

1

Abstract

Data Distribution Service (DDS) is a dependable
communication middleware for airborne
software architecture to provide real-time
interoperable data exchanges. It is important to
efficiently detect general message races for
debugging DDS programs, because it is the most
serious type of software faults and the presence
of general message races in the programs has not
been reported. This paper present an
experimental fault case to prove the presence of
general message races in DDS programs for
airborne software.

1 Introduction

According to the Future Airborne Capability
Environment (FACE) [1] which is a technical
standard for airborne software, Data Distribution
Service (DDS) [2,3,4,5] is the representative
middleware for the Transport Service Segment to
exchange data on publish/subscribe messaging
paradigm. Unintended general message races
may occur during these data communication.

General message races [6,7] are one of the
most serious concurrent faults which occur when
two or more messages are transmitted to a
waiting receive event on a communication
channel and their arrival order is not guaranteed.
If racing messages are received in a
nondeterministic order, it may causes unintended
results in the execution. Therefore, general
message races must be detected.

The presence of unintended general
message races in the DDS programs has not been
reported. According to a prior work, Pardo-
Castellote [4] mentioned that complexity may be

increased because an event on a thread does not
guarantee the sequence to read messages released
by other threads in a same participant in DDS
programs. Mutschler and Philippsen [5] say that
it is possible to rearrange the order of out-of-
order events which caused by DDS using EBS’s
event detector because DDS cannot fix the order
of events. Therefore, it is necessary to prove the
presence of general message races which cause
unexpected results. It is difficult to locate general
message races, because they do not occur in
every execution of DDS programs. This
unintended message races are the most difficult
and serious software fault which takes at least
days of sometimes months to debug them. If
general message races exist in DDS programs,
then it is required to develop technology and
tools to detect and remove them.

To prove the presence of general message
races in DDS programs, we show a fault case
how it lead to general message races on the
different order of events. Our experiments are
carried on an Intel Quad Core system under
windows 7 64 bit OS. We installed RTI Connext
DDS 5.1.0 and visual studio 2010 for source
compile.

The remainder of this paper is organized as
follows. Section 2 provides background for
understanding our work. In Section 3 and Section
4, we present our own findings on the cases of
massage races on DDS. Finally, we conclude our
paper and give directions for future work in
section 5.

2 Background

GENERAL MESSAGE RACES IN DATA DISTRIBUTION
SERVICE PROGRAMS FOR AIRBORNE SOFTWARE

Hyun-Ji Kim*, Ok-Kyoon Ha*, and Yong-Kee Jun*

*Gyeongsang National University, South Korea
hecho3927@gmail.com; jassmin@gnu.ac.kr; jun@gnu.ac.kr

Keywords: future airborne capability environment, data distribution service, message races

Hyun-Ji Kim, Ok-Kyoon Ha

2

Future Airborne Capability Environment (FACE)
which is a technical standard for airborne
software, define an open avionics environment
for all military airborne platform types.
According to the FACE, DDS is the
representative middleware for the Transport
Service Segment to exchange data on
publish/subscribe messaging paradigm. During
exchange of data in DDS, intended general
message races may occur by programmers.
However, unintended general message races also
may occur by various causes in the execution
environment such as network latencies and
programmer’s faults. Therefore, they should be
detected and removed because it is the most
difficult and serious software fault which causes
unexpected serious results. In this section, we
explain what is DDS and general message races,
and how general message races may occur in
DDS programs.

2.1 Data Distribution Service (DDS)

DDS is a publish-subscribe data distribution
middleware released by Object Management
Group (OMG), and provide data-centric publish-
subscribe standard. It is essential to construct
information exchange platform between modules
in the publish-subscribe (PS) system. The PS
model connects publisher and subscriber
anonymously. The system consists of multiple
processes, which are executed in the separated
address space of different computers. Each
process is called participant, and a participant
publishers and subscribes data at the same time.

Publisher and subscriber exchange data in GDS
where they read and write data.

Fig.1 illustrates a communication model
using GDS. Exchanging data in DDS programs
employs following entities:

 DomainParticipant allows to connect

applications into DDS Domain, such as
GDS.

 Topic is a string to control the object
group in GDS. A topic consists of name
and data type, and connects data related
by QoS.

 Publisher is an object to release data
considering data types.

 Subscriber is an object to receive data
released by publishers. They make to use
the data for participants.

 DataWriter defines a value of data
considering a data type.

 DataReader reads a required data
considering a data type.

 QoS Policy is a rule to configure a DDS
system.

 Listener is an object to identify the
events of applications, such as new
publishers and data.

