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Abstract  
The paper describes a methodology which is 
founded on a Single Frequency Analysis to 
extract a linearized state-space dynamic inflow 
model from a generic and high fidelity 
aerodynamic analysis for single and coaxial 
helicopter rotor systems. The methodology is 
computationally efficient and provides the entire 
frequency-domain behavior of the wake inflow 
states. The paper also includes an extension of 
the methodology to the case of heaving, rolling 
and pitching rotor disc. 

1 Introduction  
 
Linear inflow models are widely used and are 
an essential tool for real-time helicopter 
simulation tasks of both full-scale and UAV 
configurations. These models also play a major 
role in flight control systems design and in 
evaluation processes of compliance with 
handling qualities specifications. Basically, 
dynamic inflow models are derived in the 
frequency domain and thereafter support time-
domain applications that utilize their state-space 
form. 
 
 
Linear inflow models were traditionally based 
on analytical and semi-analytical models, see 
e.g. Refs.[1-4]. Nowadays, advanced 
aerodynamic computational tools such as free 
wake models and CFD-based numerical 
procedures are widely used for detailed 

modeling and accurate prediction of the flow-
fields around generic rotary-wing configurations 
in various flight regimes.  Yet, while such 
modern tools include fewer theoretical 
limitations and approximations than the 
classical and simplified schemes, they are 
impractical or impossible to be directly applied 
to many simulation tasks and flight dynamics 
problems, as they are not formulated in a state-
space form and are often computationally 
intensive. It is therefore desired to develop 
consistent methodologies that will be capable of 
utilizing the accuracy provided by advanced 
tools to improve linear inflow models and 
subsequently provide more realistic flight 
dynamics calculations along with simulations of 
better quality and fidelity, see e.g. Refs.[5-10]. 
 
The classical dynamic inflow models are 
founded on small-disturbances and momentum 
theory based solutions, which globally represent 
the rotor inflow dynamics. The most popular 
models are the Pitt and Peters “dynamic inflow” 
model Ref.[1], the Peters and He “finite state 
wake” Ref.[4], and their numerous subsequent 
developments. These models trace their origins 
directly to the small disturbances, acceleration 
potential solution over a disc by Joglekar and 
Loewy Ref.[11].   
 
The classical models assume small loading 
perturbations at the rotor disc and their 
extension to include maneuvering flight requires 
some assumptions regarding the resulting 
changes in the wake geometry.   
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Fundamentally, these are solutions for a sin-
gle rotor, and therefore their extension to com-
plex interactions associated with multi-rotor con-
figurations, rotor-fuselage or rotor-empennage
interactions is not straight-forward. Yet, they
provide quality results for many cases and con-
ditions of practical interest.

In previous studies Ref.[12], two system-
atic, free wake based methodologies to extract
dynamic inflow like models were presented for
hover. The present paper extends the Single fre-
quency analysis methodology to the case of heav-
ing, rolling and pitching rotor disc and to the case
of coaxial rotor systems - for more details see
Ref.[13].

To understand the main differences between
the classical (semi-analytic) dynamic inflow
models and the present aerodynamic analysis
along with the associate method for extracting the
dynamic inflow coefficients, it is worth mention-
ing here the most two important distinctions be-
tween these two approaches. The first difference
is quite obvious: Modern computational fluid
dynamics based techniques, including free vor-
tex wake models, have far fewer limitations, and
represent the state-of-the-art in rotorcraft aero-
dynamic modeling. It is therefore expected that
utilizing such models will provide better predic-
tion quality of the actual physical system behav-
ior. The second difference goes more deeply
into the basic definitions of the state-space form
of dynamic inflow-type models. In the classical
models, the “states” are defined as quantities that
are averaged over the disc at each instance, and
hence, such states include data that is not solely
related to present time. Such a definition is more
suitable for relatively slow dynamics. However,
in the present model, the states are defined by
adopting the Multi-Blade Coordinate Transfor-
mation method and are “exact” in the sense that
they are directly related (only) to the current in-
flow distribution along each blade. Hence, these
states may adequately represent any rate of in-
flow dynamics as they precisely constitute the in-
flow quantities that are required for loads estima-
tion during simulation.

Although this paper is focused on the re-
sults obtained from a specific free-wake model, it

should be stressed again that the present method-
ology is completely generic and applicable to any
advanced aerodynamic modeling.

