-
ability is conducted for different system and en-
vironment settings, so-called causal chains, see
[6, 4]. One example for a causal chain is landing
with full flaps and full slats extension together
with a dry runway condition. Once the Runway
Overrun probability is estimated for any causal
chain, the probability for the Runway Overrun
in general can be aggregated by also taking the
probability of the causal chain itself into account.
For any details the reader is referred to [6, 4].

4 Subset Simulation

Subset simulation is an advanced Monte Carlo
method that is used for the generation of rare
failure samples to enable the estimation of low
occurrence probabilities. The main reference
for subset simulation used within this paper is
[13], further information can also be found in
[14, 15, 16]. The generation of samples is con-
trolled in such a way, that they are advancing
towards the critical region CR2. This leads to a
smaller number of required samples compared to
the Monte Carlo algorithm. Since the physical
model describing the aircraft motion is applied to
the samples, the less samples lead to a significant
run time reduction.

“Subset Simulation is based on the idea that
a small failure probability can be expressed as
the product of larger conditional probabilities of
intermediate failure events, thereby potentially
converting a rare event simulation problem into a
sequence of more frequent ones. A general fail-
ure event is represented as CRb = {Y > b}, where

2Observe that in [13] the symbol F is used for the crit-
ical region. To avoid synonyms, the symbol CR is used
within this paper.
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Y is a suitably defined ‘driving response’ charac-
terizing failure.”, see page 68 of [13]. This con-
cept is also related to the incident metrics of [5].

The following problem setting is taken from
[13] and the central idea of this paper can be
formulated subsequently. Let XXX = (X1, . . . ,X12)
be a set of random variables characterizing the
problem. Without loss of generality, XXX is as-
sumed to be standard Gaussian (i.e. the means
are zero and the covariance matrix is the iden-
tity matrix) and i.i.d. (independent and identically
distributed). The standard Gaussian Probability
Density Function (PDF) that is induced by XXX is
denoted by φ. Dependent non-Gaussian random
variables can be constructed from Gaussian ones
by proper transformation. In this setting, the ac-
cident probability can be calculated as

P(CR) =
∫

I(xxx ∈CR) ·φ(xxx) dxxx, (2)

see Equation (1) of [13].
For the utilized data set of the given Runway

Overrun model, see chapter 3, the assumption
of standard Gaussian variables are not fulfilled
and, therefore, a proper transformation needs to
be found, see chapter 5. More information re-
garding the i.i.d. property of recorded flight data
can be found in [17].

An overview of the subset simulation is given
in Algorithm 1. The first step of the subset sim-
ulation is a basic Monte Carlo step generating N
samples. Subsequently, a value b is chosen such
that the samples fulfilling the extended critical re-
gion CRb = {Y > b} can be selected as seeds for
conditional sampling steps of the subsequent sub-
sets [13]. The value b is chosen such that p0 ·N
seeds are selected. A typical value for the level
probability p0 is 0.1, see e.g. page 70 of [13], i.e.
10 % of the samples are used as seeds for the next
subset.

As a post processing step, [18] suggests a
Bayesian consideration of the accident probabil-
ity as a distribution. The results of Theorem 2
of [18] are used within this paper to calculate the
accident probability, which is the mean of the fit-
ted beta distribution. For any details, the reader
is referred to page 293 of [18].

Step 1: Monte Carlo simulation to obtain
XXX (1),1, . . . ,XXX (1),N

Step 2: Calculate Y
(

XXX (1),1
)
, . . . ,Y

(
XXX (1),N

)
and define intermediate failure event CRb

Step 3: Select p0 ·N seeds
XXX (1),seed1 , . . . ,XXX (1),seedp0 ·N associated to CRb

Step 4: Iterative conditional sampling
while not sufficient flights in CR available do

Step 4.1: Conditional sampling of
XXX (i+1),1, . . . ,XXX (i+1),N according to
Algorithm 2 or Algorithm 3

Step 4.2: Calculate
Y
(

XXX (i+1),1
)
, . . . ,Y

(
XXX (i+1),N

)
and define

intermediate failure event CRb
Step 4.3: Select p0 ·N seeds

XXX (i+1),seed1 , . . . ,XXX (i+1),seedp0 ·N associated
to CRb

end
Step 5: Calculate accident probability based on

all subset samples
Algorithm 1: Subset simulation

In the remaining of this chapter, the two algo-
rithms presented in [13] used for the generation
of N conditional samples are summarized.

