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Abstract  

An increasingly autonomous (IA) system is one 

that incorporates more automation and/or 

autonomous functions than are in use today, but 

are not yet fully autonomous. The authors 

identify the safety requirements and the changes 

necessary in systems safety assurance methods 

and system architectures to account for the 

reduction, change and/or elimination of the 

human roles in the IA system, through machine 

learning from simulated and predicted flight 

trajectory data. The approach of this study has 

two steps. First, the simulated flight trajectory 

data and the trajectory prediction made by 

NASA’s computer system are used to train an 

algorithm to identify when, where and how the 

maneuverings due to traffic management 

initiatives (TMI) occurs. This step has more 

meaning when people deal with the real world 

data where the explicit information about TMI is 

not available. The second step is to analysis the 

prediction error with/without maneuverings due 

to TMI. The prediction error is defined as the 

difference between the predicted trajectory and 

the simulated actual trajectory in the directions 

defined as along the track, across the track, and 

in altitude.      

1 Introduction  

An increasingly autonomous (IA) system is one 

that incorporates more automation and/or 

autonomous functions than are in use today, but 

are not yet fully autonomous. Refer to [1] for 

more information about the IA system. The IA 

systems for aircraft, air traffic management 

(ATM) and other ground-based tasks are 

expected to be significantly safer, more reliable, 

more efficient, more affordable, and/or capable 

of previously unattainable missions. However, 

the system safety assurance methods and system 

architectures, which account for the reduction, 

change and/or elimination of the human roles in 

the IA system, need to be investigated. We 

focused on the safety assurance for IA system 

applied in the en route part of the traffic flow 

management (TFM).  

1.1 Data  

We use two groups of data, one for developing 

the algorithm and the other for cross validation. 

Each data contains three parts, one is for actual 

flight trajectory, one is for predicted trajectory, 

and the other is for the TMI information. The data 

for true trajectory record the flight status every 5 

seconds. The status includes altitude, longitude, 

latitude, air speed, heading direction, air craft 

type, airline, and so on. The predicted trajectory 

is calculated based on the current flight status, 

and predict for 30 minutes ahead, record the 

predicted status of the flight every 5 seconds. The 

predictions updated every 60 seconds. The data 

for TMI record the flights that involved, the 

maneuvering request type and the time the 

requests were sent out.  Although the actual 

trajectory data in this study is not real world data 

but simulated data, based on how predicted 

trajectories are obtained, it does not sabot our 

purpose. To apply the algorithm, we developed 

in this study to real data is our next step of 

research. For real world data, we could have 

actual trajectory data, predicted trial trajectory 

data, but we will not be able to have the TMI 

information data explicitly in most situations. 

This makes the algorithm developed for 
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identifying maneuverings in flights due to TMI 

necessary to analyze the prediction errors in real 

world data. 

1.2 Approach 

To study the safety assurance of the IA system, 

we need to know the performance of the 

prediction algorithm/system.  We found that 

most of the prediction errors with large absolute 

values occur when there are maneuvering as 

suggested by traffic management initiatives 

(TMI). With simulated data as what we have 

now, it is not hard to distinguish these errors from 

all the others. Then we will be confident to use 

the significantly smaller value for the prediction 

error (without TMI) to make decisions such as 

whether it is necessary to send out a TMI due to 

the computer based prediction. If we do not 

remove the influence in prediction errors from 

the maneuvering due to TMI, the estimated value 

of the prediction errors will be significantly 

larger. Consequently, the IA system will be very 

inefficient in airspace usage, sometimes even not 

possible to work.  

 

Therefore, identifying maneuverings due to TMI 

from actual trajectory and prediction data and 

analysis of prediction errors related to or not 

related to the maneuverings due to TMI are the 

two main task of this paper. These result will be 

the base for further study. The approach of this 

research is illustrated in below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It means that we will use actual trajectory data, 

predicted trial trajectory data and TMI data to 

construct identification rules for identifying TMI 

in flight. And the prediction error analysis will be 

done in two ways: first, assume that we have TMI 

information, which is easier; second, we will 

assume that we do not have TMI information, 

and use identification rules to divide the 

prediction errors into two part, with TMI and 

without TMI. The results by two ways will be 

compared.  