2 Aerodynamic Modeling

To carry out the present study, RAPiD’s
(Rotorcraft Analysis for Preliminary Design)
free wake model Refs.[10,12-14] has been used.
Since the analysis is focused on a generic “outer
inflow solution”, the wake is modeled by a sin-
gle tip vortex per blade (of each rotor). The said
tip vortex is discretized with linear segments de-
fined by collocation points that are allowed to
drift freely in the velocity field generated by the
combination of the free stream velocity, rotor ma-
neuvering speed and the bound and trailed vortic-
ity. The modeling includes semi-empirical mod-
els for vortex core and vortex dissipation. Vor-
tex core is implemented via analytical rigid wake
core that is smoothly blended into the far Bio-
Savart induced velocity. The vortex dissipation
model creates a vortex core that grows asymptot-
ically with the wake age. Subsequently, vortex
diffusion takes a major role in creating and up-
dating the wake geometry. For more details see
Ref. [13].

Figures 1,2 present the wake as it devel-
oped over a relatively long roll and pitch maneu-
vers. As shown, the structures are quite complex.
These will be studied in this paper by series of
periodic excitations.

3 The Single frequency analysis for a single-
rotor

Dynamic Inflow modelling and its influence on
various rotor systems has been vastly dealt with,
see e.g. Refs.[15-17]. In Ref.[12] we have stud-
ied the generic form of the classical “dynamic
inflow-type model” for a single rotor. Following
the original work of Pitt and Peters Refs.[1], the
inflow is assumed to be governed by the follow-
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p

Roll left:
from 85 to -5 deg

p

Roll right:
from -85 to 5 deg

Fig. 1 Wake structure for constant roll, front
view (µ = 0.07, CT = 0.04, p̃ = 0.0125).

q

Pitch Up:
from 85 to -5 deg

q

Pitch Down:
from -85 to 5 deg

Fig. 2 Wake structure for constant pitch, side
view (µ = 0.07, CT = 0.04, q̃ = 0.0125).

ing first order dynamics:

[M]


∗

λ0
∗

λ1s
∗

λ1c

+[L]−1

 λ0
λ1s
λ1c

=

 ∆CT
∆CL
∆CM

 . (1)

In what follows, [L]−1 will be denoted as
[L̄]. The time-history of the rotor loading per-
turbations is expressed using the azimuth angle
of the first blade, namely ∆CT (ψ1), ∆CL(ψ1) and
∆CM(ψ1). These perturbations create a change
in the inflow distribution, ∆ṽi(ψ1, r̃,ψ). The in-
flow states λ0,λ1s, and λ1c are calculated using
the classical linear inflow distribution assumption

as:

∆ṽi(ψ1, r̃,ψ) = λ0(ψ1)+λ1s(ψ1)r̃ sin(ψ) (2)
+λ1c(ψ1)r̃ cos(ψ),

where ψ1, the azimuth angle of the first blade,
is kept as the main “clock” of the entire so-
lution. Note that the basic hypotheses behind
the above formulation are: (i) the system is lin-
ear so periodic excitation of the RHS vector of
Eq. (1) in a single frequency, say ω, yields a re-
sponse of λ0,λ1s, and λ1c in the same frequency;
(ii) the matrices [M] and [L̄] are constants, i.e.
not functions of ω. As already indicated, the
above assumptions are quite essential for flight
dynamics applications and control design, see
e.g. Refs.[18-20].

The Single frequency analysis is designed
to directly extracts all elements of the [M] and
[L̄] matrices for a given single frequency excita-
tion. Figure 3 summarizes the methodology. As

Collection of
Coef cients &fi
Linear System

Solution

Periodic
Excitation

In ow Timefl
History

In ow Linearfl
Coef cientsfi

Harmonics of
Coef cientsfi

All Matrices18
Elements

[M], [L]Detailed
Aerodynamic

Analysis

Extraction of
Linear In owfl
Coef cientsfi

FFT
T

ΔC

M
ΔC

L
ΔC

Fig. 3 Scheme of the Single frequency analysis
methodology for a single rotor system.

shown, following a trim solution, the induced ve-
locity distribution ṽi(ψ1, r̃,ψ) is determined for
various ∆CT (ψ1), ∆CL(ψ1), ∆CM(ψ1) periodic
perturbations (one at a time) and the distributions
∆ṽi(ψ1, r̃,ψ) = ṽi(ψ1, r̃,ψ)− ṽtrim(r̃,ψ) are eval-
uated for each perturbation. Linear states time
histories (λ0(ψ1), λ1s(ψ1), λ1c(ψ1)) are then ex-
tracted. These are FFT analyzed and their co-
sine and sine components (at the perturbation
frequency) λs

0,λ
c
0,λ

s
1s,λ

c
1s,λ

s
1c,λ

c
1c are obtained.