Both algorithms for the conditional sampling
assume that a seed sample XXX (i) = (X (i)

1 , . . . ,X (i)
12 )

is given which is distributed according to the tar-
get conditional distribution, i.e.

φ(xxx|CRb) = P(CRb)
−1 · I(xxx ∈CRb) ·φ(xxx) (3)

see Equation (3) of [13]. Both algorithms are
designed to generate the next sample XXX (i+1) =

(X (i+1)
1 , . . . ,X (i+1)

12 ) which is again distributed as
φ(xxx|CRb).

4.1 Metropolis Algorithm

The first algorithm for the conditional sam-
pling step is the independent-component Markov
Chain Monte Carlo (MCMC) algorithm [19] with
symmetric proposal distribution given by its den-
sity p∗i (·; ·). The algorithm is commonly referred
to as Metropolis algorithm and is summarized in
Algorithm 2, see [13].
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Step 1: Generate XXX
′
= (X

′
1, . . . ,X

′
12)

for j = 1, . . . ,12 do
·) Generate ξ j from the proposal

distribution given by its density
p∗i (·;X (i)

j ) and U j uniformly on [0,1]

·) Calculate r j =
φ(ξ j)

φ(X (i)
j )

·) if U j ≤ r j then
X
′
j = ξ j

else
X
′
j = X (i)

j

end
end
Step 2: Check failure
if XXX

′ ∈CRb then
XXX (i+1) = XXX

′
(Accept)

else
XXX (i+1) = XXX (i) (Reject)

end
Algorithm 2: Independent-component MCMC

4.2 Limiting Algorithm

For the Metropolis Algorithm 2, a proposal dis-
tribution p∗i (·; ·) needs to be chosen. It reveals
that the efficiency of the subset simulation is in-
sensitive of the type of the proposal distribution
[15, 14]. This was the starting point at page 68
of [13] to develop a new algorithm for which no
choice of proposal distribution is necessary any-
more.

It can be proven that the so-called limiting al-
gorithm, here summarized in Algorithm 3, deliv-
ers equivalent results more efficiently. For any
details, the reader is referred to [13].

Furthermore, information and suggestions for
the choice of ak and s2

k are given in [13] and fol-
lowed by the given paper.

5 Vine Copula Dependence Models

Generating correlated samples of arbitrary high-
dimensional distributions is relevant for various
scientific disciplines and industry applications
and has been an important focus of research for
many years, e.g. [20].

The method considered in this paper are vine

Step 1: Generate XXX
′
= (X

′
1, . . . ,X

′
12) as a

Gaussian vector with independent
components, with mean vector
(a1 ·X

(i)
1 , . . . ,a12 ·X

(i)
12 ) and variances

(s2
1, . . . ,s

2
12)

Step 2: Check failure
if XXX

′ ∈CRb then
XXX (i+1) = XXX

′
(Accept)

else
XXX (i+1) = XXX (i) (Reject)

end
Algorithm 3: Limiting algorithm

copula dependence models. The utilized algo-
rithms were developed as an R package in [21].
In the following, a brief introduction to copulas
and vine copula models is given. The theory of
copula is a vivid area of current research. There
are various relevant publications and the reader is
referred to [7, 8] and references therein.

According to the theorem of Sklar [22], a d-
dimensional distribution function F can be de-
composed into its marginal Cumulative Distribu-
tion Functions (CDF) F1, . . . ,Fd and a distribu-
tion C called the copula in the following way

F(x1, . . . ,xd) =C(F1(x1), . . . ,Fd(xd)). (4)

The idea of vine copula models is to de-
compose a high dimensional copula into several
lower dimensional ones. The concept of con-
ditional distribution provides the mathematical
framework for this decomposition where a d-
dimensional copula is split up into d·(d−1)

2 two-
dimensional copulas. Since this decomposition
is not unique, a suitable construction needs to be
chosen [23]. In addition, the copula families and
all the associated copula parameters need to be
fitted and estimated.

