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Abstract  
Fault diagnosis is a challenging problem 
because data used in diagnosis contain random 
errors and often systematic errors as well. 
Furthermore, fault diagnosis plays a critical 
role in aircraft engines and the performance of 
their control systems. Using the robustness 
analysis of parametric uncertain systems, an 
improved algorithm based on Kalman filters is 
proposed. The algorithm takes the parametric 
uncertainties into consideration which can 
distinguish an actual fault from the model 
uncertainties. The residuals are errors between 
measured outputs and estimated outputs from a 
set of Kalman filters. Application to an aircraft 
engine clearly illustrates the improved 
performance of the proposed method, the results 
show that the proposed method helps the system 
accommodate parametric uncertainties in the 
model and reduce false alarms and missed 
detections. 

1 Introduction 
Although there was a decrease in world-wide jet 
operations 2001 and 2002 due to the 9/11 
terrorist attacks and the outbreak of SARS 
(Severe Acute Respiratory Syndrome) [1], the 
reduced traffic has recovered, and jet operations 
have returned to an increasing trend as shown in 
Fig. 1. While air traffic has increased, the 
accident rate of the worldwide commercial jet 
fleet has decreased because of the advances in 

technology and the increase in reliability. 
Despite the low accident rate, the absolute 
number of accidents is expected to be large due 
to the large volume of operations. 
 

 
Fig. 1 Worldwide commercial jet operations 

The demand for a safer and more reliable 
aircraft has stimulated considerable research on 
fault diagnosis approaches and technologies 
over decades [2]. With the development of the 
complex and large-scale systems, such as, 
aircrafts, automotive vehicles, high-speed 
railways, power systems and many other 
applications, the issues of reliability, 
affordability, safety and system integrity have 
become significantly important and been 
addressed in many research fields. 

The approaches to fault diagnosis may be 
classified into three categories: model-based 
methods, knowledge-based methods and signal-
processing-based methods. The literature review 
will focus on the model-based methods in this 
paper. Before addressing the model-based 
techniques, the knowledge-based techniques and 
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signal-processing-based techniques will be 
briefly introduced below. 

The knowled`ge-based methods are done 
within the artificial intelligence domain, using 
expert reasoning, fuzzy reasoning and neural 
networks, etc. These methods are appealing 
because they do not require explicit 
mathematical model of the monitored system. In 
order to develop the knowledge-based fault 
diagnosis system, the knowledge about the 
process structure and function of the monitored 
system s under different faulty conditions is 
required in advance. The basic knowledge to 
conduct this approach is training data which 
contains faults and the corresponding symptoms. 
The development of a knowledge-based fault 
diagnosis system usually takes considerable 
time and effort to make it effective. A large 
amount of work has been devoted to develop the 
knowledge based method in order to reduce the 
development time. The signal-processing-based 
techniques without model application are also 
used as FDI approaches, which include spectral 
analysis (time-frequency, time-scale analysis, 
etc) and statistical methods (signal classification, 
pattern recognition, etc). 

With the development of digital computers 
and the availability of state variable and transfer 
function models of many practical systems, 
model-based fault diagnosis methods have 
received considerable attention. Model-based 
fault diagnosis methods use mathematical 
models of the monitored systems, the advantage 
of which is that no additional hardwares are 
required to realize a fault diagnosis system. The 
model-based fault detection based on analytical 
redundancy comprises two principal steps: 
residual generation and residual evaluation. 

A great amount of research on model-
based fault diagnosis of complex systems has 
been studied since the 1970s. Model-based fault 
detection and isolation methods rely on the 
accuracy of the model. Model or data 
uncertainty, disturbances and noise, etc., all 
have a great impact on the fault diagnosis 
design results. A challenge in the fault diagnosis 
applications is the design of a scheme which can 
distinguish between model uncertainties, 
disturbances and the occurrence of faults. 

Model-based fault diagnosis methods use 
mathematical models of the monitored systems, 
the advantage of which is that no additional 
hardwares are required to realize a fault 
diagnosis system. The model-based fault 
detection based on analytical redundancy 
comprises two principal steps: residual 
generation and residual evaluation. Fig. 2 shows 
a general fault detection process scheme. 
 

 
Fig. 2 Fault detection general process 

 
The purpose of residual generation is to 

generate a fault indicating signal–residual, using 
the available input and output information from 
the monitored system. The residual signal is 
supposed to be nonzero in the occurrence of 
fault and zero when no fault is present. The 
residual is usually generated by comparing the 
measured system output with the mathematical 
model measured output estimates. There are two 
main properties in a model-based fault detection 
algorithm: robustness and sensitivity. 
Robustness means that the fault detection 
system does not produce false alarms due to 
unknown disturbances and modeling errors, 
while sensitivity means the fault detection 
scheme should be known as sensitive to faults 
and not cause missed detections. 

