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Abstract  

Bird flight is an area of significant interest due to 

the utilization and control of unsteady 

aerodynamic effects via flapping. Although 

modern aerodynamics were originally inspired 

by bird flight, contemporary computational and 

experimental work associated with flapping 

flight focuses on insect flight. The purpose of the 

present paper is to improve the understanding of 

avian flight by investigating upstroke downstroke 

velocities, feather separation, and ultimately 

develop a nondimensional model to predict lift 

and drag forces for seagull flight. The variation 

in upstroke-downstroke velocities were found to 

decrease both lift and drag as the relative 

upstroke velocity increased, but significantly 

increased the lift:drag ratio for the same flight 

regime. Feather separation was found to 

increase lift with maximum lift at a separation 

angle of 25∘, while drag increased linearly. A set 

of nondimensional equations found were using 

regression analysis that can be used as a design 

tool to predict both lift and drag without 

expensive experiments or excessive 

computational processing requirements. 

1 Background and Introduction  

The unsteady aerodynamic effects of bird flight 

is of interest to utilize and control  flapping in 

bioinspired applications [1–3]. The ability to 

control flapping flight can afford opportunities to 

have a higher overall efficiency versus that of 

fixed wing flight at biological locomotive scales 

[4,5]. Within the realm of avian flight, there are 

two main wing gaits for sustained locomotion 

defined by the vortex structure in the wake: 

continuous-wake and ring-wake [6]. Most birds 

utilize a vortex-ring gait for acceleration, 

exhibiting significant vertical displacement. 

Depending on the size and morphology, some 

birds are able to utilize a continuous-vortex gait 

for long duration flight to improve efficiency 

[7,8].  

 There have been numerous experimental 

and computational studies of bird flight. Modern 

engineering experimental investigations of avian 

locomotion focused on describing and 

visualizing ring and continuous-wake gaits and 

improving the understanding of the energetics 

required for sustained flight [9–11]. The 

kinematics of morphologically different species 

of birds were captured at various flight velocities 

to gain a better understanding of the biological 

transition from ring-wake to continuous-wake 

flight, determining for some smaller birds that no 

transition occurred or that it only occurred in 

gliding scenarios [6,12–15]. The flapping 

transitions were found to be motivated by 

improvements in energetic efficiency as the 

flight velocity and required flight distances 

increased [7,8,16,17]. 

At present, to the authors’ knowledge, 

avian-specific computational studies are 

relatively limited. Three papers investigate the 

effects of unsteady aerodynamics on avian flight. 

Willis et al. [17] compared a Betz criterion code 

and an unsteady, potential flow solver to 

determine power optimal wake structures and 

associated kinematics. Willis et al. [18] also 

investigated formation flight and ground effects 

on flapping aerodynamics. Han [5] utilized a 

panel method to describe the unsteady motion of 

a seagull wing to determine the effects that wing 

joints had on the overarching aerodynamics 

experienced by a seagull. Moelyadi and Sachs 
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[19] captured the dynamic yaw stability 

derivatives for a gliding seagull using the 

unsteady Navier-Stokes equations.  

The purpose of the present paper is to 

improve the understanding of avian flight by 

investigating the effects of upstroke-downstroke 

velocity, feather separation, and develop a 

predictive set of equations for lift and drag for 

continuous-vortex seagull flight. 

2 Kinematics 

An important element to model flapping motion 

is the implementation of the kinematic equations. 

Studies have shown that kinematic modeling of a 

bird wing requires the simplification of the 

motion into two interlinked joints as shown in 

Error! Reference source not found.. The 

primary wing section creates thrust and lift, and 

the secondary section produces lift. The lift 

produced by the primary section is less than that 

of the secondary section.   

The primary wing section has three 

degrees of freedom: flapping (roll axis), 

sweeping (yaw axis), and pitching. These 

equations are: 

 

 𝑉2,𝑦 =  2𝜋𝑓𝜓 
1

𝑟 sin(2𝜋𝑓𝑡) 

+2𝜋𝑓𝜓 
2

𝑟2 sin(2𝜋𝑓𝑡)                    (1)                                                     

𝑉2,𝑥 = 2𝜋𝑓𝜙𝑟2 sin(2𝜋𝑓𝑡)                (2)                                                                       

𝜃2̇ = 2𝜋𝑓𝜃2cos (2𝜋𝑓𝑡)                  (3) 

  

where 𝜓 
1

is the amplitude of the angular 

displacement (as shown in Fig. 1), r is the 

distance between the shoulder joint and the cross-

section being modeled (the midpoint in all  

simulations), f is the flapping frequency, and Δ𝑡 

is the time step. The vertical velocity, 𝑉2,𝑦, 
models the flapping motion. The horizontal 

velocity, 𝑉2,𝑥, models the sweeping motion. The 

angular velocity, 𝜃2̇, models the pitching motion. 

