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Abstract  

Aerodynamic multi-objective optimization prob-

lem (AMOP) is common in aerodynamic optimi-

zation design (AOD). Multi-Objective Evolution-

ary Algorithms (MOEAs) are popular to solve 

AMOPs since they can obtain a set of solutions 

called Pareto optimal in a single run. Since 

numerically evaluating the objective of AOD is 

generally computationally expensive and time 

consuming, improving the convergence perform-

ance of MOEAs and focusing the computational 

resource on the solutions that the decision maker 

(DM) most interested in are two important 

aspects to solve AMOP better. An improved 

multi-objective evolutionary algorithm based on 

decomposition using a combined operator is 

used to improve the convergence performance. 

Several methods of solving AMOP considering 

the DM’s preference are also discussed which 

focus the computational efforts on the Pareto 

solutions that suit the DM’s preference better. 

Multi-objective test functions and aerodynamic 

optimization design of airfoil is tested. The 

results show that the improved algorithm is 

capable to solve AMOPs with user preference, 

and converge faster than the original algorithm. 

1  Introduction 

To get better aerodynamic performance, 

aerodynamic optimization design has to handle 

multi-disciplinary and multi-objective design 

cases. Very often, the objectives contradict each 

other. For such multi-objective optimization 

problems (MOP), one is expecting to get a set of 

solutions that are the best tradeoffs among the 

objectives, called Pareto optimality [1]. 

Recently, Multi-Objective Evolutionary Al-

gorithms (MOEAs) [1][7] have become one of 

the most popular approaches for solving multi-

objective optimization problems. They have been 

successfully applied to aerodynamic multi-

objective optimization problem (AMOP) [8][10]. 

One of the best known shortcomings of MOEAs 

is the low convergence speed. A large population 

and large number of iteration are needed to 

obtain satisfactory results, which means high 

computational cost. Moreover, the decision mak-

er (DM) may be only interested in part of the 

Pareto front, while MOEAs always try to appro-

ximate the whole Pareto front, which means the 

computational resources are wasted on the effort 

to get the Pareto front parts that the DM may not 

care about. By focusing the optimization only on 

the part that the DM wants, the computational 

resources will be used with high efficiency and 

mort rational, the optimization is expected to find 

the solutions preferred more quickly [11]. Many 

works have been done to handle MOPs with user 

preferences [12]-[14]. For AMOPs, the compu-

tational cost to get high-fidelity aerodynamic 

performance data is very high. Hence, algorithm 

with high efficiency and rational usage of com-

putational resources is needed. 

Multi-objective Evolutionary Algorithm 

based on Decomposition (MOEA/D) [7] decom-

poses the MOP into N scalar optimization sub-

problems and solves them simultaneously by 

evolving a population of solutions. MOEA/D 

based on differential evolution (MOEA/D-DE) 

[15] is proposed to deal with MOPs with comp-

licated Pareto Set shapes. Compared with 

traditional Pareto dominance based MOEAs, 

MOEA/D has superiorities [7]: (1) MOEA/D 

shows better performance using small population 

size; (2) MOEA/D is able to obtain different 
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Pareto solutions by altering the weight vectors 

used. These properties make MOEA/D suitable 

for aerodynamic optimization design. 

This paper studies the application of 

MOEA/D to AMOPs. Two aspects of contribu-

tion are made in this paper: (1) a hybrid operator 

of covariance matrix adaptation evolution strat-

egy (CMA-ES) [16] and differential evolution 

(DE) [17] is proposed to improve the converg-

ence performance; (2) Several methods of solv-

ing AMOP considering the DM’s preference 

based on MOEA/D are discussed.  

2  Related concepts  

2.1 MOP and Pareto Optimal  

A multi-objective optimization problem can 

be generally stated as follows: 

 min 𝐹(𝑥) = (𝑓1(𝑥), ⋯ , 𝑓𝑚(𝑥))
𝑇
 

s. t.  𝑥 ∈ Ω 
(1) 

where 𝑥 = (𝑥1, ⋯ , 𝑥𝑛)𝑇 is the decision variable 

vector, Ω is the variable space. 𝐹(𝑥) is the objec-

tive function vector and 𝑓𝑖(𝑥) is the 𝑖th objective 

function, 𝑖 = 1,2, ⋯ , 𝑚. 

