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Abstract  
This paper addresses and illustrates the benefits 
of leveraging virtual experimentation and visual 
analytics to support system and system of 
systems engineering practices and efforts. It 
presents some of the challenges faced by the 
system of systems community throughout the 
systems engineering process and discusses the 
importance of virtual experimentation in the 
engineering of complex systems and the 
necessity to integrate it with visual analytics 
capabilities. In particular, two cases studies are 
presented that illustrate how virtual 
experimentation and visual analytics can be 
leveraged to help speed up the systems 
engineering process and provide meaningful 
engineering insights to support decision making.   

1 Motivation  

1.1 The System Engineering Perspective and 
Its Challenges 

As Keane and Nair [1, 2] noted, “Aerospace 
engineering design is one of the most complex 
activities carried by mankind”. The complexity 
of today’s aerospace systems has far outpaced 
the advancement of the methodologies, 
processes and tools in which they are procured 
for the past half-century [5]. This divergence of 
design methodology and complex system 
procurement has materialized in the form of 

inefficient and costly aerospace projects that 
often exhibit the customary design-test-build-
redesign cycle. This in turns has led to programs 
and products that are over budget, over 
schedule, and do not meet customers’ 
expectations [6, 7].  
 
Today’s complex systems are multidisciplinary 
in nature and designed by geographically-
distributed teams. They are often systems for 
which no empirical data is available, prompting 
the need to generate, gather and analyze data 
[8]. Most complex systems also rely on 
radically new technologies (new materials, 
electronics, etc.). They are characterized by 
tightly coupled interactions between subsystems 
and subcomponents that often result in the 
existence of unknowns-unknowns and 
consequently the presence of unintended, 
emergent intra-system behaviors that are 
difficult to trace [7].  
 
It is widely acknowledged that, in such 
instances, a holistic and systematic approach 
that focuses on “the intrinsic interrelations of 
the systems of interest components and their 
extrinsic relationships to the greater whole” [9] 
and supports the development of a life-cycle 
balanced system solution meeting customer 
requirements is needed [10]. Indeed, properly 
implementing a Systems Engineering (SE) 
approach to the design and development of 
complex aerospace systems brings many 
benefits. Such benefits include reduced design 
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cost and reduced design cycle time due to better 
upfront planning and more streamlined 
integration.  In addition, a more thorough 
exploration of potential design concepts in the 
earliest stages of the design process can lead to 
a better overall end-product that is more robust 
to changes in requirements.   
 
These benefits are achieved through [8, 11]: 
 

- The analysis and exploration of the 
design space to support and improve the 
designer’s understanding of the problem. 

- The identification of potentially feasible 
concepts.  

- The assessment of the sensitivities of the 
outcomes to the assumptions.   

- The evaluation and quantification of 
trade-offs between metrics and concepts 
to identify the “best” solution. 

- The verification and validation that the 
solution meets the set of requirements 
established and that it is acceptable.  

  
However, the Systems Engineering approach 
suffers from “the inherent assumption that the 
sum of the parts will be equivalent to the whole” 
[7]. In reality, as discussed by Bloebaum and 
McGowan [7], in the case of large complex 
systems and systems of systems (as discussed in 
Section 1.2), the coupling and interaction 
between disciplines and subsystems are such 
that they make it extremely difficult to assess 
the impact that one change in a part will have on 
another part or the system as a whole. 
 
In addition to the complexity of aerospace 
systems, it is important to acknowledge that 
these systems are also becoming increasingly 
interoperable.   The increase in distributed 
operations, coupled with today’s information 
age, leads to situations in which no system 
operates in isolation. While this increased focus 
on the system of systems (SoS) can result in 
increased performance, efficiency, and safety, 
the engineering of the system of systems has 
continued to present engineers with new 
challenges during the system design process.  If 
not designed to properly integrate within the 
larger SoS in which it will operate, the fielded 

system may incur suboptimal performance, 
expensive upgrades post-deployment, and/or an 
inability to fill it intended role. This in turn 
would result in an overall degradation in the 
performance of the overall system of systems.  
 
The following section will present some of the 
characteristics that define a system of systems 
and some of the associated challenges identified 
by the systems engineering community.   

1.2 The Systems-of-Systems Perspective and 
Its Challenges 

In general, there is no consensus on a single, all-
encompassing definition of a system of systems.  
The DoD Defense Acquisition Guidebook 
defines a system of systems as “A set or 
arrangement of systems that results when 
independent and useful systems are integrated 
into a larger system that delivers unique 
capabilities.” [12].   The INCOSE BKCASE 
defines SoS Engineering as “an opportunity for 
the systems engineering community to define 
the complex systems of the 21st Century. While 
systems engineering is a fairly established field, 
SoSE represents a challenge for the present 
systems engineers at the global level. In general, 
SoSE requires considerations beyond those 
usually associated with engineering, to include 
socio-technical and sometimes socio-economic 
phenomena.” [13].  A third definition, presented 
by Jamshidi and repeated in the INCOSE 
SEBoK is “A SoS is an integration of a finite 
number of constituent systems which are 
independent and operable, and which are 
networked together for a period of time to 
achieve a certain higher goal.” [14, 15]. Many 
other similar definitions exist.    
 