In the absence of faults, a predetermined 
constant threshold would lead to more false 
alarms under modeling uncertainty, which is not 
tolerant under flight conditions [3-7]. In 
conclusion, this motivates the research of 
deriving a threshold method in the time domain, 
which is a function of time and control activity. 
The variable threshold will designed based on 
the time response analysis using Kalman filters. 
The variable threshold method derived gives the 
tube-shaped upper-and-lower bound for each 
system variable of the residual vector, which 
provides the insight of the residual variable. 
This knowledge can be used to analyze which 
sensor output is more sensitive to a fault. 
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2 Threshold Design Based on Kalman Filters 

2.1 System Formulation 
A depiction of the complex system is shown in 
Fig. 3. During flight, the sensors, actuators, and 
components are susceptible to failure. 
 

 
Fig. 3 Fault diagnosis system scheme 

 
Consider a linear time-invariant discrete-

time stochastic system with parametric 
uncertainty represented in Eq. (1). 
 

�
𝑥𝑒𝑘+1 = (𝛷 + ∆𝛷)𝑥𝑒𝑘 + (𝛹 + ∆𝛹)�𝑢𝑘 + 𝑓𝑎𝑘�

+𝑑𝑘 + 𝜔𝑘 + 𝑓𝑐𝑘
𝑧𝑒𝑘+1 = 𝐻𝑥𝑒𝑘+1 + 𝑣𝑘+1 + 𝑓𝑠𝑘                                 

� 

(1) 
where k = 0, 1, …, n. 𝛷 and 𝛹 are coefficient, 
𝑥𝑒𝑘 ∈ 𝑅

𝑛 is a state vector, 𝑢𝑘 ∈ 𝑅𝑙  is a control 
input vector, 𝑑𝑘 ∈ 𝑅𝑝 is a disturbance vector (or 
unknown input vector), 𝑧𝑒𝑘 ∈ 𝑅

𝑚 is a measured 
output vector, 𝑓𝑎𝑘 ∈ 𝑅

𝑙 , 𝑓𝑐𝑘 ∈ 𝑅
𝑛 , 𝑓𝑠𝑘  ∈ 𝑅𝑚 

represent actuator fault vector, component fault 
vector and sensor fault vector, respectively. 
𝜔𝑘 ∈ 𝑅𝑛  and 𝑣𝑘 ∈ 𝑅𝑚  are mutually 
uncorrelated jointly Gaussian white noise 
sequences. 

Kalman filter is a recursive mean-squared 
state filter [8-11]. It is a time-varying digital 
filter that uses information from both the state 
and measurement equations. Consider a basic 
linear, time-varying, discrete-time, stochastic 
state variable model, and all faults and unknown 
inputs set to be zero, then the system is 
expressed as 
 

�𝑥𝑘+1 = 𝛷𝑥𝑘 + 𝛹𝑢𝑘 + 𝜔𝑘
𝑧𝑘+1 = 𝐻𝑥𝑘+1 + 𝑣𝑘+1      

�              (2) 

 
Then the Kalman filter for the system in Eq. 

(1) is shown as, 
 

𝑥�𝑘+1|𝑘 = 𝛷𝑥�𝑘|𝑘 + 𝛹𝑢𝑘              (3) 

𝑧̂𝑘+1|𝑘 = 𝐻𝑥�𝑘+1|𝑘                   (4) 
𝑥�𝑘+1|𝑘+1 = 𝑥�𝑘+1|𝑘 + 𝐾𝑘+1(𝐻𝑥𝑒𝑘+1 + 𝑣𝑘+1 − 𝐻𝑥�𝑘+1|𝑘) 

(5) 

2.2 The Threshold Design 
The system with possible actuator and sensor 
faults can be described as: 
 

�
𝑥𝑒𝑘+1 = (𝛷 + ∆𝛷)𝑥𝑒𝑘 + (𝛹 + ∆𝛹)(𝑢𝑘 + 𝑓𝑎𝑘)

+𝜔𝑘
𝑧𝑒𝑘+1 = 𝐻𝑥𝑒𝑘+1 + 𝑣𝑘+1 + 𝑓𝑠𝑘+1                             

� 

(6) 
 

where 𝑓𝑎𝑘 ∈ 𝑅
𝑙  is the actuator fault vector and 

𝑓𝑠𝑘  ∈ 𝑅𝑚  is the sensor fault vector. For this 
system, the state-prediction error variable and 
the residual are governed by the following 
equations: 
 
𝑒𝑘+1|𝑘 = 𝛷(𝐼𝑛 − 𝐾𝑘𝐻)𝑒𝑘|𝑘−1 + ∆𝛹𝑢𝑘 + ∆𝛷𝑥𝑒𝑘 
 +𝜔_𝑘 −  𝛷𝐾𝑘𝑣𝑘 + (𝛹 + ∆𝛹)𝑓𝑠𝑘+1 + (−𝛷𝐾𝑘)𝑓𝑠𝑘 

(7) 
𝑟𝑘+1 = 𝐻𝑒𝑘+1|𝑘 + 𝑣𝑘+1 + 𝑓𝑠𝑘+1           (8) 

 
Assume K�  is the steady-state of Kalman 

filter gain Kk+1 , Q and R are the covariance 
matrices for the process noise wk and vk , 
respectively. 