Pareto dominance is one of the most popular 

methods used to consider tradeoff between obje-

ctives contradicting with each other. The best tra-

deoffs among the objectives can be defined in 

terms of Pareto front (PF) [1]. 

2.2 Multi-objective Evolutionary Algorithm 

based on Decomposition (MOEA/D) 

MOEA/D decomposes a MOP into N scalar 

optimization sub-problems and solves them 

simultaneously by evolving a population of 

solutions. The primary part of MOEA/D is the 

decomposition of multi-objective problem. 

Tchebycheff approach [7] is the most popular 

one to decompose a MOP. The scalar optimiza-

tion problem obtained by Tchebycheff approach 

is in the following form: 

 

min 𝑔(𝑥|𝑤, 𝑧∗) = max
𝑖=1,…,𝑚

𝑤𝑖|𝑓𝑖

− 𝑧𝑖
∗| 

s.t. 𝑥 ∈ Ω 

(2) 

where 𝑧∗  is the ideal reference point, i.e. 𝑧𝑖
∗ =

min{𝑓𝑖(𝑥)|𝑥 ∈ Ω}. 𝑤 is the weight vector and 𝑤𝑖 >

0, ∑ 𝑤𝑖
𝑚
𝑖=1 = 1. The optimal of Eq. (2) corresponds to 

one of the Pareto optimal of Eq. (1). Therefore, one is 

able to obtain different Pareto optimal solutions by 

altering the weight vector. 

2.3 Covariance Matrix Adaptation Evolution-

ary Strategy (CMA-ES) 

CMA-ES utilizes the information of the 

previous search steps to adjust the covariance 

matrix   and the step-size   adaptively in the proc-

edure of the optimization. The new individuals at 

generation are sampled as: 

 𝑥(𝑡+1) = 𝑥̅(𝑡) + 𝜎(𝑡)𝒩(0, 𝐶(𝑡)) (3) 

where 𝑡 is the iteration number, 𝒩(0, 𝐶(𝑡)) means 

a multivariate normal dist-ribution with mean 0 and 

covariance matrix 𝐶(𝑡), 𝜎(𝑡) is the step size, and 𝑥̅(𝑡) 

is the weighted mean vector of previous iteration. The 

details of CMA-ES can be found in [16]. 

3  CMA-ES Enhanced MOEA/D-DE 

(MOEA/D-DE+CMA) 

3.1 Proposed hybrid operator 

CMA-ES is incorporated into MOEA/D-DE 

obtaining MOEA/D-DE+CMA, trying to make 

use of the learning and self-adapting ability of 

CMA-ES to improve the convergence quality of 

MOEA/D-DE. The motivation behind this idea is 

based on the major motivation of MOEA/D that 

if two weight vectors are close to each other, the 

optimal solutions of their sub-problems will be 

similar (or close) to each other. Thus, when 

optimizing the 𝑖th sub-problem, the information 

of the neighboring sub-problem can be helpful. 

Hence, the information of the neighboring sub-

problms is used by DE and CMA-ES in their own 

ways utilizing different information. Through 

this, no additional function evaluation is needed 

by the improved algorithm, which means that 

computational burden with respect to function 

evaluation is just the same with MOEA/D-DE. 

The evolution operator used in the improved 

algorithm is a combination of DE and CMA: 

 𝑦(𝑖) = 𝑐1
(𝑖)

𝑦𝐷𝐸
(𝑖)

+ 𝑐2
(𝑖)

𝑦𝐶𝑀𝐴
(𝑖)