While helpful in understanding that a system of 
systems is generally composed of multiple, 
interacting, independently useful systems, and 
generally presents a higher degree of 
complexity than an individual system, there is 
no clear boundary.  A general list of defining 
characteristics of a system of systems is 
provided below.  This list, which has been 
generated through compilation of multiple 
sources in literature, is not intended to be a 
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comprehensive list.  Rather, systems that exhibit 
some subset of these characteristics are likely to 
require the application of a system of systems 
engineering approach.  
Compared to a System, a SoS might [16-18]: 

- Be large in scope. 
- Have complex integration. 
- Consist of constituent systems that are 

operationally and/or managerially 
independent. 

- Include elements which are 
geographically distributed. 

- Be subject to high degree of uncertainty 
and risk. 

- Evolve continuously with elements of 
differing lifecycles. 

- Lack a single management/acquisition 
entity and have a broader range of 
stakeholders. 

- Have elements which are not designed to 
fit the whole, and which are integrated 
post-design and deployment. 

- Exhibit emergent behaviors. 
- Have ambiguous requirements and fuzzy 

boundaries. 
- Include humans as an integral part of the 

SoS. 
 
In general, the managerial and operational 
independence of components tend to be the 
characteristics most commonly used to 
categorize a system of systems [15]. 
 
It is worth noting that many system of systems 
tend to be cyber physical systems, and this trend 
is increasing.  The European CPSoS project 
defines a cyber-physical system as “large 
complex physical systems that are interacting 
with a considerable number of distributed 
computing elements for monitoring, control and 
management which can exchange information 
between them and with human users.” [19].  In a 
recent call for proposals, the NSF defined cyber 
physical systems as “Cyber-physical systems 
(CPS) are engineered systems that are built 
from, and depend upon, the seamless integration 
of computational algorithms and physical 
components.” [20].  Several authors have 
suggested additional characteristics of cyber 

physical system of systems, including [19, 21, 
22]: 

- Partial autonomy of constituent systems. 
- Dynamic reconfiguration of the overall 

system on different time scales. 
- A need for concurrent programming. 
- Very large scale integration of 

networked embedded systems. 
- Data proliferation. 

 
The characteristics and complexity of these 
cyber-physical systems make testing and 
evaluation very challenging.  Traditional system 
prototyping methods can be prohibitively 
expensive and/or time-consuming in cases with 
high levels of system complexity, where there 
are large numbers of interacting systems, or 
when the behaviors cannot be tested by anything 
less complex than the system itself.    
 
The types of systems being described by the 
characteristics of system of systems and cyber 
physical system of systems have many 
recognized engineering challenges, including 
[16, 18]: 
 

- High complexity makes overall 
management of design and requirements 
challenging. 

- Management can overshadow 
engineering, especially in cases with 
broad range of stakeholders and funding 
sources. 

- The initial requirements are likely to be 
ambiguous, and do not always 
correspond to measurable objectives.  

- Systems elements must operate 
independently and collaboratively, and 
are not necessarily designed with the 
overall goals of the SoS in mind. 

- System boundaries are fuzzy and can 
cause confusion.  

- Continuous evolution of system means 
that systems engineering is continuously 
ongoing.  

- SoS has a significant focus on data, 
information, and resource flows between 
systems that may not necessarily have 
been designed to interface between each 
other.  
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- Testing, validation and verification of 
modeling and simulation environments 
can be very difficult due to the nebulous 
requirements, the sheer size and number 
of systems, and, often, a lack of real 
world testing data to support validation. 

- Because of the continuous evolution of 
the systems and the different life-cycles 
between systems, analysis results can 
become obsolete quickly.  

1.3 Preliminary Remarks 
One common limiting factor in the pursuit of 
system engineering and system of systems 
engineering is a lack of large amounts of 
relevant data to base designs, analyses and 
decisions from. This has significant implications 
on the systems engineering process and the 
ability to synthesize information on the 
integrated SoS.  From a system design 
standpoint, the systems being designed today 
are highly unconventional in nature, which 
makes the use of historical data and heuristics 
incompatible with the task at hand. From a 
system of systems standpoint, the traditional 
reliance on prototyping as a key step in the 
design process is not always possible in SoS, as 
the size and complexity can make prototyping 
costly and/or time-prohibitive.  
 