With equations (1), (2), and (3) the kinematics of 

a bird wing are properly modeled using the 

parameters determined by Liu et al. [20]. 

 

 
Fig. 1. Schematic for the motion of the primary 

and secondary wing sections.  

 

The secondary section is modeled as a 

single degree of freedom at the shoulder joint, it 

is actually a rotational velocity since it is a[6] 

rotation at the shoulder, but for a two-

dimensional simulation is modeled as a 

translational velocity. The equation for the 

secondary wing section motion is: 

 

  𝑉1,𝑦 = 2𝜋𝑓𝜓 
1

𝑟1 sin(2𝜋𝑓𝑡)              (4) 

 

where 𝑉1,𝑦 is the vertical translational velocity.  

2 Numerical Methods  

The commercial software ANSYS Fluent (v. 15) 

is used to solve the velocity and pressure fields 

around a dynamic two-dimensional wing cross-

section. The unsteady, incompressible 

formulation of the Navier-Stokes equations is 

employed, yielding the continuity equation: 

 
𝛻 ∙  𝑣⃗ =  0            (5) 

 
where 𝑡 is time, 𝑣⃗ is the velocity vector and 𝜌 is 

the fluid density. Neglecting gravitational 

effects, the momentum equations are: 

 
𝜌[ 𝜕𝑣⃗/𝜕𝑡 + 𝑣⃗ ⋅ 𝛻𝑣⃗] =  −𝛻𝑃 +  𝛻 ∙ 𝜏̿          (6) 

 

where 𝑃 is the pressure and 𝜏̿ is the fluid stress 

tensor.   

The segregated pressure-based Navier-

Stokes (PBNS) solver is used to simulate the 

incompressible flow [21] using the SIMPLE 

algorithm for the pressure-velocity coupling. The 

gradients are discretized using the least squares 

cell based (LSCB). The momentum equations are 
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discretized using the second-order upwind 

scheme and time is discretized using a first-order 

implicit method. The absolute convergence 

criteria are set to 10−5 . The time step is 

determined using a modified version of the 

Courant-Fredrichs-Levy (CFL) number to suit 

the implementation of kinematic motion:  

 

𝐶𝐹𝐿 =
√{𝑉𝑥

2+𝑉𝑦
2}Δ𝑡

Δ𝑋
    (7) 

 

where Δ𝑋 is the smallest cell size. 

To perform a computational analysis a 

mesh is generated using ANSYS ICEM. An 

S1223 airfoil accurately represents the cross 

section of both the primary and secondary bird 

wing sections so it is used in the CFD model [20]. 

In order to generate the mesh, point data is input 

to ICEM and the geometry is completed by 

connecting the points. A fluid flow region is then 

created around the airfoil and a triangular mesh 

is generated within the fluid flow region. The 

triangular mesh allows for dynamic meshing, 

which is needed to model the flapping wing.  

An unstructured finite-volume mesh is 

generated around the cross-section and is 

updated with each time step to allow for proper 

mesh motion, using a combination of Laplacian 

smoothing and remeshing functions to retain 

mesh density around the wing at all points in time 

during the flapping motion. Fig. 2 shows the 

unstructured 2D mesh surrounding the wing 

profile. The fluid used in the simulations is air 

with a density of 1.225 kg/m3 and dynamic 

viscosity of 1.79 × 10-5 kg/m-s. Air enters the 

computational domain along the right boundary 

with a uniform velocity specified. The upper and 

lower boundaries of the fluid domain use a slip 

condition. The left side of the fluid domain is 

specified as ambient (0 gauge pressure). The 

surface of the airfoil is modeled as a no-slip 

condition. The full domain size is 8c  11.6c, 

where c is the airfoil chord length equal to 1.72 

cm. 

In order to facilitate wing motion, a 

dynamic mesh is used with smoothing and re-

meshing so the mesh does not tear and accurate 

results are obtained. A diffusion smoothing 

factor is used for the dynamic meshing to diffuse 

cell displacement along interior nodes. Re-

meshing checks average cell size and 

displacement and adds or moves cells to maintain 

a consistent mesh.   