These coefficients are used to determine all 18
[M] and [L̄] coefficients. It should be clarified
that the above time history signal consists of ad-
ditional frequencies which are typically of small
amplitude. These are ignored due to the fun-
damental first order system hypothesis discussed
above.
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3.1 Creating the Periodic Excitations

In view of the necessity to create a generic model
for dynamic inflow that is independent of a spe-
cific set of rotor characteristics, a generic rela-
tion between the perturbations in hub loads (rotor
thrust and moments) and the tip vortex strength
harmonics is required. For that purpose, through-
out the discussion in this section, for a counter-
clockwise rotating rotor ψ is consider positive
and for a clockwise rotating rotor ψ is consider
to be negative (wherever ± appears, “+” stands
for ψ > 0 and “-” stands for ψ < 0)

The tip vortex variation is first defined using
both ψ1 (= Ωt) and ψn as:

Γ̃tip(n,ψ1)= Γ̃trim(ψn)+ (3)
∆Γ̃0(ψ1)+∆Γ̃1s(ψ1)sin(ψn)+∆Γ̃1c(ψ1)cos(ψn),

where Γ̃tip(n,ψ1) is the n-th blade tip vortex
at time t = ψ1/Ω when the blade is located
at ψn (= ψ1 +

2π(n−1)
Nb

). The periodic function
Γ̃trim(ψ) represents the tip vortex at the trim state
(e.g., in pure hover Γ̃trim(ψ) is constant), and
∆Γ̃0,∆Γ̃1s,∆Γ̃1c are the tip vortex perturbations
due to ∆CT ,∆CL,∆CM.

To evaluate the relations between the time
histories of ∆CT ,∆CL,∆CM and the time histories
of ∆Γ̃0,∆Γ̃1s,∆Γ̃1c, the perturbation of the bound
vortex along the blade is assumed to be related to
the perturbation of the tip vortex magnitude as

∆Γ̃B (n, r̃,ψ1) = F (r̃)
[
Γ̃tip(n,ψ1)− Γ̃trim(ψn)

]
,

(4)
where F (r̃) is a nondimensional shape func-
tion of r̃, normalized so that Fmax = 1. Using
Ũ(r̃,ψ) = r̃±µsin(ψ), one may write

[∆CT ,∆CL,∆CM] (ψ1) = (5)

1
π

Nb

∑
n=1

1∫
0

Ũ (r̃,ψn)∆Γ̃B (n, r̃,ψ1)

[1,−r̃ sin(ψn),−r̃ cos(ψn)]dr̃.

Hence, ∆CT ,∆CL,∆CM turn to be linear functions
of ∆Γ̃0,∆Γ̃1s,∆Γ̃1c. By integrating and inverting
these relations one may write:

∆Γ̃0=γ1
π

Nb

∆CT ± γ2µ∆CL

1− γ3µ2 (6a)

∆Γ̃1s=−γ4
π

Nb

∆CL ± 1
2µ∆CT

1− γ3µ2 (6b)

∆Γ̃1c=−γ4
π

Nb
∆CM. (6c)

Figure 4 presents typical F(r̃) functions and
their γi coefficients (cases I and IV are given just
as reference values). As shown, the variation

r%
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γ γ γ γ

2 3 1.5 6

2.59 3.2 1.6 8.21

2.54 2.5 1.25 7.5

3 2 1 8
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1I =

50.59 1 rII r eæ ö
ç ÷
è ø

= - %%

22 1III r r= -% %

229

2 3
1V r r= -% %

IV r= %

Fig. 4 Various F(r̃) functions and their influence
on γi.

in these coefficient is quite narrow and so their
influence on the results presented in what fol-
lows. Function II of Fig. 4 was subsequently used
throughout the present analysis. It should be em-
phasized that the function F (r̃) is used for dis-
tributing the perturbational bound vorticity only,
while the fundamental distribution is determined
by the trim solution. One may claim that the
accuracy of the above modelling may be some-
what increased by using the exact distribution
of the bound vortex (perturbation) shape, how-
ever, such modelling tends to be a “configuration-
dependent” one, which contradicts the objective
of the present methodology.