 

In the next section, we will discuss the TMI 

identification in details, and the prediction error 

analysis will be given in section 4. In section 5, 

discussions on the results we found and further 

researches are given.  

2 Identify Maneuvering due to TMI  

We consider twelve different types of 

maneuverings due to TMI in this paper. They are: 

 

Type 1: During initial climbing, ask the aircraft 

to level at some altitude for a while and then 

climbing to its level flight altitude.  

 

Type 3: During level flight, ask the aircraft to 

climb 1000 feet and stay at that altitude for a 

while and then descend to its original altitude.  

 

Type 4: During level flight, ask the aircraft to 

descend 1000 feet and stay at that altitude for a 

while and then climb to its original altitude.  

 

Type 5: Change course. 

 

Type 7: descend to some altitude and then level 

flight for a while. 

 

Type 8: Accelerate. 

 

Type 12: Change course. 

 

Type 13: Change course. 

 

Type 15: Keep current status. 

 

Type 16: Change speed. 
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Type 17: Change course. 

 

Type 26: Change course. 

 

Due to the natural of the different types of 

maneuverings, the identification algorithms are 

different. We separate them into altitude, 

direction, speed and unidentifiable categories.  

2.1 Altitude Maneuverings  

In flight, the aircraft usually first climbs, then 

levels off and cruises at some altitude, then 

descends. Therefore, the change in altitude itself 

is not sufficient to be a signal for locating this 

type of maneuvering. 

 

Comparing the altitude change in flight without 

and with TMI, we found that it is necessary to 

divide the flight into climbing, level flight, and 

descending parts. Once we can do this, we will 

be able to tell whether there is any “unusual” 

maneuver in altitude, and these unusual ones 

very likely are due to the TMI. 

 

Fig. 1.: This figure shows a typical pattern 

(upper) of altitude (in black) and speed (in 

red) and a pattern with type 1 TMI (lower) of 

altitude (in black) and speed (in red). The 

horizontal axis represents the time and use 

second as unit. The vertical axis on right 

marks the altitude and use feet as unit, while 

the vcertcal axis on left marks the air speed 

and use knot as unit. The blue circles indicate 

where the climbing stops and level flight 

begins or the level flight ends and descending 

starts. Denote these points as LS and DS 

To divide the flight into three parts, we need to 

locate the points marked by blue circles in Fig. 1. 

Notice that these points cannot be identified by 

change point identification methods in time 

series analysis, since the series are too “smooth” 

to be analyzed by general time series algorithms. 

Due to that there’s no explicit information about 

which points are the “change” points, to find 

them is an unsupervised learning. The learning 

process is illustrated in below: 

 

 

 

 

 

  

 

 

 

The first and second steps are straight forward, 

while the third step need to distinguish whether 

the altitude difference in 5 second is due to 

random “bumpy” or “intentional maneuvering”. 

This is a unsupervised machine learning task and 

the typical solution relies on the cluster analysis 

of the difference data.  

 

Fig. 2.: Empirical Probability Density of the 

Difference in Altitude. 

Calculate the 5 second difference in altitude 

Locate the points with sign changes in difference 

Denote the set of these points by {CP} 

Choose LS and DS from {CP} 
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It is not hard to see that there are 4 modes in the 

density. The highest mode almost symmetrically 

around 0 can be explained as the random 

“bumpy”. The positive mode can be explained as 

the average altitude change in 5 seconds when 

there is intentional climbing. By eyeball, this 

mode locates around 75, which corresponds to 

climbing 900 feet per minute. Look at the plot 

more carefully, we can see that the density curve 

is quite flat on the right hand side of this mode 

and then dropping rapidly when greater than 

about 180, which corresponds to climbing about 

2200 feet per minute.  On the negative side, there 

are obvious two modes. The one around -50, 

corresponds to descending 600 feet per minute, 

while the one centered at -200, corresponds to 

descending about 2500 feet per minute.  

 

To formally find the mean and standard deviation 

of difference in altitude around each mode, we 

apply classical k-mean method and Bayesian 

nonparametric method to this data. The result 

from k-mean study is: 

 

Fig. 3.: Choose number of clusters based on 

the change of sum of squares within groups. 