Fig. 1. DDS communication model

3

GENERAL MESSAGE RACES IN DATA DISTRIBUTION SERVICE
PROGRAMS FOR AIRBORNE SOFTWARE

Fig. 2 illustrates a situation that two
participants publish and subscribe data based on
GDS using a topic in a domain. A participant
with publisher uses datawriter to publish data in
GDS by writing it in topic, and then a participant
with subscriber uses datareader to read data-
instance stored in topic and subscribes the
message it wants. The topic refers to atomically
swapping information unit between publisher
and subscriber, and consists of instances that are
several specific data. Publisher or subscriber can
use listener, which reports information when a
new publisher/subscriber appears or new data are
received. DDS uses Quality of Service (QoS) to
meet the requirements of applications, and QoS
makes service to do what it is given to do. The
participants that share the same topic must use
the same QoS, through which they can control
the process of exchanging messages. When
different participants access GDS to exchange
data in DDS programs, they publish and

subscribe the data they want without
chronological order, which may result in
message races.

2.2 General Message Race

In message-passing parallel programs
widely used in parallel computers, message race
is one of the serious concurrency bugs. Message
race may occur when two or more participants
send messages over a same communication
channel without guaranteeing the order of their
arrivals. Message races must be detected for
debugging DDS programs because their
nondeterministic arrival leads to unintended
nondeterministic results of the program.

Fig. 3 is an example of a general message
race. In the figure, P1, P2, and P3 refer to parallel
processes, circles on the processes mean
send/receive events, and arrows refer to

Fig. 2. Object model for DDS

Fig. 3. An example of general message races

Hyun-Ji Kim, Ok-Kyoon Ha

4

transferring messages. P1 sends the message
‘x=0’ to P2, and P3 sends the message ‘x=1’ to
P2 while P2 receives these messages from P1 and
P3 in the order they arrive. In the receive event R
of P2, a message race may occur, because the
order relation between messages of P1 and P3 is
not guaranteed.

Mutschler and Philippsen [5] say that DDS
causes out-of-order events and cannot fix the
order of events, but it is possible to rearrange
their order through EBS’s event detector.
However, there has been no report yet on the
existence and its confirmation of unintended
message races in DDS programs.

3 Design of experiments

To prove the presence of unintended message
races in DDS programs, we experiment on every
case where message races may occur depending
on the arrival order of w to find out all cases lead
to nondeterministic results. There may be two
types of unintended message races depending on
which w occurs earlier. In this section, we check
and compare the read values of r based on the
order of w for the two types.

For this experiment, we suppose that there
are two publishers and a subscriber. The
publishers include their own datawriter to send a
message defined by w and the subscriber
includes its own datareader to receive a message
denoted by r. In our experiments, we redefine w
events as wp1 for publisher1 and wp2 for
publisher2, and r event as rs for subscriber. wp1
and wp2 send messages to rs, and their arrival
order is not guaranteed, which may lead to
unintended message races. Fig. 4 depicts a
situation of general message races in DDS. In the
figure, wp1 sends the message 'hello' to rs and wp2
sends the message 'world' to rs. In this case, rs
reads either ‘hello’ or ‘world’ depending on the
order they arrive because the arrival order is not
guaranteed. Therefore, the experiment shows
unintended results, indicating that message races
may occur.

Fig. 4. An execution of the publisher/
subscriber program in DDS

Program 1 Publisher 1()

01: …
02: char A[5] = {'H','e','l','l','o'};
03: …
04: int main() {
05: …
06: for(i=0;i<1;i++){
07: retcode = DDS_StringDataWriter_write

(string_writer, A, &DDS_HANDLE_NIL);
08: printf(“w in publisher1 : ”);
09: puts(A);
10: }
11: …
12: }

Program 2 Subscriber()

01: …
02: int main () {
03: …
04: puts(“Ready to read data.”);
05: …
06: }
07: static void on_data_available_callback(…) {
08: …
09: for (; ;) {
10: retcode = DDS_StringDataReader_read_next

(string_reader, Sample, &info);
11: …
12: if (info.valid_data) {
13: printf(“r in subscriber: ”);
14: puts(sample);
15: …
16: }

5

GENERAL MESSAGE RACES IN DATA DISTRIBUTION SERVICE
PROGRAMS FOR AIRBORNE SOFTWARE

Program 3 Publisher 2()

01: …
02: char B[5] = {'W','o','r','l','d'};
03: …
04: int main() {
05: …
06: for(i=0;i<1;i++){
07: retcode = DDS_StringDataWriter_write
(string_writer,
B, &DDS_HANDLE_NIL);
08: printf(“w in publishers : ”);
09: puts(B);
10: }
11: …
12: }

3.1 wp2→rs after wp1→rs

In Fig 5(a), rs reads the message ‘hello’ that wp1
sends and then the other message ‘world’ that wp2
sends. This is because when wp1 and wp2 send the
messages, ‘hello’ is stored earlier than ‘world in
the queue.