 (4) 

where the superscript 𝑖  indicates the 𝑖 th sub-

problem, 𝑦(𝑖)  is the trail solution in the next 

iteration, 𝑦𝐷𝐸
(𝑖)

 and 𝑦𝐶𝑀𝐴
(𝑖)

 are the individuals obtain-
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ned by DE and CMA-ES respectively, 𝑐1
(𝑖)

 and 

𝑐2
(𝑖)

 are the coefficient used to adjust the propor-

tion of  𝑦𝐷𝐸
(𝑖)

 and 𝑦𝐶𝑀𝐴
(𝑖)

 that can be reserved in 𝑦(𝑖), 

and 𝑐1
(𝑖) + 𝑐2

(𝑖) = 1. Two aspects are considered to 

determine the coefficients 𝑐1
(𝑖)

 and 𝑐2
(𝑖)

: 

1) They should be adjusted with the processing 

of the evolution. The probability that the 

neighbors have similar optimal search 

directions is high at the beginning of the 

evolution, hence 𝑐2
(𝑖)

 should be larger to 

make full use of the learning ability of CMA-

ES. Then 𝑐2
(𝑖)

 should decrease with the 

process of the evolution; 

2) They should be adjusted according to the 

degree of objective improvement of the sca-

lar problem. Higher improvement indicates 

larger potential room for improvement, 

which suggests that the solution of the sub-

problem is still far from the optimal, and the 

information from the neighboring sub-

problems is still valuable for the CMA-ES 

operator, so a large 𝑐2
(𝑖)

 is wanted; otherwise 

the sub-problem either reaches a local opti-

mal or is near the global optimal, both situa-

tions need the more global search algorithm 

DE part to refine the solution. 

Thus, 𝑐1 and 𝑐2 are updated as follows: 

 {
𝑐1

(𝑖)
= 1 − 𝑐2

(𝑖)
        

𝑐2
(𝑖)

= 𝜋(𝑖)(1 − 𝑝)
 (5) 

where 𝑝 = 0.5 ∗ (1 + 𝑖𝑡𝑒𝑟/𝑖𝑡𝑒𝑟_𝑚𝑎𝑥)  is used to 

adjust the parameter with the processing of the 

evolution, 𝑖𝑡𝑒𝑟  is the current iteration number, 

𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 is the maximum iteration number. And 

 𝜋(𝑖) = {
1, if ∆(𝑖)> 𝑇        

∆(𝑖)/𝑇, oterwise
 (6) 

 ∆(𝑖)=
𝑔(𝑡−1,𝑖) − 𝑔(𝑡,𝑖)

𝑔(𝑡,𝑖)
 (7) 

𝑔(𝑡,𝑖) is the  𝑖th scalar problem objective at the 𝑡th 

iteration, 𝑇  is a predetermined threshold value. 

∆(𝑖)  is the relative improvement degree of 𝑖 th 

sub-problem. The parameters are designed such 

that the learning ability of CMA-ES is used when 

the sub-problem converges fast, and global 

search ability of DE is used when the solutions 

are near the optimal point. The update of  𝑐1
(𝑖)

 and 

𝑐2
(𝑖)

, 𝑖 = 1,2, … , 𝑁 is conducted after the evolution 

of all the population. 

3.2 Test function cases 

In order to test the performance of the propo-

sed algorithm, the most widely employed suite of 

benchmark multi-objective problems, the four 

real-valued ZDT problems [18], ZDT1-3 and 6, 

are tested in this section. Each of the test cases 

has been run for 30 times.  

Distance from representative in the PF (D-

metric) is used to assess the performance of the 

algorithm. Let 𝑃∗ be a set of uniformly distribu-

ted points along the PF, and 𝐴 an approximation 

to the PF, then the D-metric is defined as 

 D-metric=
∑ 𝑑(𝑣,𝐴)𝑣∈𝑃∗

|𝑃∗|
 (8) 

where 𝑑(𝑣, 𝐴) is the minimum Euclidean distan-

ce between 𝑣 and the points in 𝐴. If 𝑃∗ contains 

enough points to represent the PF well, the D-

metric can measure both the diversity and 

convergence of A in a sense. To have a small 

value of D-metric, A must be very close to the PF 

and can’t miss any part of the whole PF. 

As has been demonstrated at the previous 

part the advantage of using small population size, 

population size of 20 is used, neighborhood size 

set to 20, update size 5, threshold 0.05 and the 

maximum iteration number is 500. 