2.2 Solution Validation 

Grid resolution studies are performed in order to 

determine if the solutions are dependent on the 

number of cells used in a mesh. The grid 

convergence index (GCI) methodology is used to 

approximate the numerical accuracy of the 

solution [22]. Three meshes of increasing node 

density are tested: 11,309, 44,644, and 177,392 

nodes. Table 1 presents the results of the GCI 

study, where the subscripts 3, 2 and 1 denote the 

coarse, medium and fine meshes. The number of 

nodes used guarantee a grid refine factor 𝑟 

greater than the required 1.3 [22]. Based on the 

GCI analysis, the local order of accuracy p is at 

least 4 and the fine-grid GCI is less than 1%. The 

variable tested is 𝐶𝐿 and is denoted as 𝛷. 

 

Table 1: Discretization error calculations for the 

airfoil. 

Parameters CL 

  

r21 2 

r32 2 

Φ1 10.1307 

Φ2 24.9856 

Φ3 25.5828 

p 4.635 

𝐺𝐶𝐼𝑒𝑥𝑡
21  0.066% 

3 Results and Discussion 

3.1 Variable Flap Frequency 

A literature review indicated that a variation in 

the velocity of the upstroke and downstroke of a 

wing flap could be beneficial for flight 

performance. The research herein involves 

developing a prototype and using CFD to help in 

the design. Thus, based on the literature, there are 

very few computational analyses imposing 

variable motion, and how it compares to a 

uniform flapping velocity [5,17,18,23,24]. A 

primary concern in this research is to conduct a 
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computational analysis on the effect of varying 

flapping velocities, specifically on the impact of 

lift and drag. The motivation is to determine if a 

variable flap velocity should be added to the 

prototype. Furthermore, there is a concern that a 

variable flap velocity could also be 

unintentionally produced should the prototype 

motor be unable to produce the correct rotation 

during the flap cycle. Initial efforts begin with an 

investigation to determine the effect of varying 

the ratio of the upstroke:downstroke velocity of 

the primary section of the wing. 

Since the equations are oscillatory, a 

change in velocity is effectively a change in 

frequency. The flapping frequency for this study 

is 2 Hz. When implementing the variable flap 

velocity, it is assumed that a fast flapping 

frequency is greater than 2 Hz and a slow 

flapping frequency obeys the relationship:  

 

  𝑓𝑠 = 𝛾 ∗
1

1

𝑓𝑛
−

1

2∗𝑓𝑓

               (8) 

 

where 𝑓𝑠is the slow flapping frequency,  𝛾 is the 

total period of a flap, 𝑓𝑓 is the fast flapping 

frequency, and 𝑓𝑛  is the normal flapping 

frequency of 2 Hz.Using 𝑓𝑠 and 𝑓𝑓,  the motion 

using a UDF is implemented. The UDF identifies 

whether the time-step during the simulation is an 

upwards flap or a downwards flap, and uses the 

appropriate frequency, 𝑓𝑠 or 𝑓𝑓. 

Simulations are performed for multiple 

upstroke:downstroke velocity ratios that  range 

below and above unity, specifically, ratios from 

1/3 to 3. This was done to compare the impact of 

having a faster upstroke versus a faster 

downstroke. Additionally, there is interest to 

learn whether a trend emerges with increasing 

stroke ratios.  

Fig. 3 and 4 present the lift and drag 

coefficients, respectively, for the range of 

velocity ratios. Similar trends are observed for 

both coefficients. As the velocity ratio increases, 

the lift and drag coefficients decrease. 

 

 

 

 
Fig. 2. Meshes for the 11,309, 44,644 and 

177,392 cell cases. 
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 Additionally, when the velocity ratio is 

between 1/3 and 1, both the lift and drag 

coefficients approach an asymptotic value that is 

above the value for a velocity ratio of 1. When 

the velocity ratios are between 1 and 3, the lift 

and drag coefficients seem to approach an 

asymptote that is below the value at a velocity 

ratio of 1. 

 

 
Fig. 3. Lift coefficient versus velocity ratio. 

 

 The curve for lift-to-drag ratio L/D versus 

velocity ratio provides another interesting 

observation, as seen in Fig. 5. At velocity ratios 

below 1, L/D remains relatively constant at a 

value of 17. However, at velocity ratios above 1, 

L/D increases dramatically with increasing 

velocity ratio.  

 

 
Fig. 4. Drag coefficient versus velocity ratio. 

 

The results of this study indicate that 

having a variable velocity ratio can be beneficial, 

but must be chosen with appropriate flight 

operating conditions corresponding to a bird. For 

situations in which high lift is desirable, a 

reduction in velocity ratio would prove 

beneficial. However, it is important to note that 

as the velocity ratio decreases, an increase in drag 

is also present. Thus, the impact of an increase in 

drag must be taken into consideration. On the 

other hand, drag can be dramatically reduced at 

velocity ratios above one, with an accompanying 

decrease in lift. 