Program 1 and Program 3 display codes of
publisher 1 and publisher 2 respectively, which
transmit messages to a subscriber at the same
time, while Program 2 shows codes of the
subscriber. In Program 1 and Program 3, the
string data ‘hello’ and ‘world’ to be sent are
stored in the line 2 respectively, and each
message to be sent to the subscriber is published
in the line 10. In Program 2, the message that the
subscriber receives first is subscribed in the line

7 by calling the callback function. The received

message is printed in the lines 12 to 14. In this
experiment, the subscriber receives the message
‘hello’ of publisher 1 in advance.

3.2 wp1→rs after wp2→rs

In Fig. 5 (b), rs reads the message ‘world’ that wp2
sends and then the other message ‘hello’ wp1
sends. This is because when wp1 and wp2 send the
messages, ‘world’ is stored earlier than ‘hello’ in
the queue. In Figure 6 and Figure 8, the string

data ‘hello’ and ‘world’ sent by publisher 1 and
publisher 2 are stored in the line 2 respectively,
and each message to be sent to the subscriber is
published in the line 10 of Figure 7. In this
experiment, the subscriber receives the message
‘hello’ of publisher 2 in advance.

4 Analysis

We found the presence of message races due to
nondeterministic execution of the program. As
we intended, the subscriber received a message
‘hello’ because wp2→rs after wp1→rs in almost of
all executions of the program. However, the
subscriber received a message ‘world’ first
because wp1→rs after wp2→rs in some cases.
Therefore, the subscriber can receive first either
a message ‘hello’ or ‘world’.

Table 1 shows the data values r reads in the order
the two w events occur in cases of message races.
Each w of different publishers has no order
relations, so the data value r reads is different
depending on which w occurs earlier. As seen in

Fig. 5. A general message race case for Fig. 4

Hyun-Ji Kim, Ok-Kyoon Ha

6

Table 1, when the intended value is ‘world’ and
wp1 is executed earlier, r actually reads ‘hello’.
Also, when the intended value is ‘hello’ and wp2
is executed earlier, r actually reads ‘world’. This
indicates that the intended values and the actual
values are different, which may lead to
nondeterministic results in DDS programs.
Therefore, the experimentations prove that
message races exist.

Table 1. The results of experimentation about general
message race

Order of Event
Execution

Data value R reads

Intended value Actual value
wp2→rs after

wp1→rs
‘world’ ‘hello’

wp1→rs after
wp2→rs

‘hello’ ‘world’

5 Conclusion

Unintended message races must be detected for
debugging DDS programs, because it is the most
serious type of software fault. In DDS programs,
unintended message races may occur between
participants that exchange messages through
publish-subscribe programming model. They
may occur due to the programmer’s mistake or
network delay. It is difficult to identify the
location of message races and it takes a few days
or sometimes months for debugging because they
do not occur in every execution of the program.
There is no report to the presence of message
races in DDS programs, which has to be proved
in the first place. This paper proved by
experiment that message races exist when two or
more write events send messages to a read event
without the order guaranteed, showing the
intended values are different from the actual
values. This paper demonstrated that message
races may occur in DDS programs. In the future
study, sophisticated techniques which detect and
remove message races should be developed.

References

[1] The Open Group, Technical Standard for Future
Airborne Capability Environment, Edition 2.1, May
2014.

[2] Héctor Pérez, J. Javier Gutiérrez. A survey on
standards for real-time distribution middleware. ACM
Computing Surveys, 46(4), April 2014, Article No.
49.

[3] Jinsong Yang, Kristian Sandström, Thomas Nolte,
Moris Behnam. Data Distribution Service for
Industrial Automation. Emerging Technologies &
Factory Automation, IEEE 17th Conference on, pp.
1-8, Sept 17-21, 2012.

[4] Pardo-Castellote G. OMG Data-Distribution Service:
Architectural Overview. Distributed Computing
Systems Workshops 23rd International Conference on,
pp. 200-206, May 19-22, 2003.

[5] Christopher Mutschler, Michael Philippsen. Reliable
speculative processing of out-of-order event streams
in generic publish/subscribe middlewares. 7th ACM
international conference on Distributed Event-Based
Systems, pp. 147-158, June 29, 2013.

[6] Mi-Young Park, and Yong-Kee Jun. Detecting
Unaffected Race Conditions in Message-Passing
Programs. 11th European PVM/MPI User's Group
Meeting, Lecture Notes in Computer Science, 3241:
268-276, Springer-Verlag, Sept. 2004.

[7] Netzer, R. H. B., T. W. Brennan, and S. K.
Damodaran-Kamal. Debugging Race Conditions in
Message-Passing Programs. Sigmetrics Symp. on
Parallel and Distributed Tools, pp. 31-40, ACM, May
1996.

Acknowledgements

This work was supported by Research fund, Gyeongsang
National University, 2015 and the BK21 Plus Program
(Research Team for Software Platform on Unmanned
Aerial Vehicle, 21A20131600012) through the National
Research Foundation of Korea (NRF) funded by the
Ministry of Education.

Contact Author Email Address

mailto: jassmin@gnu.ac.kr

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give
permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS proceedings
or as individual off-prints from the proceedings.