 
(a) ZDT1 

 
(b) ZDT2 
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(c) ZDT3 

 
(d) ZDT6 

Fig. 1 Pareto front obtained with the median D-

metric value and the evolution of average D-metric 

for each function. 

Fig. 1 shows the PF obtained with the medi-

an D-metric value and the evolution of average 

D-metric for each function. We can see that the 

obtained PF is almost the same, while the 

proposed algorithm convergences faster than 

MOEA/D-DE. 

3.3 Multi-objective aerodynamic 

optimization of airfoil 

RAE2822 foil is chosen as the base foil. The 

optimization objectives are to maximize the lift-

to-drag radio and minimize the absolute value of 

moment coefficient simultaneously at the constr-

aint that the thickness of the new foil can’t be 

smaller than the original thickness. Mach number 

𝑀 = 0.729 , Reynolds number 𝑅𝑒 = 6.5 × 106 

and angle of attack 𝐴𝑜𝐴 = 2.31𝑜. The airfoil is 

parameterized by Class Shape Transformation 

(CST) method [19] and the total design variables 

are 12. The numerical simulation method used is 

based on the RANS equations, turbulence model 

using the S-A model, and thin layer approxim-

ation to discrete the viscous term. The optimiza-

tion problem is defined as  

 

min 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥))𝑇 

𝑓1(𝑥) =
25 ∗ 𝐶𝑑

𝐶𝑙
, 𝑓2(𝑥) = 10 ∗ |𝐶𝑚| 

s. t. 𝑑𝑛𝑒𝑤 − 𝑑0 ≥ 0 

(9) 

where 𝐶𝑙 , 𝐶𝑑 , 𝐶𝑚  are the lift, drag and moment 

coefficient respectively, 𝑑0 is the thickness of the 

original foil and 𝑑𝑛𝑒𝑤  of the new foil. The 

penalty function used to handle the thickness 

constrain was proposed by Jan, M. A. and Qingfu, 

Zhang in 2010 [20]. Parameter setting is the same 

as previous subsection except that the maximum 

iteration number is set to 100. 

Since the analytical or real PF cannot be 

obtained before or even after the optimization, D-

metric cannot be used in this case as the perfor-

mance index. Instead, hypervolume (HV) 

indicator [21] is used as the performance index. 

Fig. 2 gives an example of how the HV is 

calculated in 2-D case. It is obvious that the 

larger the HV, the better the approximation is. 

The lift-to-drag radio and absolute value of 

moment coefficient of the base foil are 53 and 

0.088 respectively, and the corresponding initial 

objectives using Eq. (15) is (0.472,0.88), so in 

this section, the reference point used is (0.56,0.9), 

which is a biased value from the initial objectives. 

 

Fig. 2 Introduction of HV indicator. The solid line is 

the PF. And the colored area is the HV of point 1-3 

with respect to the reference point used. 

Fig. 3 gives the comparison of the obtained 

PF by the two algorithm. It can be seen that the 

PF obtained by MOEA/D-DE+CMA has a wider 

distribution, which is desired in multi-objective 

optimization. Fig. 4 gives the comparison of the 

evolution of HV versus iteration number. It can 

be seen that MOEA/D-DE+CMA converges 

faster than MOEA/D-DE. Also, MOEA/D-

DE+CMA obtained larger HV than MOEA/D-

DE at the end of the optimization, indicating a 

better result. 
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(a) PF obtained             (b) PF of the real objectives 

Fig. 3 Pareto front obtained of the optimization. 

 

Fig. 4 The evolution of HV versus iteration number. 

4  Optimization with user preference  

4.1 Reference point based MOEA/D for MOP 

with preference (rpMOEA/D) 

Based on the concept of achievement 

scalarizing function [22], the original MOEA/D 

itself is optimizing with preference, and the pre-

ference is expressed through the ideal reference 

point with the minimum values for each objective 

in the achievable space as the aspiration levels. 

Thus the preferred solutions are the whole PF. 

What if we use some arbitrary unachievable 

reference point? Let’s say the diamond point in 

Fig. 5(a). Then the desired solutions should be 

the points on the PF but within the aspiration 

levels of the reference point, as shown in Fig. 