It is important to note that these studies 

do not predict how a variable flap frequency 

would impact thrust generation. A repetition of 

these studies must be performed for flight 

configurations that yield net thrust. 

 

 
Fig. 5. L/D versus velocity ratio 

3.2 Feather Separation 

An interesting feature of bird flight, for which 

only some species of birds can achieve, is that the 

wingtip feathers separate on the upstroke of the 

flap cycle. It is hypothesized that birds do this to 

allow air to flow through their feathers with less 

resistance on the upstroke, reducing the negative 

lift that is usually produced by the upstroke. The 

reduction of negative lift results in a more 

efficient flap cycle. This is only hypothesized 

because it is impossible to actually measure the 

effect of feather separation on a live bird 

specimen. Thus, the next part of this study will 

use the CFD techniques described herein to 

investigate feather separation in a wing. 
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Equations of motion were developed to 

allow the three feathers to remain together 

throughout the downstroke, separate at the 

beginning of the upstroke, and then close at the 

beginning of the downstroke. The model for 

feather separation is shown in Fig. 6. The image 

of the bird wing with feathers shows a dashed 

line, which represents the chord position that will 

be modeled. The two-dimensional model is 

shown in Fig. 6 to replication the wing-tip feather 

separation. Both macro- and micro- motion is 

modeled, where the macro-equations are: 

 

𝑌 = 𝑟1 + 𝑟2 sin(𝜓 
2

)      (9) 

𝑋 = 𝑟2 sin(𝜙 
2

)          (10) 

𝜃 = 𝜃                 (11) 

 

and the micro-equations are, 

 

𝑦 = 𝑐𝑓 sin (𝜃2)                      (12) 

𝑥 = 𝑐𝑓  cos (𝜃2)                     (13) 

𝛽 = 𝐴 sin(𝜔𝑡) × (𝑠𝑔𝑛)              (14) 

 

where cf  represents the chord length of the 

feather air foil. β is used to model the rotation of 

the bird feather, the angle at which the feathers 

separate.  The rotation of the bird feathers is 

unknown so multiple cases are simulated at 

different rotation angles. 

 

 

 
Fig. 6. (bottom) The mesh used for the 

separating feather study displaying the 

geometry resembling the actual cross-section 

of a bird’s wingtip (top). 

 

Four cases are simulated: three cases at 

separating angles of 25, 35 and 45 and one 

non-separating feather case where the three 

feathers stay together throughout the flap cycle. 

The non-separating case is the base case to 

determine the effect of the feather separation. 

The separating feather cases are similar but with 

slightly different values. The coefficient of lift 

versus time and coefficient of drag versus time 

for the 25 separation is shown in Fig.  and Fig. , 

respectively. 

 
Fig. 7. The lift coefficient versus time for three 

flap cycles for a separating angle of 25 

degrees. 

 

 
Fig. 8. The drag coefficient versus time for 

three flap cycles for a separating angle of 25 

degrees. 

 

From Table  it is observed that the 

optimal separating feather case occurred at a 

separation angle of 25, which produced 

maximum lift and minimal drag. The separating 

feathers increased the average coefficient of lift 

by a factor of 4. The separating feathers also 

increased the drag but since it is such a small 

amount of drag and only occurs at the wingtip it 

would not greatly affect the overall drag on the 

wing. From this study it is concluded that 

separating feathers produce lift at the wingtip and 

increase the overall performance of flight. 

 

Table 2. The average lift coefficient and drag 

coefficient for all four cases of the feather 

separation study. 
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Degree 

Separation 

Coefficient 

of Lift 

Coefficient 

of Drag 

0 0.143 -0.0164 

25 0.589 0.0759 

35 0.558 0.101 

45 0.475 0.140 

3.3 Nondimensionalization 

The CFD simulations are also used to perform a 

parametric study to develop predictive equations 

for lift and drag based on nondimensionalization 

of key parameters of the flapping flight. The 

design variables are identified: air velocity (V), 

density (ρ), and viscosity (μ), chord length (c), 

amplitude in the X and Y directions (𝐴𝑥  & 𝐴𝑦), 

the wingtip rotation (θ), and the flapping 

frequency (ƒ). It should be noted that the fluid 

properties (ρ, μ), chord length and velocity are 

not varied.   Buckingham pi theorem is used to 

develop the nondimensional parameters. To 

simplify the study, 𝐴𝑥, is used only to derive the 

drag relationship, and 𝐴𝑦 is for lift.  θ is defined 

in radians, which already has no dimensions.  To 

dimensionalize this variable so that it can be used 

to develop pi terms, the projected area from the 

airfoil (𝐶’ =  𝐶𝑠𝑖𝑛𝜃) gives the variable a length 

measurement.  The pi terms will be defined using 

a consistent set of parameters to represent the 

mass, length and time scales, namely, ρ, C and 

ƒ, respectively. Table 3 summaries the pi terms 

for lift and drag. 