With reduced access to data on real world 
performance and reduced ability to scale and 
test design prototypes, it is necessary to increase 
reliance on virtual experimentation to support 
the systems process for these SoS.  However, 
the amount of data generated through virtual 
experimentation can rapidly become 
overwhelming. The analyst or decision maker, 
when faced with such a data overload problem, 
is limited in his ability to conduct any kind of 
trades, test hypotheses, explore the design 
space, and detect unexpected trends, behaviors, 
detail or relations, as the data sets cannot be 
visualized [23]. Consequently, he cannot fully 
comprehend the problem to be solved, or 
understand the behavior of the system under 
consideration. While unprocessed data does not 
hold any intrinsic value [23], it can result in 
missed opportunities for critical actions. To 

alleviate this problem, it is necessary to move 
away from static representations and 
visualizations and develop means that enable 
the interaction between information and the 
analysts, while simultaneously allowing them to 
integrate their background, expertise, and 
cognitive capabilities into the analytical process. 
The need to address these aspects has given rise 
to a multidisciplinary perspective named Visual 
Analytics. 
 
Section 2 presents two key enablers to support 
the engineering of complex systems and our 
understanding of systems-of-systems: Virtual 
Experimentation (Section 2.1) and Visual 
Analytics (section 2.2). Section 2.3. briefly 
discusses the complementary nature of these 
two enablers. Section 3.1 illustrates how 
integrating Visual Analytics (VA) in the design 
of complex systems can help facilitate a 
Systems Engineering approach and the 
realization of the benefits and capabilities 
mentioned in Section 1.1. Section 3.2 discusses 
the application of virtual experimentation and 
visual analytics to develop an unmanned 
systems virtual testbed for Naval applications, 
summarizing the creation and use of such an 
environment.  Finally, this paper concludes on 
the importance of visual analytics and virtual 
experimentation in supporting the systems 
engineering process for system of systems 
design and decision making.  

2 Leveraging Virtual Experimentation and 
Visual Analytics to Alleviate SE and SoSE 
Challenges 

2.1 Virtual Experimentation 
Virtual experimentation is based on the premise 
that many of the traditional physical testing 
methods can be replaced by highly accurate, 
high-fidelity, fully validated simulations.  Just 
like wind tunnels are a key engineering 
resource, so are the simulations that enable 
virtual experimentation.  Made possible by the 
surge in computing technology, it is now 
possible to execute simulations in higher fidelity 
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and in greater numbers than ever before.  The 
result is that this virtualization can lead to cost 
and time improvements in the design process.  It 
should be noted that virtual experimentation is 
not expected to fully replace physical 
experimentation, only to reduce the application 
of physical experimentation to the most critical 
regions.  The virtual experimentation platform 
should be able to be used to help identify those 
regions in which physical testing and 
prototyping are required to sufficiently mitigate 
uncertainty and risk.  It is expected that virtual 
experimentation is even more critical in the 
engineering of system of systems, where 
prototyping of a fully integrated SoS is 
extremely difficult or even impossible in many 
cases.   
 
The realization of virtual experimentation 
means that the creation of reliable and accurate 
simulations of the SoS becomes a critical piece 
of the systems engineering process, and these 
simulations must be able to correctly predict 
performance for systems or scenarios which 
have never been created or observed in the real 
world.  However, the creation of the modeling 
and simulation environments that enable virtual 
experimentation is not a trivial task, and must be 
executed carefully if they are to be developed in 
a time and cost-efficient manner.   
 
Thinking about the process of modeling, there 
are several steps that are generally accepted as 
necessary to create a model.  These include (1) 
the generation of a conceptual model to translate 
the real world into a simplified representation 
that can capture desired effects, (2) the 
translation of the conceptual model into a set of 
pseudocode that can be programmed, (3) the 
programming of the model and verification that 
the programmed model matches the intent of the 
conceptual model, (4) validation that the results 
are an acceptable approximation of the real 
world phenomena, and (5) execution of the 
model to discover trends.  All of these steps are 
necessary to the virtual experimentation 
process.   
 
For a system of systems, the conceptual model 
is often represented in the form of a set of 

architecture views or models that define the 
boundaries of the system of systems, identify 
the constituent systems and services, define 
their relations and interactions (both physical 
and virtual), and describe the goals and intended 
usage of the system of systems.  Part of the 
architecting process for a virtual 
experimentation environment therefore requires 
a clear definition of the system of systems 
architectures and its intended performance, as 
this will become the blueprint for the software 
architecting of the experimentation 
environment.   
 
There are several types of modeling and 
simulation that are commonly applied to system 
of systems.  These include Markov Chains, Petri 
Nets, system dynamics modeling, discrete event 
simulation, and agent-based modeling.  Markov 
Chains, Petri Nets, and system dynamics models 
are particularly useful in discovering general 
trend and behaviors related to the flow of 
information and/or resources, and can be used to 
easily characterize the impact of stochastic 
effects on these flows.  While Discrete event 
simulations are commonly used in the modeling 
of activity or process flows for the system of 
systems, they are particularly useful in the 
analysis of logistics and supply chain 
operations.  Agent based approaches provide a 
ground-up modeling framework, which can be 
used to understand the complexity caused by the 
interactions and independent decision-making 
of entities in the system of systems.  Agent-
based modeling is often the most holistic 
approach, but it comes with a penalty of 
computational cost and time as compared to the 
other approaches discussed here.  No one 
modeling approach is correct for every problem, 
and therefore the applicability and pros and cons 
of various approaches should be considered 
carefully when selecting a modeling framework 
for the implementation of the virtual 
experimentation platform.   
 