By the rule of cluster analysis, we are in favor of 

choosing 3 clusters, which is different from what 

we saw by eyeball and different from what we 

would like to see based on our prior knowledge 

on aviation. Mathematically, this is due to the 

fact that the k-mean method is under Gaussian 

distribution assumption. However, for 

identifying LS and DS purpose, 3 clusters could 

be sufficient to distinguish the “intentional” and 

“unintentional” altitude change. The completed 

cluster analysis result is listed in the table below: 

 

Table 1.: Cluster Analysis for Altitude Change 

 

Num. of 

Clusters 

Cluster 

Center 

Mean Std. 

Dev. 

Num. 

of Data 

3 

 

1 1.09 31 936035 

2 126 46 677187 

3 -208 58 355555 

4 1 131 44 616583 

2 -215 55 325428 

3 -78 30 135292 

4 13 25 891474 

5 1 -313 61 56683 

2 -6 23 802105 

3 81 22 506667 

4 -186 31 304576 

5 169 32 298764 

 

Based on the table above, we can conclude that 

the 5 cluster is a better fit for this data and for our 

purpose. Although the estimation of each groups 

show some biasness, the separation of the 

clusters is significantly better than the models 

with only 3 or 4 clusters. By the direction of the 

biasness, we can see that the biasness came from 

the extreme values in raw data, which somehow 

violated the Gaussian assumption. Refer to [2] 

for more technical details. 

 

The conclusion is: when the change in altitude in 

5 seconds between -120 to 40, then it is 

unintentional altitude change, otherwise 

intentional. Now we have, 

P(IA|UA) = 0.025 , 
P(UA|IA) = 0.05 , 

Where IA denotes the intentional altitude change, 

UA denotes the unintentional altitude change, 

and P(IA|UA)  denotes the probability that an 

unintentional altitude change being identified as 

intentional altitude change. We keep the 

probability of unintentional maneuvering being 

identified as intentional maneuvering even lower 

than the opposite error in order to achieve the 

more conservative result, which in turn means 

safer rules.   
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Equipped with the above rules for distinguish 

intentional and unintentional altitude change, we 

are able to find the LS and DS points and later 

identify the Type 1, 3, 4 and 7 TMI during flight. 

The identification results are summarized in the 

table below: 

 

Table. 2. Identification Result for Altitude 

Maneuverings. 

 

 Type 

1 3 4 7 

Missing 

Rate 

0.031 

(0.034) 

0.067 

(0.065) 

0.062 

(0.060) 

0.001 

(0) 

False 

Rate 

7.6e-6 

(9.1e-6) 

0 

(0) 

0 

(0) 

1.9e-6 

(1.2e-6) 

 

Missing rate denotes the ratio that the number of 

TMIs that are not identified versus the total 

number of the TMI in the data. It is not surprised 

to see that the rate on average is almost the same 

but a bit higher than P(UA|IA), since there’re 

more criteria to be satisfied to be identified as a 

TMI. The false rate denotes the number of the 

identified TMI’s that does not exist versus the 

total number of the time points with non-zero 

altitude change. The false rate are significantly 

less than the P(IA|UA), which is around 0.025. 

This is also because of to be identified as a TMI, 

while it is not, many more conditions need to be 

satisfied. Therefore, the false rate is dropped to 

almost zero.  

 

The upper number in each cell are the ratio 

calculated based on the training data set, while 

the lower numbers in brackets are calculated 

based on the data for cross validation. 

 

The ultra-goal of this research is to quantify the 

prediction error. Therefore, the acceptable low 

rate of missing identification combined with the 

almost zero false positive rate, is what we want.  

 

The following subsections follow the same 

identification logic. Hence, similar discussion 

will be omitted.   

2.2 Direction Maneuverings 

Compared to other types of maneuverings, 

direction maneuverings are quite obvious to be 

identified. However, direction maneuverings 

cannot be identified by trajectory data itself only. 

The predicted trial trajectories are needed.  