Consequently, using Eqs.(6a-c), we are able
to apply periodic time histories of frequency ω to
∆CT ,∆CL,∆CM that will excite the wake through
the periodic behavior of Γ̃0, Γ̃1s, Γ̃1c (at the same
frequency).

3.2 Determination of the Inflow States

As already stated, the states defined in Eq. (2) are
different from the classical as they represent in-
stantaneous inflow distribution over the blades,
while the classical ones (see Refs.[1]) are ob-
tained by integration over the rotor disc.
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The present analysis exploits the Multi-Blade
Coordinate Transformation (also referred to as
the Fourier Coordinate Transformation), in a sim-
ilar way it is used to integrate the dynamics of in-
dividual blades and express it in a fixed (nonrotat-
ing) frame. Among other applications, the Multi-
Blade Coordinate Transformation is mostly used
for modal and stability analyses and state-space-
based controls design. In the present context, and
in order to enable direct comparison with pre-
vious studies, we shall ignore the “differential
mode” (that appears when the number of blades
is even). Subsequently, at each instance, the
above three inflow states, λ0,λ1s,λ1c are deter-
mined by the following (exact) weighted integra-
tion (valid for Nb ≥ 3):

[λ0,λ1s,λ1c] (ψ1) =
1

Nb

Nb

∑
n=1

1∫
0

∆ṽi(ψ1, r̃,ψn)×[
1,(4+2k)r̃k sin(ψn),(4+2k)r̃k cos(ψn)

]
dr̃, (7)

where k > 0 is an arbitrary integer and r̃k serves
as a weighting function (k = 1 is typically used).
Note again that a blade may experience differ-
ent induced velocity when it passes the same az-
imuthal station in various times depending on the
inflow states values at the corresponding times.

Figure 5 presents the time history of the in-
flow coefficients in hover due to three pertur-
bations of ∆CT ,∆CL,∆CM (one at a time). As
shown, in hover, ∆CT mainly excites λ0, and
∆CL,∆CM mainly excite λ1s,λ1c, respectively. On
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Fig. 5 λ0,λ1s,λ1c due to ∆CT ,∆CL,∆CM (Hover,
ω̃ = 0.2, Nb = 4).

the other hand as shown in Fig. 6, in forward
flight, a clear coupling is observed in the form

of λ1c due to CT and λ0 due to CM. It is also
shown, that the perturbation frequency overshad-
ows other fluctuations of higher frequencies (and
lower magnitudes). The visible small fluctuations
in Fig. 6 are of Nb/rev. frequency.
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Fig. 6 λ0,λ1s,λ1c due to ∆CT ,∆CL,∆CM (µ= 0.2,
ω̃ = 0.2, Nb = 4).

3.3 Inflow Dynamics in Hover

Inflow dynamics, along with the associated Bode
plots for hover have been presented and discussed
in Refs.[12] (and will be shown again further on).
Yet, it is interesting to examine the associated in-
flow distributions due to the loading distributions
that are obtained in this case.

Figure 7 presents the inflow distribution in
hover for four-bladed rotor when the perturbation
is given by ∆CL = Cc

L cos(ωt) (and no other per-
turbations are applied) at a moment that is rela-
tively easy to analysed. This is done for a case
when the perturbation frequency may be writ-
ten as rational number, namely ω̃ = n

m . In such
a case, after n perturbation revolutions the rotor
completes m revolutions and at that instance, the
∆CL perturbation is maximal: Blade#1 is at ψ= 0
and (for four bladed rotor) and Blades#2,3 and 4
are located at ψ = 90◦,180◦,270◦, respectively.
At such an instance, according to Eq.(6b), the
perturbation in tip circulation magnitude is min-
imal and hence, the inflow over Blade#2 is re-
duced. As shown, the perturbation is well ap-
proximated by Eq.(7) within the basic assump-
tion of a linear variation.