Throughout the development and at the 
conclusion of the model-building process, 
verification and validation should be performed 
and carefully documented.  It is the desire that 
the virtual experimentation environment 
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continue to evolve and grow with the system of 
systems such that analysis results can stay 
relevant through the life cycle of the system of 
systems.  Therefore, the documentation of the 
verification and validation, as well as the 
boundaries of applicability of the environment, 
is of upmost importance.  One of the biggest 
challenges of the creation of a virtual 
experimentation environment for a system of 
systems is the validation of the environment. It 
may be that an initial validation is done using a 
SME-based approach and further aspects of the 
environment are validated in parallel with the 
development and fielding of system of systems, 
such that analysis on future upgrades can be 
well calibrated to the performance of the fielded 
system.   
 
Ultimately, the use of the modeling and 
simulation environment is the key enabler for 
the systems engineering process.  Using well-
structured experimentation practices, the virtual 
experimentation environment can become a key 
part of the systems engineering process.  It can 
be used to perform design space exploration, 
analysis of alternatives, sensitivity analysis, and 
uncertainty quantification, as well as help 
identify emergent or unexpected behaviors.  It 
does, however, require careful planning of 
experimentation, as the number of required 
cases can grow quickly with the dimensionality 
of the problem.  Furthermore, large numbers of 
runs with potentially large number of repetitions 
(when stochastic effects are present) can lead to 
large resulting data sets, which will then need to 
be understood.  As detailed in the following 
sections, Visual analytics is an important tool 
for the use of the virtual experimentation 
framework, as it allows users to understand the 
behaviors internal to the model and better 
understand and analyze the results.  The 
following subsection introduces visual analytics, 
and discusses how it can be an enabler to system 
of systems engineering.  The subsequent 
subsection addresses the complementary use of 
these two enablers to improve the overall 
systems engineering process.   
 

2.2 Visual Analytics 
Initially introduced in the National Visualization 
and Analytical Center (NVAC) 5-year Research 
and Development Agenda for Visual Analytics 
[24], Visual Analytics has since developed into 
a field of study that benefits many sectors, from 
homeland security to commerce, healthcare and 
engineering [25]. Recently defined as “new 
enabling and accessible analytic reasoning 
interactions supported by the combination of 
automated and visual analysis” [26], Visual 
Analytics builds on diverse research areas and 
disciplines grouped into three main components: 
interactive visualization, analytical reasoning, 
and computational analysis.  
 
The process illustrated in Figure 1 integrates 
both the visually enabled reasoning process, as 
defined by Meyer et al. [2] and the visual 
analytics process [3, 4, 27]. This disciplined, 
iterative, and interactive process, which 
supports scientific reasoning by  means of data 
and visual analytics techniques, is described by 
the four following main steps:  
 
Data preprocessing: The goal of this step, as 
explained by Kasik et al., is to prepare the data 
for visual representation by “identifying higher-
order characteristics in the data, such as 
relationships, trends, summaries, clusters and 
synopses” [28]. Pre-processing may include 
data cleaning, selection, integration, 
transformation, etc. [3, 28] and is usually 
achieved through the implementation of 
mathematical, statistical, and linguistic 
techniques. Once the data have been pre-
processed and transformed into efficient data 
representations, hypotheses can be generated 
(HS) and visualizations can be created (VS). 
 
Hypotheses generation: Hypotheses can be 
formulated after applying analytical and 
statistical methods to the data (HS). 
Additionally, hypotheses can drive the type of 
visualization to be used (VH) and, inversely, 
visualizations can help formulate new 
hypotheses (HV).  
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Data visualization: Visualization is a means to 
extract and present relevant information from  
large volumes of generated or compiled data 
[27] in a format that enables reasoning and 
analysis, while allowing the user to navigate the 
overall space spanned by the data [28]. As 
explained by Kasik et al. [28], data 
representations obtained during the data pre-
processing phase need to be further transformed 
(VS) in order to provide the user with intelligible 
and effective visual representations.  
 