 

To identifying this type of maneuverings, 

supervised and unsupervised learning techniques 

are both applied and compared. The 

unsupervised study is similar to the one in 

previous sub-section. The detail is omitted here. 

The unsupervised study is a classical logistic 

regression, due to the fact that these type of TMI 

normally with time lag very short, such as 10 

seconds, unlike the time lag in type 1 and 7, 

which vary a lot, from a couple of seconds to 

more than 10 minutes. The uncertain length of 

time lags makes it very difficult to subtract the 

“feature” from the data for supervised study.  

 

Other than the above two, the typical patterns of 

these types of TMI maneuverings and the pattern 

for one common situation that also introduces 

large valued prediction direction errors can be 

distinguished relatively easily. Refer to the figure 

below: 

 

 

Fig. 4.: Pattern of Direction Maneuvering. 
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In the figure above, the cross marked with 13 

shows the time spot when type 13 TMI was sent 

to the aircraft. The black folding line express the 

flight heading direction, which first flies to west 

then eventually turned to south east. The red, 

blue and green lines show the prediction errors in 

direction compared to the actual trajectory. The 

red line corresponds the prediction errors for 3-

minute prediction, while the blue for 2-minute 

prediction and green for 1-minute prediction. The 

Y-axis on the left hand side marked with heading 

direction in degrees, and the Y-axis on the right 

hand side marked with the degrees for prediction 

errors in direction.  

 

It is obvious that the prediction error related to 

TMI for heading direction has “flat top”, while 

the direction errors due to the usual turnings have 

“sharp top”. It is not necessary that the TMI 

maneuvering has larger valued prediction errors 

than the prediction errors for normal flight. These 

sharp large prediction errors are due to the earlier 

or later actual turning compared to the predicted 

time point for starting turning.  

 

With all these being said, the identification 

results are summarized in the table below: 

 

Table. 2. Identification Results for Direction 

Maneuverings. 

 

 Type 

5 12 13 17 26 

Missing 

Rate 

0.04 

(0.04) 

0.13 

(0.11) 

0.055 

(0.031) 

0 

(0) 

0 

(0) 

False 

Rate 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

 

From the table above, we can see that the 

identification of maneuverings due to these types 

of TMI is quite good.  

2.3 Speed Maneuverings 

Type 8 and 16 TMI’s belong to this category, 

which are the hardest ones to be identified, 

especially when Type 16 TMI occurs around the 

initial descending point, where the prediction of 

air speed around this point is very rough even 

without any TMI interruption. To see this, please 

refer to the figure below: 

 

Fig. 5.: The top is the altitude of the flight and 

its prediction. The bottom is the air speed of 

the flight and its prediction. 

It is not hard to see that the prediction errors 

related to the speed change in descending are 

large. The prediction error in speed also affects 

the prediction in altitude significantly. However, 

with or without TMI in speed during descending, 

the prediction errors around initial descending 

point are always large. Therefore, the first rule 

for identifying speed TMI is: do not rely on the 

prediction errors in altitude. Second, although the 

patterns of the airspeed are much noisy than other 

characters, it is still very helpful to compare the 

pattern to a typical pattern. Of course, in this 

situation, the typical pattern cannot be seen as 

often as other typical pattern for other values, 

such as altitude. Refer to Fig. 1., on the top part 

of the figure, there is a red line, which is the 

typical pattern for airspeed. Using the similar 

approach to locate the turning points at the ends 

of two flat part of the line is a key in 

identification.  

 

The identification results for speed type TMI are 

summarized in the table below: 
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Table. 3. Identification Results for Speeds 

Maneuverings. 

 

 Type 

8 16 

Missing Rate 0.34 (0.42) 0.41 (0.39) 

False Rate 0.0001  (0) 0.0001 (0) 

 

The speed type TMI is really hard to be identified 

without increasing the false rate. However, we 

still can achieve the low false rate. This means 

that we will not sacrifice the safety assurance 

when we use the prediction error results we have 

based on what we found from the identification 

to construct the new safety assurance rules for IA 

system.  