In this paper, in the mathematical theory of
copula, and in the theory of subset simulation,
it is very important to differentiate three vari-
able domains. The on-board recording of the
FDM data and the calculation of measurements
are performed in the so-called X space. Here, the
variables have their specific units, e.g. knots for
speeds. The CDF of a distribution in the X space

5
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is denoted by F . Using the Probability Integral
Transformation (PIT), see page 20 of [7], it fol-
lows that applying F to the data in the X space
leads to uniformly distributed data on [0,1]. This
motivates to call this space the U space and it
plays an essential role in the copula theory. Fur-
thermore, the one-dimensional CDF of the stan-
dard normal distribution is denoted by Φ. Ap-
plying Φ−1 to a distribution in the U space trans-
forms this distribution into the so-called Z space.
This was the space considered for the subset sim-
ulation in chapter 4. A summary of this chain of
domains and the associated transformations for
k = 1, . . . ,d is given by

Xk
Fk
�
F−1

k

Uk
Φ−1

�
Φ

Zk. (5)

Observe that in the setting of this paper, the
inverse of Fk is assumed to exist.

6 Integration of Vine Copula Structures into
Subset Simulation

The flight data considered in this paper is stored,
handled, and analyzed within the IT environment
of the Flight Safety working group at the Insti-
tute of Flight System Dynamics. The calculation
of measurements, the fitting of marginal distribu-
tions, the application of the physical model, see
chapter 3, and the subset simulation, see chapter
4, are conducted within that environment.

In addition, the R software package VineCop-
ula is utilized [21]. For the fitting of the vine cop-
ula model, the function RVineStructureSelect is
used. Thereby, the vine copula model is fitted to
the calculated measurements and, therefore, rep-
resenting the true dependence structures of them.
According to chapter 4, two transformations are
required to use the subset simulation suggested
in [13]. The first required transformation is to re-
move the dependence structure of a given seed.
Subsequently, the proposed sample generation of
either Algorithm 2 or Algorithm 3 is conducted.
After that, the dependence structure is again inte-
grated using the second transformation. Finally,
the physical model can be run on the generated

samples taking the dependence structures into ac-
count and the seeds for the next subset chosen.
An overview of the suggested procedure is given
in Fig. 4.

The first transformation to remove the depen-
dence information from the sample is given by
the Rosenblatt transformation [24]. According
to page 3 of [25], the Rosenblatt transformation,
that is hardly known for practical applications, is
a generalization of the well known Nataf trans-
formation [26]. Precisely, when the considered
dependence structure is Gaussian, the Rosenblatt
transformation is equivalent to the Nataf trans-
form, see [27] and page 3 of [25]. For the vine
copula models, the Rosenblatt transformation has
been introduced in [28] and the algorithm is pro-
vided in [21] by the function RVinePIT.

The second transformation is also given in
[21] by the function RVineSim. The main pur-
pose of this function is to generate samples in the
U space that are taking the dependence structure
into account which is given by the vine copula
model. However, the function was designed with
an optional argument. This can be an existing
high-dimensional sample with independent com-
ponents. In this case, RVineSim integrates the
prevailing dependence structure and exactly this
is required from the second transformation [21].

7 Investigation of Runway Overrun Proba-
bilities with the Vine Copula Integration

In the following, probabilities for the accident
category Runway Overrun are calculated. The
critical region CR of the subset simulation, see
chapter 4, for the Runway Overrun accident cat-
egory is given by a stop margin less than 0, see
chapter 3. For any of the following results, the
numbers of samples per subset N was chosen to
be N = 10.000 and the level probability p0 was
set to be p0 = 0.1.

In Fig. 5 and Fig. 6 the evolution of the mea-
surement commanded deceleration of the air-
craft is given as an example. In both cases, the
Limiting Algorithm 3 was used and the causal
chain full flaps and full slats configuration with
a wet runway condition is illustrated. Fig. 5 il-

6



INTEGRATION OF VINE COPULA DEPENDENCE STRUCTURES INTO SUBSET SIMULATION
FOR ACCIDENT PROBABILITY QUANTIFICATIONS

lustrates the situation without the integration of
the vine copula dependence structures and Fig.
6 describes the subsets that were generated with
the utilized vine copula dependence models. In
both figures, the commanded deceleration mea-
surement is indicated on the horizontal axis. On
the vertical axis, the stop margin is illustrated.
Due to this selection, the different subsets can be
well identified. In both cases, a colour coding is
used to highlight the different subsets. The val-
ues of b in the second to last subset (which can be
roughly identified in Fig. 5 and Fig. 6) is, in the
case before the vine copula integration, 123 me-
ters and, in the case after the integration of vine
copula structures, 88 meters.