User knowledge and insight: The knowledge or 
insight the user may gain from visualization 
(UCV) and visual data exploration, in particular, 
is enabled through visual reasoning and depends 
on the level of information and interaction 
provided as well as his/her level of expertise 
and a priori knowledge. Based on his/her newly 
acquired knowledge and exploration objectives, 
the user may decide to obtain additional insight 
both on the data and its visualization. He/she 
may recompute the data and steer the analysis in 

a different direction (feedback loop) or he/she 
may dynamically interact with the visualization 
(UV) through analytical means and techniques 
like brushing and linking, and/or panning and 
zooming, to focus on a different region or 
dimension of the data space. Exploring and 
investigating the data through a different or 
more focused angle can offer a new perspective 
on the problem, thus helping the user refine 
existing hypotheses and formulate new ones 
(UH). These new hypotheses, through the 
process of knowledge extraction, may in turn 
contribute to increased insight (UCH) and a 
better  understanding of the problem. 
 
Hence, through data manipulation, information 
visualization, and hypotheses generation and 
testing, the analysts is better equipped to learn 
about the problem and formulate informed 
decisions.  In particular, when integrated into 
the design process and the System Engineering 
approach, this process allows the analyst and 
decision maker to [8]: 

Fig. 1: The Visual Analytics and Enabled Reasoning Processes (Adapted from [3, 4]) 
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- Rapidly explore huge combinatorial 
spaces, 

- Identify potentially feasible concepts or 
technology combinations, 

- Formulate and test hypotheses, 
- Steer the analysis by requesting 

additional data as needed (data farming),  
- Integrate their background, expertise and 

cognitive capabilities into the analytical 
process, 

- Understand and quantify trade-offs 
between metrics and concepts,  

- Study correlations, explore trends and 
sensitivities, 

- Provide interactive feedback to the 
visualization environment, 

- Synthesize and share information, 
- Investigate the design space in a highly 

visual, dynamic, interactive, transparent 
and collaborative environment, and  

- Document and communicate findings 
and decisions 

 
Overall, it contributes to helping teams get a 
better understanding of the system and the 
impact that design decisions have at higher 
levels. 

2.3 The fusion of Virtual Experimentation 
and Visual Analytics 

The application of virtual experimentation and 
visual analytics are complementary to each 
other.  Visualization can be of assistance in 
almost every step of the virtual experimentation 
process. Architecture diagrams and other visual 
representations of the SoS are of assistance in 
the development of the conceptual model.   
UML and SysML are visual languages that can 
assist in the translation of the conceptual models 
to computer pseudocode, or even to actual code.  
The verification process can be greatly aided by 
a visualization of the behavior as a model is 
simulated.  A comparison between the playback 
of a simulation run and the conceptual model 
can shorten the verification process and speed 
up debugging efforts.  Visualization of model 
results can be used to aid in the overall 
validation as well as provide a means by which 
to synthesize large amounts of data into useful 

insights that can be used to support decision 
making in the engineering process.  
In SoSE, it is possible that the validation piece 
of the process must rely on the opinion of 
subject matter experts (SMEs), where these 
experts confirm that the outcomes of the 
simulation make sense and that the 
conceptualization of the model is appropriate to 
the real world representation [29].  With SME 
opinion as a critical step in the modeling 
process, the ability for the SME to clearly 
understand the internal behaviors of the model 
is imperative.  Furthermore, the complexity of 
the systems being represented can make the 
verification process extremely challenging.  A 
well put together live, visual representation of 
the elements of the model and their behaviors 
can be a key enabler for both the verification 
and the validation process of the model, and can 
further be used to gain insights on the way 
certain behaviors and actions of constituent 
systems can drive outcomes.  Visualizations of 
the live simulation can be key in identifying and 
understanding unexpected or emergent 
behaviors.  An example of a visual front end 
that was developed for these purposes is 
presented as a case study in Section 3.2.   
 
Once a virtual experimentation platform has 
been developed which has gained the 
confidence of its users through this verification 
and validation process, it can be employed to 
support a number of the functions of the 
systems engineering process.  These functions 
include design space exploration, sensitivity 
analysis, risk analysis, and decision support, all 
of which are enabled and supported by Visual 
Analytics. As such, Visual Analytics is also a 
strong enabler in the practical use of virtual 
experimentation across the systems engineering 
process.  
 
The following section presents two case studies 
that illustrate the benefits brought forward by 
Visual Analytics and Virtual Experimentation 
when applied in the contexts of system design 
and system-of-systems.   
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3 Case Studies 

3.1 Visual Analytics in Support of a Digital 
Thread Approach to Manufacturing-
influenced Conceptual Aircraft Design 

As discussed in Section 1.1, the complexity of 
today’s aerospace vehicles makes it extremely 
challenging to assess and visualize the impact 
that one change in a part will have on the 
system as a whole, or on the ability of the 
system to meet design requirements and other 
constraints. The coupling and interaction 
between design, manufacturing and production, 
in particular is one that is often difficult to 
capture.  
 