2.4 Unidentifiable Maneuverings 

Basically, the unidentifiable maneuverings are 

the ones that related to some TMI, but we cannot 

distinguish them from normal flight trajectory 

without TMI. In some situations, for example, 

type 15 TMI, which is basically “keep your 

current status”, or some tiny small direction 

changes in direction type TMI, these 

unidentifiable maneuverings obviously will do 

no harm to the prediction error analysis. For 

some other situation, such as the ones described 

in subsection 2.3, it is not so obvious that the miss 

identification will not sacrifice the efficiency. 

Notice that, the unidentifiable actually means 

that the differences between actual trajectories 

and predicted trial trajectories have no significant 

difference between the ones relate to TMI and the 

ones do not relate to TMI. Hence, Treat the 

unidentifiable maneuverings as there were no 

TMI, actually does not increase the standard 

deviations, or average or extreme absolute values 

of the prediction errors. 

3 Trajectory Prediction Errors   

The prediction errors have been studied by 

Lauderdale et. al. [2]. In that paper, the authors 

emphasized on finding out which is the most 

significant source of the prediction errors in 

trajectory prediction. However, the TMI related 

maneuverings did not be studied then.  

 

The prediction errors for a ∆t prediction are 

defined as vectors from the predicted position at 

time t+∆t, where t is the current track time, to the 

true trajectory position at time t+∆t.  

 

By the nature of flight trajectories, we project the 

vectors into three dimensions: parallel to the 

predicted trajectory in the horizontal plane 

(along-track), perpendicular to the predicted 

trajectory in the horizontal plane (cross-track), 

and in the vertical axis (altitude). Note that the 

definition of the error uses the predicted 

trajectory as the base instead of the "true" 

trajectory. This looks unusual, but has several 

benefits. First, for a real time system we are not 

able to get the "true" position for any future state, 

but knowledge about the probability distribution 

of the future position based on the prediction can 

be used to improve predictions. Second, it avoids 

confusion about the heading due to the possibility 

that there is a direction change in the near future. 

Also note that we define the along- and cross-

track errors in a horizontal plane instead of a 

plane parallel to the trajectory. This brings 

mathematical simplicity to the data analysis and, 

by the nature of en route flight, the along and 

cross errors defined in parallel to the trajectory 

plane have very marginal difference to what we 

defined. 

 

Table 4: Standard deviation with and without 

partitions. 

Standard 

Deviation 

Without 

TMI 

With 

TMI 

Cross track 

error 

11.87 

( 11.92 ) 

435.76 

( 435.75 ) 

Along track 

error 

66.55 

( 78.32 ) 

267.45 

(259.11) 

Error in altitude 201.87 

(220.28) 

307.45 

( 289.72 ) 

 

The above table shows the difference in 

prediction errors for trajectories with TMI 

influence or without. The value in the brackets 

are calculated based on the identification, while 

the other value is based on the “perfect” 

information.  
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The two groups of values are close to each other, 

which means our identification results is quite 

good for the purpose of analyzing prediction 

errors.  

 

Based on the standard deviations calculated, we 

have the following two claims: 

In average, the maneuverings due to TMI 

contribute significant amount errors to the 

prediction.  

 

The relatively small shrinkage in standard 

deviation for errors in altitude, reflects the 

difficulty we discussed in sub-section 2.3. 

 

The identifiable property for TMI related 

maneuverings and the significant shrinkage in 

prediction errors standard deviations while 

removing the influence from TMI, shows that 

these results are very helpful for construct the 

safety assurance for IA system.  

5 Further Research  

A straight forward improvement of this research 

can be done by using more sophisticated 

Bayesian nonparametric method to carry out the 

unsupervised learning in clustering the altitude 

differences and other similar values.  

 

We have seen that the Gaussian assumption does 

not fit very well for our data, which induces 

biasness and rough estimation of number of 

clusters and the center location of each of the 

clusters. The Bayesian nonparametric methods 

are much more flexible, which does not rely on 

any particular assumption on probability 

distributions, but the continuity of the 

distribution and some mild tail properties on the 

distribution. Refer to [4] for more details on this 

method. However, the computation cost is very 

high. For example, a single run for a univariate 

value with about 0.5% of the total sample size 

will take about 6 hours on a computer with 6th 

generation i-7 CPU and 32 Gb memory. 