5(a). The reason is that although such points are 

dominated by the unachievable reference point, 

their objective values are more similar with the 

reference point than the PF points out of the 

aspiration levels, which means more similar 

performance in engineering problems. For achie-

vable reference point, the points on the PF within 

the aspiration levels will all dominate the refer-

ence point, as shown in Fig. 5(b). And these 

points will certainly be the desired points with 

respect to the achievable reference point. 

Therefore, reference point can be used to provide 

the DM’s preference information which can be 

used by MOEA/D. 

 
(a)                                         (b)  

Fig. 5 The desired solutions for different reference 

points. (a) unachievable reference point; (b) 

achievable reference point 

In order to guarantee the obtained solutions 

are all Pareto optimal, the following achievement 

scalarizing function is used in rpMOEA/D to 

decompose the MOP: 

 

min 𝑔(𝑥|𝑤, 𝑧∗) = max
𝑖=1,…,𝑚

𝑤𝑖𝑒𝑖

+ 𝜌 ∑ 𝑒𝑖

𝑚

𝑖=1
 

(10) 

where 𝑒𝑖 = 𝑓𝑖(𝑥) − 𝑧𝑖
𝑟𝑒𝑓

 and 𝑧𝑖
𝑟𝑒𝑓

 is the 𝑖th objec-

tive value of the reference point 𝑧𝑟𝑒𝑓. 

4.2 Fuzzy preference based MOEA/D for 

MOP with preference (fpMOEA/D) 

In this section, the fuzzy preference relation 

is used to determine the weight vector. In fuzzy 

preference relations, the preference are expressed 

by a preference matrix R whose elements 𝑟𝑖𝑗 ∈

[0,1] are the preferences of objective 𝑓𝑖  over 𝑓𝑗 

that satisfy the following conditions: 

 𝑟𝑖𝑗 + 𝑟𝑗𝑖 = 1, 𝑟𝑖𝑖 = 0.5 (11) 

Based on this preference relation matrix, the 

weight for each objective can be obtained by 

 

𝑤𝑖 =
𝑆(𝑓𝑖, 𝑅)

∑ 𝑆(𝑓𝑗 , 𝑅)𝑚
𝑗=1

 

𝑆(𝑓𝑖, 𝑅) = ∑ 𝑟𝑖𝑗

𝑚

𝑗=1,⋯,𝑚,𝑗≠𝑖

 

(12) 

If we specify a proper interval for 𝑟𝑖𝑗, then we can 

obtain a set of weight vectors. Such weight 

vectors can reflect the preference of the DM, and 

MOEA/D is then used to optimize the problem 

using such weight vectors. Finally, we can obtain 

the preferred solutions. 

4.3 Test function cases 
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The 2-objective functions ZDT1-3 and 6 are 

used to test the algorithm performance. The 

population size is set to 20, maximum iteration 

300, crossover rate 0.5, and scaling factor 0.5. 

Fig. 6 gives the test result for rpMOEA/D. We 

can see that the objective values of the obtained 

solution are all around to the reference point. 

 

Fig. 6 Test function results for rpMOEA/D. 

 

Fig. 7 Test function results for fpMOEA/D. 

Secondly, we will present the test result of 

fpMOEA/D. For the 2-objective case, the method 

to determine the weight vectors is simple. We 

assume the two objectives are equally important 

and the weight vector varies between (0.3, 0.7) to 

(0.7, 0.3). The population size is set to 20, 

maximum iteration 300, crossover rate 0.5, and 

scaling factor 0.5. Fig. 7 shows the test function 

results for fpMOEA/D. We can see that the 

results matched with the fuzzy preference except 

for ZDT2. The reason may be that the 

decomposition method used in MOEA/D does 

don’t suit will with ZDT2. Other decomposition 

methods should be studied. 

4.4 Airfoil optimization case 

In order to validate the methods in the 

previous sections, multi-objective aerodynamic 

airfoil shape optimization problem with 2 

objectives adopted from reference [24] is used. 

The goal of this problem is to optimize the shape 

of a standard-class glider, aiming at obtaining 

optimum performance for a sailplane at different 

flight conditions.  