With the recent shift to more composite 
aerostructures, historical regressions and cost 
estimating relationships used to predict the 
system’s cost and producibility are no longer 
accurate. Hence, while this shift in material 
leads to important weight reductions, it brings a 
new set of issues and challenges to aircraft 
manufacturers. The ability to conduct multi-
disciplinary trades in the early stages of design 
is thus crucial to better understand the 
interaction between a vehicle’s physical design 
and its production system’s performance (e.g. 
throughput, cost, efficiency, etc.). and 
eventually ensure its feasibility and profitability.  
For this multi-disciplinary design exercise to be 
successful requires all parties involved (vehicle 
design, production, and manufacturing 
engineers along with marketing and 
management personnel) to have access to data at 
the right time and at an appropriate level of 
detail. This can be achieved through the 
implementation of a digital thread approach that 
integrates aircraft performance considerations 
with production rate, manufacturing cost, and 
financial planning metrics into a parametric, 
visual trade-off environment. This environment, 
discussed in detail in [30, 31],  allows designers 
and decision makers to: 

- Parametrically and dynamically assess 
and visualize the impact that 

performance, manufacturing and 
production constraints have on the 
design space. 

- Better understand the sensitivity of 
performance and production constraints 
on design and factory configuration 
variables. 

- Gain insight into the efficiencies of the 
different manufacturing processes. 

- Rapidly identify the critical path and 
potential problem areas in the production 
flow.  

- Trade production rates, flow times, 
utilization rates, cost, and performance 
constraints.  

- Rapidly identify design configurations 
and factory settings that lead to a desired 
throughput. 

 
The Contour Profiler presented in Figure 2 
enables the overlays of defined constraints onto 
two design variables of interest. The constraints 
and design variables can vary parametrically 
based on user inputs, opening or closing the 
feasible design space (white area) depending on 
their values. In this particular instance, the 
variables considered are high-level wing design 
variables (aspect ratio, wing area, etc.) and 
factory configurations variables (number of 
workers, tool sets, workstations, shifts, etc., for 
spar, ribs and skin lines). The data represented 
originates from the development and integration 
of models and codes into a multidisciplinary 
modeling and simulation environment [30], and 
the further use of surrogate modeling techniques 
for better integration within the visualization 
environment. An additional unique and critical 
feature of the contour profiler developed in the 
context of this research is its ability to 
concurrently visualize both traditional aircraft 
performance and production related 
constraints/requirements (number of wings 
produced/month). This allows the designer to 
observe the active constraints and identify the 
ones that prevent him/her the most from 
obtaining the largest feasible space possible and, 
consequently, from gaining the full benefits of 
the design concept. The superimposition of both 
performance and production constraints also 
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Fig. 2: Contour Profiler: Visualizing Performance and Production Constraints Parametrically 
and Simultaneously 

Fig. 3: Visualizing the Impact of a Production Constraint on the Feasible Design Space and the 
Selection of a Design 
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allows the designer to fully capture the impact 
that production may have on the choice of a 
design concept. In the example illustrated in 
Figure 3, the Contour Profiler can be used to 
rapidly assess and visualize the impact that 
adding a throughput constraint (e.g. the number 
of wings needed to be produced per month) has 
on the feasible design space and consequently 
the choice of a design. This capability helps 
ensure that the design chosen can be produced 
at the desired rate. Reciprocally, as illustrated in 
Figure 4, by superimposing production 
isoclines, the designer is rapidly informed of the 
impact that his/her chosen design point will 
have on throughput (e.g. wing produced per 
month).  
 

 
Fig. 4: Overlay of Production Isoclines 
Wing area is a major driver for the dimensions 
of each component within the wingbox 
structure; scaling up the size of the wing 
increases the necessary thickness of each 
component, the lengths of the spars, ribs, skins, 
and stringers, and potentially increases the 
number of stringers. This results in longer 
manufacturing times and consequently lower 
throughput in terms of wings produced per 
month. While trends similar to this one are 
qualitatively understood, the aforementioned 
M&S and visualization capabilities provide the 
unique ability to quantify their impact, which in 
turn helps trace and facilitate discussions and 
compromises among the various stakeholders 
involved in the design. 

3.2 A Virtual Experimentation Testbed: 
Unmanned Vehicles Collaborative 
Research Environment (UV-CORE)  

As discussed in the previous sections, one 
outstanding challenge for system of systems 
comes in the creation, verification and 
validation, and use of complex, often non-
physics-based simulation environments for 
virtual experimentation.  These environments 
are rarely simple to validate against real world 
data, and are often being used to evaluate new 
concepts or configurations in areas of the design 
space where validation data simply does not 
exist.  In these cases, verification and validation 
of the simulation requires a non-traditional 
approach.  Furthermore, because these 
simulations are often executing complex 
behavioral models, it is often difficult to 
understand the chain of events that occurred in 
simulation leading to a particular outcome, or 
even debug and interpret simulation results.  A 
traditional method of verification involves 
checking interim calculations, but this becomes 
more challenging when simulations involve 
stochastic events or agent intelligence in which 
units of the simulation have decision making 
algorithms and/or learning algorithms 
embedded in the simulation.  In these scenarios, 
it is often helpful to have a way to “watch” the 
execution of a simulation case, in the same way 
a traffic controller would watch the behaviors of 
aircraft operating in the airspace.   
 