 

To illustrate how this works, the author worked 

on a small subset of the altitude data for 10,000 

MCMC steps. The plot for checking the 

convergence of the algorithm.  

 
Fig. 6.: MCMC convergence check (part of the 

plots). 

 

 From the plot, we can see that the number of the 

clusters are not quite converges, which needs 

more steps (time) to run, or needs larger upper 

bound of the total number of the clusters. The 

location of the center of each clusters has 

converged. Therefore, although this Bayesian 

algorithm has not been tuned well, we can use its 

results do some comparison with the classical 

methods.  

 

Although not quite converged, the estimation of 

the number of the clusters is 8.79 with standard 

deviation 1.03. This is much more than what 

classical method suggested. Considering the fact 

that the Bayesian nonparametric methods almost 

always over estimate the number of clusters, we 

should not be surprised here. The tricky point is 

that to achieve the flex shape of the distribution 

for each cluster, the Bayesian methods 

essentially use the mixture of several closely 

located distributions to represent one cluster. In 

this way, they can better catch the location of the 

center of the clusters and the shape of the 

distributions for these clusters. Of course, the 

variance or standard deviation of each cluster 

will have better estimation as well. 

 

Look at the estimations for the center of the 

clusters: (the left column is the estimated value 

and the right column is the standard deviation.) 
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theta[1]   7.928e+01 2.833e+00  
theta[2]  -1.983e+02 1.002e+00  
theta[3]   2.168e+02 4.422e+02  
theta[4]   2.517e+00 1.122e+00  
theta[5]  -4.514e+01 2.703e+02  
theta[6]  -9.479e-02 3.098e-02  
theta[7]  -5.225e-03 8.698e-04  
theta[8]  -2.659e+02 4.013e+00  
theta[9]   1.531e+02 8.560e+01  
theta[10] -2.250e+01 3.801e+02 
 

We can see that there are 3 centers around 0, with 

the largest has absolute value about 2.5 and the 

other two’s absolute value way smaller than 1. 

This is better or at least as good as the classical 

estimation, which are 1.09, 13 and -6. There are 

another center around 79.82, another two around 

216.8 and 153.1. All of them look closer to the 

empirical modes than the classical estimates. On 

the negative side, there are -198.3, -45.14 (with 

very large standard deviation 442.2), -265.9, and 

-22.5 (with large standard deviation 380.1). Such 

estimates already fit the data better, in the sense 

that their values are closer to the modes and their 

standard deviations reflect better the flatter part 

of the empirical density.  

 

Therefore, we can conclude that the Bayesian 

nonparametric methods are promising for this 

research. Once we have enough resource to tune 

the algorithm, we should apply these methods.  

 

Another study will be carried out on the 

correlation structure of the prediction errors. We 

only analyzed the prediction errors separately in 

one of the three dimensions. Nevertheless, 

there’s correlation structure among them, as 

showed in the figure below: 

 

Fig. 7.: Correlations among prediction errors 

in three dimensions. 

By studying the multivariate property of the 

prediction errors, we should be able to obtain 

more precise prediction errors, which in turn will 

let the airspace be used more efficiently.  

 

The ultra-goal of prediction analysis is to 

estimate a 3-D distribution of the errors. This 

work involves density estimation for big data. 

Therefore, the computation cost issue will be the 

barrier again.  

 

The maybe most important further research is to 

apply the identification rules we found to the real 

world trajectory data. The real world data may 

have some properties we haven’t noticed yet. 

Without studying on the real world data, all the 

results we have now are of limited meaning.  

6 Summary 

We constructed identification rules/algorithms to 

identify maneuverings due to TMI in flight with 

trajectory data. The identification is quite 

successful in the sense that most of the 

maneuverings with TMI have been identified 

with false rate almost 0.  

 

We also analyzed the prediction error, with the 

full information about TMI and without such 

information. The results are similar, which again 

shows that our identification was successful.  
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Based on the findings in both identification and 

error analysis, we are at a stage ready to deal with 

the real world trajectory data, where information 

about TMI is not explicitly available.  

 

Some issues in algorithms, computation and 

further study on prediction errors has been 

discussed.  
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