3.4 Inflow Dynamics in Forward Flight

In this section we shall study the dynamic inflow
characteristics obtained in forward flight as de-
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Fig. 7 Lateral and longitudinal inflow distribu-
tions due to ∆CL = 0.0005cos(ω̃ψ1) when per-
turbation is maximal and Blade#1 is at ψ1 = 0
(Hover, ω̃ = 0.2, CT = 0.005, Nb = 4).

scribed by Eq. (1), Fig. 3 and the related discus-
sion. Figure 8 shows several wake structures ob-
tained by applying pitch moment perturbations
of various rates. The wake response is clearly
demonstrated, where the distance between the
periodic structures is given by d

R = 2π µ
ω̃ .

ω = 0.5%

ω = 0.75%

ω = 0.2%

ω = 0%

μ
d/R=2π

ω%

Fig. 8 Wake structure during various rates of
pitch moment in forward flight (CT = 0.005, µ =
0.2).

Figure 9 presents the inflow distribution in
forward flight when the ∆CT perturbation is max-
imal and Blade#1 is at ψ1 = 0 (similar to the case
of Fig. 7). As shown, the perturbation creates
both λ0 and λ1c response with a smaller influence
on λ1s.

In a similar way, Fig. 10 presents the inflow
distribution in forward flight when the ∆CL per-
turbation is maximal. As shown, the perturba-
tion induces upwash (negative downwash) on the
advancing blade and downwash on the retreating
blade with negligible influence on the downwash
mean value and the distribution over the longitu-
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Fig. 9 Lateral and longitudinal inflow distribu-
tions due to ∆CT = 0.001cos(ω̃ψ1) when the per-
turbation is maximal and Blade#1 is at ψ1 = 0
(µ = 0.2, ω̃ = 0.2, CT = 0.005, Nb = 4)

.

dinal plane. The lateral geometric changes in the
wake over the length d

R = 2π µ
ω̃ are also visible.

1
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Fig. 10 Lateral and longitudinal inflow distribu-
tions due to ∆CL = 0.0005cos(ω̃ψ1) when per-
turbation is maximal and Blade#1 is at ψ1 = 0
(µ = 0.2, ω̃ = 0.2, CT = 0.005, Nb = 4)

.

The case where the ∆CM perturbation is intro-
duced is shown in Fig. 11. Here, a clear coupling
with the downwash mean value is shown, while
the lateral distribution is hardly influenced, and
the longitudinal variation tends to increase inflow
over blade#3 (at ψ = 180◦).
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turbation is maximal and Blade#1 is at ψ1 = 0
(µ = 0.2, ω̃ = 0.2, CT = 0.005, Nb = 4)
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3.5 Bode Plots

Figures 12-14 show the Bode plot for
∆CT ,∆CL,∆CM perturbations. In general,
both magnitudes and phase angles are decreasing
with speed. Solid lines represent the state-space
results and symbols are the actual values ob-
tained by the free-wake analysis for CT = 0.005,
Nb = 4, αD = 10◦.

Figure 12 shows the λ0 due to ∆CT response.
It is evident that for low and median frequencies,
the state-space model constitutes an excellent ap-
proximation with relatively small discrepancies
for higher frequencies. Figure 13 shows the “on

ω%
0

10

20

-90

-45

0

T0
|λ | |ΔC |

0.1 1

dB

φ°

0.05
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Fig. 12 λ0 due to ∆CT response.

axis” response of λ1s due to ∆CL and λ1c due to
∆CM. Good matching between the state-space
model and the free-wake analysis is obtained for
λ1s due to ∆CL while unlike the hover case (see
correlation for µ = 0), discrepancies are observed

for the low frequency region of the λ1c due to
∆CM response in forward flight. Hence, in for-
ward flight, and as opposed to the case of peri-
odic roll motion, the pitch response that emerges
from the fundamental first order system hypoth-
esis is more questionable. One may assume that

0
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Fig. 13 λ1s due to ∆CL response and λ1c due to
∆CM response.

this phenomena is related to the fact that in for-
ward flight, roll moment perturbations are super-
imposed on relatively symmetric wake structure
(right vs. left disc areas), while pitch moment
perturbations are superimposed on a wake which
is substantially skewed and not symmetric (for-
ward vs. backwards disc areas) as also indicated
by the longitudinal inflow distribution in Fig. 11.

Figure 14 presents the coupling terms λ1c due
to ∆CT and λ0 due to ∆CM in forward flight. The
free-wake results in this case exhibit the general
trend of the state-space approximation mainly in
the low frequencies region.

It should be noted that a study of the influ-
ence of the number of blades has shown that this
parameter has very limited effect on the above re-
sults.