An example of the development of a virtual 
experimentation testbed is presented here, using 
the Unmanned Vehicles Collaborative Research 
Environment (UV-CORE) developed at Georgia 
Tech and presented in [32].  UV-CORE was 
developed as a mission planning and research 
tool for aiding in experimentation of potential 
unmanned systems applications to a variety of 
Navy missions.  It takes in a user-specified set 
of unmanned vehicles (including their vehicle 
performance, sensor payloads, path planning 
algorithms, communications hardware 
configuration, etc), a user-specified enemy 
configuration (including their vehicles, tactics, 
fleet size, etc), a user-specified set of operating 
concepts for friendly forces, the chain of 
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command and information sharing structure for 
the vehicles, and the location, terrain, and 
atmospheric data. It then executes an agent-
based simulation to predict the outcome of the 
mission.   
 
Because there are stochastic effects modeled, 
each simulation case is run with repetitions to 
produce a distribution of the likelihood of 
different mission outcomes.  For example, in the 
anti-piracy scenario, the user would specify the 
quantity, speed, and aggressiveness of pirates, 
the set of unmanned vehicles being deployed to 
combat the piracy, and the functions, actions, 
and decision logic for those vehicles.  The 
simulation would produce distributions of 
measure of mission success for that mission, 
such as a distribution of successful interceptions 
of piracy attacks and the distribution of the 
number unsuccessful interceptions of piracy 
attacks, as well as distributions on other metrics 
of interest such as fuel burn, distance travelled, 
agents lost, etc.   
 
This simulation is an example of a case that 
presents many of the challenges described 
above.  The Navy is exploring the possibility of 
using unmanned vehicles for these types of 
mission, but is not currently doing so. 
Therefore, there is no available data against 
which to validate the simulation outcomes. 
Furthermore, simulation results are the product 
of a large number of interactions and decision 
between agents in the simulation, all of which 
occur in the presence of stochastic effects. As a 
result, it is extremely challenging to verify and 
validate the model, or even to clearly trace how 
a particular execution of the simulation resulted 
in a particular outcome.  Furthermore, the code 
base is very large, as it is attempting to provide 
the user with as much freedom as possible in 
defining scenarios to be explored.  In order to 
help alleviate these challenges, a visual front 
end was created for the simulation that can be 
used to allow a subject matter expert to watch 
the simulation play out, understand the 
interactions occurring between the agents, 
understand what decisions are being made at 
what time and for what reason, and identify any 
unexpected behaviors to determine their cause.   

In this particular case, it was logical to use a 
map of the area as the underlying basis for the 
visualization, as the relative positions of the 
systems were a key factor in their ability to 
successfully complete mission functions.  
Further, this allowed for easy inclusion of 
geographically-based features that impacted the 
mission, such as visualization of weather 
overlays and terrain.  Each type of systems was 
given a unique icon, which moves through the 
space as the simulation runs.  When interactions 
occur between systems, such as attempts at 
communications, colored lines are used to show 
the nature of the interactions and whether those 
were successful.  In addition, agents that have 
been lost are frozen at the spot where they have 
been lost, and colored to indicate the loss.  This 
allows a user to easily see how the mission and 
scenario evolve over time, and track the status 
of all agents. A feature was also added that 
allows the user to watch the trace of the agents’ 
movements over time and help determine the 
goodness of the path planning algorithms.  
Metrics are tracked in real time in the upper 
corner of the play window, and the full set of 
input parameters is listed in a set of menus on 
the sidebar.  All of these are interactive, such 
that all inputs can be manipulated by the user 
directly from the visualization window and a 
new run can be executed without ever leaving 
the visual environment.  This feature is 
important because it allows two cases of interest 
to be compared back-to-back using identical 
visualization settings.   An example of this 
interface and its layout is shown in Figure 5.   
 
During the verification phase, this visualization 
environment proved to be invaluable in quickly 
identifying and fixing errors in the simulation. 
In one case, a scenario had been set up for an 
underwater search and engage mission in which 
friendly forces were believed to be significantly 
more capable than enemy forces.  Upon 
execution of the simulation, however, the 
opposite was observed to occur; in no cases 
were the friendly forces successful in engaging 
the enemy, despite quickly locating and 
successfully tracking the enemy in almost every 
case.  Simply watching the simulation play out 
in the visualization environment allowed for the 
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rapid identification of the problem; the velocity 
of the torpedoes was being inadvertently 
maintained at 0 upon firing due to a typo during 
the code development. This could easily be seen 
in the visualization. When the torpedo was fired, 
the icon remained in place rather than moving 
along its expected trajectory.  This allowed the 
developers to quickly identify the exact line of 
code which contained the error, and the problem 
was resolved within minutes.   
 