PARSEC [24] airfoil representation is adopt-

ed to parameterize the airfoil. Fig. 8 shows the 

concept of PARSEC. There are two leading edge 

radius in the method used in this paper, the 

leading edge radius for upper and lower surface, 

and that is the only difference between the 

method used in this paper and Fig. 6. Hence, a 

total of 12 geometric parameters are used to 

determine the shape of an airfoil. The allowed 

ranges for the 12 parameters for the two optimi-

zation cases are shown in Table 1 according to 

[24]. 

 

Fig. 8 PARSEC airfoil parameterization method. 

Table 1. Ranges for the 12 geometric parameters. 

  rleup rlelo 
te  te  Zte 

teZ  

A720 upper 0.0126 0.004 10 14 -0.003 0.005 

lower 0.0085 0.002 7 10 -0.006 0.0025 

  Xup Zup Zxxup Xlw Zlw Zxxlw 

A720 upper 0.46 0.13 -0.7 0.26 -0.015 0.2 

lower 0.41 0.11 -0.9 0.2 -0.023 0.05 

This case is based on the A720 airfoil. Two 

conflicting objective functions are defined accor-

ding to a sailplane average weight and operating 

conditions 

 min 𝑓1 =
𝐶𝑑

𝐶𝑙
, 𝑓2 = 𝐶𝑑/𝐶𝑙

3/2
 (13) 

for 𝑓1  the constrain is 𝐶𝑙 = 0.63, 𝑅𝑒 = 2.04 ×

106, 𝑀 = 0.12 , and for 𝑓1  the constrain is 𝐶𝑙 =
1.05, 𝑅𝑒 = 1.29 × 106, 𝑀 = 0.08. The first object-
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OPTIMIZATION DESIGN  

tive represents the inverse of the glider’s gliding 

ratio, whereas the second represents the sink rate. 

Both objectives are important performance 

measures for the glider. The computational fluid 

dynamics solver used is XFOIL [25]. The 

objective function values of the airfoil A720 is 

(0.007610, 0.005236). We will choose (0.007, 

0.005) as the reference point which is smaller 

than the values of A720 for the first method. For 

the second method, we will test three types of 

fuzzy preference: the first objective is more 

important than, less important than and equally 

important as the second one. 

Firstly we will show the experiment results 

of rpMOEA/D. The parameter setting of the 

optimization is the same with [24] where the 

population size is 60 and the maximum iteration 

is 80. The optimization engine is MOEA/D-DE 

with crossover rate CR=0.5 and the scaling factor 

F=0.5. The result is shown in Fig. 7. We can see 

that the solutions obtained by rpMOEA/D are all 

within the aspiration levels of the reference point. 

Both the result of rpMOEA/D and the final set of 

[24] are better than the solution obtained with no 

preference. Moreover, rpMOEA/D obtained 

better solutions than the final set of [24]. 

 

Fig. 9 Result comparison of rpMOEA/D and 

reference [24]. 

Secondly, we will show the results of the 

fpMOEA/D. Since this is a 2-objective case, 

obtaining the weight vectors will be simple. We 

conducted three cases: 1) objective 1 is more 

important than objective 2; 2) objective 1 is 

equally important than objective 2; 3) objective 1 

is less important than objective 2. The results are 

shown in Fig. 10. We can see that when different 

fuzzy preference is given, different Pareto 

optimal solutions are obtained. Comparing with 

the no preference result in [24], better solutions 

are obtained using fpMOEA/D. 

 

Fig. 10 Result comparison of fpMOEA/D and 

reference [24]. 

5  Conclusion 

In this paper, we studied the application of 

MOEA/D to the aerodynamic multi-objective 

optimization design. Firstly a hybrid operator of 

CMA-ES and DE is proposed to improve the 

convergence performance of MOEA/D, and the 

experimental results show that the new operator 

can speed up the convergence. Secondly, two 

methods of optimization with user preference are 

discussed, and the results show that the reference 

point method performances better than the fuzzy 

preference method. The results of this paper 

suggest that MOEA/D seems a promising 

algorithm to solve aerodynamic multi-objective 

optimization problem. 
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