Given (Φ,Ψ, H, Q, R), we can first compute 
Pp, which is the positive definite solution of Eq. 
(9), then we can calculate K� as 
 

𝐾� = 𝑃𝑝𝐻𝑇(𝐻𝑃𝑝𝐻𝑇 + 𝑅)−1             (9) 
 

Use Eq. (9) in the error variable Eq. (7), then 
 
𝑒𝑘+1|𝑘 = 𝛷�𝑒𝑘+1|𝑘 + ∆𝛹𝑢𝑘 + ∆𝛷𝑥𝑒𝑘 + 𝜔𝑘𝑝

 
+(−𝛷𝐾�)𝑣𝑘                    (10) 

 
where 
 

𝛷� = 𝛷(𝐼𝑛 − 𝐾�𝐻)                    (11) 

2.3 Optimization of the State-prediction 
Error 
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In the use of particle-swarm optimization 
algorithm to predict the time response of the q-
th component of error variable state vector 
𝑒𝑘+1|𝑘, usually with a relatively simple form of 
fitting, so the amount of calculation of the 
algorithm will greatly reduce. In general, 
satisfactory forecasting results can be got by the 
depth of the spanning tree in the case of 4 to 5 
layer. 

Particle-swarm optimization algorithm is 
applied to select the suitable parameters of the 
state-prediction error, as shown in Fig. 4. The 
steps of determining the parameters by particle 
swarm optimization algorithm, which is given 
as followings: 

Step 1. Randomly initialize a population of 
the particles. 

Step 2. Compute the fitness values of each 
particle and compare the evaluated fitness value 
of each particle to its individual best. 

Step 3. The global best and the individual 
best of each particle are introduced to evaluate 
the fitness of each particle. 

Step 4. According to Eq. (12) and Eq. (13), 
Update the velocity and position of each particle. 

 
vid(t+1)=wvid(t+1)+c1r1(pid(t)-xid(t)) 
                       +c2r2(gi(t)-xid(t))           (12) 

xid(t+1)=xid(t)+vid(t+1)               (13) 
 

where pid(t) is the best previous position of 
particle i, c1 and c2 are the acceleration 
coefficients, w is the inertia weight, r1 and r2 are 
random variables in the range from 0 to 1. 

Step 5. When maximum iteration is 
reached, the procedure ends, otherwise, go to 
step 2. 

 

 
Fig. 4 The process of searching parameter of state-

prediction error by PSO 

3 Simulation Analysis 
The aircraft engine model used in this paper is a 
nonlinear simulation model of an advanced 
high-bypass turbofan engine. A turbofan engine 
is composed of several main components: fan, 
low pressure compressor (LPC) or booster, high 
pressure compressor (HPC), combustion 
chamber, high pressure turbine (HPT), low 
pressure turbine (LPT) and nozzle. They are 
arranged in the direction along the gas path. 
The engine state variables, control inputs and 
sensors in the model are listed in Tab. 1. 
 
 
 
 

Tab. 1. State variables, control Inputs and sensors of the aircraft engine 
State Variables(X) Control Inputs Sensors 

low pressure rotor speed sensor (N1) 
high pressure rotor speed sensor (N2) 
LPC metal temperature (TLPC) 
HPC metal temperature (THPC) 
HPT nozzle metal temperature (THPT) 
LPT metal temperature (TLPT) 

Fuel flow (FF) 
variable bleed valve 
(BV) 
variable stator vane 
angle (SVA) 

N1 
N2 
HPC inlet temperature (T25) 
HPC inlet pressure (P25) 
combustor inlet temperature (T3) 
combustor inlet pressure (P3) 
LPT inlet temperature (T49) 

 
Kalman filter is used in the observer design 

for sensor fault diagnosis. A full order Kalman 
filter is designed to check the output estimation 

results of the engine system under fault-free 
condition. A sinusoidal perturbation with the 
magnitude of 1% of the operating point value 

Is the maximum 
iteration  reached?

Produce the new predictive value of 
DGM(1,1) 

Get the optimal  
predictive value 

of the state-
prediction error 

Randomly initialize a population of particles

Update the velocity and position of each particle

Evaluate the fitness of each 
particle
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for the control SVA is injected. The 
measurements are simulated using remote data 
collection unit (RCU). The process of 
generating simulated data is depicted in Fig. 5. 

 

 
Fig. 5 Data generation process 

 
Sensor fault diagnosis is determined by 

comparing the residual with the variable 
threshold. When the residuals cross the 
thresholds, it indicates the existence of a fault in 
the system. 

The simulation results of sensor 6 fault is 
shown in Fig. 6. It is concluded that sensor 6 is 
faulty from the results of the residuals. 

Based on the above simulation results, it is 
shown that the proposed dynamic threshold is 
capable of detecting incipient fault in the system 
sensor or actuator and does not cause false 
alarms or missed detections. 
 

 
Fig. 6 Residual r6 of the sensor z6 

4 Conclusions  
We have applied the variable threshold method 
to a nonlinear high bypass turbofan aircraft 
engine simulation model. The simulation results 
have shown that the proposed method is capable 

of detecting incipient fault in the system sensor 
and does not cause false alarms or missed  
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