Fig. 4 Overview of the proposed vine copula in-
tegration into subset simulation
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Fig. 5 Evolution of the measurement com-
manded deceleration - excluding vine copula
models
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Fig. 6 Evolution of the measurement com-
manded deceleration - including vine copula
models
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Considering these two types of plots for other
contributing factor partially shows different be-
haviors. Sometimes, the differences before and
after the vine copula integration are smaller.
These conditions are strongly influenced by the
underlying dependence structures captured in the
vine copula model.

Fig. 6 shows one subset less compared to Fig.
5 to obtain samples in the critical region CR, i.e.
samples with negative stop margin. This fact also
leads to higher accident probabilities that will be
discussed in the following. In addition, a differ-
ent dependence behavior can be observed partic-
ularly in the lower subsets (since the marginal
distributions are the same for both figures, the
only difference is the dependence structure, com-
pare theorem of Sklar in equation (4)).

Fig. 7 gives an overview of the Runway Over-
run probabilities for the causal chain flaps setting
25 (second highest setting), full slats setting and
a dry runway condition. As sample generation
is (pseudo-) random, the results of two individ-
ual runs for the same data and the same causal
chain are in general different. The estimated Run-
way Overrun probabilities for this causal chain
are in the range of 10−6. Fig. 7 shows the re-
sults of eight simulations of the same settings.
For the cases with Metropolis sampling, a nor-
mal distribution with mean 0 and standard devi-
ation 0.7 is used. Some abbreviations are neces-
sary, “Met” stands for the Metropolis Algorithm
2, “Lim” for the Limiting Algorithm 3, “S” for
single, i.e. with the contributing factors consid-
ered as independent from each other, and finally
“C” for the results after the integration of vine
copula structures.

In Fig. 7, it can be observed that the integra-
tion of the vine copula dependence structures in-
fluences the accident probability estimations and
both, the accident probabilities and their standard
deviation is higher with the vine copula integra-
tion. Since the true value of the accident proba-
bility is unknown, it can not be clarified whether
the results were improved or impaired.

One reason for this probability increase could
be the fact that in aviation, accidents can typically
be considered as chain of events, see. e.g. [29].

The underlying dependencies between the con-
sidered measurements are described by the vine
copula models more sophisticatedly. This means
that if one measurement is already extraordinary,
there is a good chance that also another measure-
ment is particularly high or low. This situation
is represented in the vine copula and might con-
tribute to these higher accident probabilities and
therefore, the estimation after the vine copula in-
tegration can be considered as more realistic.

Furthermore, slightly higher accident proba-
bilities that are caused by the vine copula inte-
gration into subset simulation lead to an overesti-
mation of the accident probabilities compared to
the results without the integration and therefore
towards the safe side.

For now, no explanation for the higher stan-
dard deviation could be identified, however, it
might be related to a similar situation described
on page 53 of [9].

Fig. 7 Subset simulation results
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As stated in [13], the efficiency of the Limit-
ing Algorithm 3 is higher than for the Metropolis
Algorithm 2 and should therefore be preferred.
For the calculations conducted within the scope
of this paper, this property resulted in a slightly
shorter runtime of Algorithm 3 compared to Al-
gorithm 2.

8 Conclusions and Outlook

Within this project, the proposed technique to in-
tegrate vine copula dependence models was ap-
plied to a subset simulation algorithm for the es-
timation of Runway Overrun accident probabil-
ities of an airline. Since the underlying flight
data measurements show non-trivial dependen-
cies, the estimations for the accident probabilities
are affected by the proposed method.

Also for future problems with significant
dependence structures between the contributing
factors, the integration of vine copula structures
into subset simulation can be very beneficial.
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