Without the presence of visualization, this very 
simple issue would have been very difficult to 
identify and track.  This is only one example 
among many of how the use of visualization 
was able to accelerate the verification phase of 
the model development.  The ability to do visual 
playbacks of the simulation helps to combat the 
previously mentioned challenges with respect to 
verification and validation.  The behavior of the 
simulation can be easily verified against the 
developer’s conceptual model, and SMEs 
opinion can be easily gathered by watching 
mission scenarios play out in the simulation to 
determine if the model is correctly representing 
the real world. In this case, this process was 
completed multiple times internally by the 
Georgia Tech team, after which the simulation 
was handed over to Naval partners for further 
evaluation.   
 
As a second use of the environment, the 
visualization was implemented in an app form, 
such that it could be run on a touch table, as 
shown in Figure 6.  This was done to allow for 
easy collaborative use of the simulation 
framework. In this case, users can gather around 
the table and watch mission scenarios play out, 
discussing behaviors which are observed as they 
happen.  Experiments and scenarios of interest 
can be set up on the fly, and the group can 
collaborate on both the development of the 
scenario and the interpretation of the results.  
This allows the simulation to double as a 
mission planning tool once the SoS is deployed 
operationally, as discussed in [32]. Furthermore, 
this front end interface allows users to add new 
types of systems to the simulation on the fly, 
and to quickly update the simulation as the SoS 
evolves.   

 
  
 
 
 
This helps to combat the challenges of the 
continuous evolution of the system of systems, 
and provides a way to evaluate potential SoS 
upgrades or modifications prior to 
implementation.  As an example, the 

Fig. 5: Example of Visual Interface for 
Simulation 
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environment was used to perform a study on the 
application of collaborative path planning 
methods for underwater search.  Several 
collaborative and non-collaborative approaches 
were compared, and a set of requirements for 
effective collaboration on underwater search 
was able to be developed. The reader is referred 
to [32] for a description of the use of the 
environment for a system of systems alternative 
analysis.   
 

 
Fig. 6: UV-CORE Deployed on a Touch 
Table 
These examples provide a subset of the ways 
that using a visual interface to virtual 
experimentation environment can help to 
perform SoSE functions more effectively and 
more efficiently, particularly during the 
development and use of a virtual 
experimentation testbed.    
 
The particular virtual experimentation 
environment presented in this case study has 
been used to support a number of subsequent 
studies beyond its original application, 
supporting the idea that a virtual 
experimentation environment can be created 
which can be re-used across multiple analyses 
and scenarios.  The UV-CORE environment 
was initially designed for evaluation and 
mission planning for the use of unmanned 
vehicles in surface warfare, but was later 
extended to include similar functionality for 
underwater search missions, as well as anti-
submarine warfare missions [32].  It was then 
leveraged by another research team to perform 
assessment of collaborative control strategies 
and applicability of these strategies to maritime 
search and rescue. It is currently being used by a 

third research team as a platform for the 
assessment of the use of directed energy 
weapons from maritime platforms.  The 
modular design of UV-CORE has allowed these 
extensions to be possible, but has also made it a 
desirable starting point for analyses of system of 
systems using similar components and/or 
system behaviors.  Overall, UV-CORE presents 
a case in which a virtual experimentation 
environment was successfully developed, used, 
and extended to be a living testbed for a system 
of systems.   

4 Concluding Remarks 

This paper has presented a case for the 
application of virtual experimentation and visual 
analytics to the systems engineering process for 
complex systems and system of systems.  Some 
of the key challenges tackled by this approach 
include the lack of sufficient data available 
during system design, difficulties in conducting 
traditional prototype-based, iterative testing and 
evaluation cycle for these systems, and 
difficulty managing the dimensionality of these 
problems.  The primary argument put forth in 
this paper is that the complexity and size of 
these types of problems requires a new approach 
to systems engineering in order to manage cost 
and schedule concerns, and that the application 
of virtual experimentation and visual analytics 
are a necessary part of this transition. Two case 
studies were presented to demonstrate both the 
feasibility and value of applying such 
techniques during the systems engineering 
process.  In both cases, it was demonstrated that 
a combination of a virtual experimentation 
platform with a visual analytics environment 
could speed up the systems engineering process 
and provide meaningful engineering insights to 
support decision making.  The first case study 
focused on the value of using a visual analytics 
approach to support decision making in the 
systems engineering process.  The second case 
study demonstrated the feasibility of creating 
and validating a system of systems virtual 
experimentation environment, and demonstrated 
the integration of visual analytics to benefit the 
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simulation development and execution effort. 
Furthermore, the second case study 
demonstrated the feasibility of creating a virtual 
experimentation environment that is extensible 
across multiple problem areas, thus supporting 
the idea that these environments can become 
shared resources supporting multiple efforts. 
Overall, this paper recommends the broader 
application of these methods on complex 
systems and system of systems engineering 
problems.   
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