 

Table 3. Nondimensional parameters for L and D 

Variable Π Term Value 

L 

D 
𝛱1 

𝐿 𝐶′4𝑓2𝜌⁄  

𝐷 𝐶′4𝑓2𝜌⁄  

V 𝛱2 
𝑉

𝐶′𝑓⁄  

C 𝛱3 𝐶
𝐶′⁄  

μ 𝛱4 
μ

𝐶′2𝑓𝜌⁄  

𝐴𝑦 

𝐴𝑥 
𝛱5 

𝐴𝑦 𝐶′⁄  

𝐴𝑥 𝐶′⁄  

 

It was determined that 𝛱3  is not 

important because it only gave the angle θ that 

has been used as a variable to create C’.  𝛱5 was 

also deemed unimportant due to the fact that the 

simplicity as a nondimensional length scale was 

unaffected because chord length remained 

constant.  

 Linear regression is used to construct a 

mathematical equation that will predict the lift or 

drag with known parameters of a given situation. 

The predictive equation for lift is: 

 

𝛱1 = 𝛱2
𝛼𝛱3

𝛽
+ 𝛱2

𝛾𝛱3
𝛿 +         (15) 

 

For the drag relationship, the best fit equation 

consisted of an extra term:  

 

𝛱1 = 𝛱2
𝛼𝛱3

𝛽 + 𝛱2
𝛾𝛱3

𝛿 + 𝛱2
𝜀𝛱3

 +     
(16) 

 

The coefficients and exponents (Greek variables) 

are solved using Mathematica, and the final 

equations for lift and drag, respectively, are:  

 

𝛱𝐷 = −0.41𝛱2
2.93𝛱4

0.24 + 1.94𝛱2
3.01𝛱4

0.44 +

1.02𝛱2
1.27𝛱4

1.05 − 0.03               (17) 

 

𝛱𝐿 = 14.13𝛱2
−1.57𝛱4

−0.89 +
15.3𝛱2

2.69𝛱4
0.66 + 2.84     (18) 

 

 To demonstrate the accuracy of the 

predictive relationships, the lift and drag data 

from the CFD simulations are compared to the 

results using Eq. 17 and Eq. 18, shown in Fig. 9 

and Fig. 10, respectively. The linear line is the 

ideal relationship and the data is very tight along 

the line, which indicates that the equations can be 

used to predict the performance of the bird.   

  

 
Fig. 9. The graphical representation of the 

simulation PI term and the predicted PI term 

for lift.  The almost linear relationship shows 

that the equation is accurate. 
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Fig. 10.  The graphical representation of the 

simulation PI term and the predicted PI term 

for lift.  The almost linear relationship shows 

that the equation is accurate. 

 

4 Conclusion 

The purpose of the present paper was to improve 

the understanding of avian flight by investigating 

the effects of upstroke-downstroke velocities, 

feather separation, and to ultimately develop a 

predictive set of equations for CL  and CD  for 

continuous-vortex seagull flight. 

The variations in bird flight kinematics, 

such as the velocities for the upstroke and 

downstroke, were found to have a significant 

effect on lift and drag. 𝐶𝐿  and 𝐶𝐷  were both 

found to decrease as the velocity of the upstroke 

increased relative to the downstroke velocity. 

Conversely, 𝐿/𝐷  remained roughly constant 

while the velocity of the downstroke was higher, 

but increased significantly once the upstroke 

velocity was larger. 

The separation of feathers was modeled 

for relative angles of 0∘, 25∘, 35∘, and 45∘. The 

feather separation resulted in a maximum for  𝐶𝐿 

at a separation around 25∘ , while 𝐶𝐷  increased 

linearly. 

Nondimensional equations were derived 

for lift and drag using parameters of the working 

fluid, wing geometry and kinematics. The 

predictive equations agreed well with the 

simulation results. The important contributions 

of this work are the first CFD study to examine 

feather separation and the development of 

predictive equations for lift and drag that can be 

used in design analyses for flapping flight 

associated with seagulls. 
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