4 Inflow Dynamics for Maneuvering Flight

Dynamic Inflow influence on maneuvering flight
has been in the focus of a considerable body of
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Fig. 14 λ1c due to ∆CT response and λ0 due to
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research, see e.g. Refs.[21-22]. Within this sec-
tion, we shall describe an extension of the above
methodology for predicting the inflow dynamics
in the case of heaving, rolling and pitching rotor
disc.

Similar to the classical dynamic inflow hy-
pothesis shown in Eq. (1), we have explored
the inflow dynamics due to heaving, rolling and
pitching by the first-order system

[
MD]


∗

λ0
∗

λ1s
∗

λ1c

+
[
LD]−1

 λ0
λ1s
λ1c

=

 w̃D
p̃D
q̃D

 , (8)

where in the above, w̃D is the vertical (heaving,
normalized by ΩR) motion velocity while p̃D and
q̃D are the total disc roll and pitch tilt rates (nor-
malized by Ω) that might include components of

−
∗

β1s and −
∗

β1c, respectively.
Figure 15 is an example for the wake struc-

ture during pitch motion of various amplitudes.
The periodic nature of the wake is clearly ob-
served.

To evaluate the elements of the matrices[
MD] and

[
LD], we have used the procedure

shown in Fig. 16 which is almost identical to the
one described above in Fig. 3. In this case the
elements of the matrices

[
MD] and

[
LD] are de-

D|q | = 0.04%
D|q | = 0.02%

D|q | = 0.01%

Fig. 15 Wake structure during pitch motion
(Hover, ω̃ = 0.1, CT = 0.005 Nb = 4).
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In ow Linearfl
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[M ] , [L ]
D DDetailed

Aerodynamic
Analysis

Extraction of
Linear In owfl
Coef cientsfi

FFT

D
wD %

D
qD %

D
pD %

Fig. 16 Scheme of the Single frequency analysis
methodology for a single rotor system in maneu-
vering flight.

termined by applying the periodic perturbations
∆w̃D(ψ1), ∆p̃D(ψ1) and ∆q̃D(ψ1).

As shown in Fig. 15, in our present model,
the disc is assumed to move and tilt relative
to the “wind axes” while the induced velocity
∆ṽi(ψ1, r̃,ψ)|wind is determined at these “wind
axes” by applying Biot-Savart law at each in-
stance. Yet, the flapping equations require the
induced velocity over a stationary assumed disc.
Hence, the nondimensional induced velocity in
these “disc axes” is therefore:

∆ṽi(ψ1, r̃,ψ)= ∆ṽi(ψ1, r̃,ψ)|wind (9)
−w̃D(ψ1)+ q̃D(ψ1)r̃ cos(ψ)+ p̃D(ψ1)r̃ sin(ψ)

or

λ0 = λwind
0 − w̃D,

λ1s = λwind
1s + p̃D, (10)

λ1c = λwind
1c + q̃D.

The above linear inflow coefficients (λ0, λ1s, λ1c)
are those that have to be used in the flapping
equations.

As already explained, the procedure de-
scribed in Fig. 16 was utilized with the peri-
odic perturbations of ∆w̃D(ψ1), ∆p̃D(ψ1) and
∆q̃D(ψ1). Figure 17(a) shows the resulting di-
agonal terms of the [MD] matrix as obtained for
various frequencies. Apparently, these values are

8
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not constant and violate the basic assumption em-
bedded in Eq. (8). However, in the disc plan,
the flapping time dependent equations are driven
by the quantities (λ0+ w̃D) for the heave motion,
(λ1s − p̃D) for the roll motion and (λ1c − q̃D) for
the pitch motion. Hence, when Eq. (8) is con-
structed by the time histories of λwind

0 = λ0+ w̃D,
λwind

1s = λ1s − p̃D and λwind
1c = λ1c − q̃D (as op-

posed to λ0, λ1s and λ1c, respectively) the di-
agonal terms shown in Fig. 17(b) are obtained.
As demonstrated, these are fairly constant values
that may serve (after suitable averaging) as a ba-
sis for a state-space model that may be directly
used by the flapping equations.

ω%

ω%

(a)

(b)

-10

0

10

20

0 0.5 1

-1

0

1

2

0
0.5

1

D D
22 33

M & M

D
11

M

D D
22 33

M & M

D
11

M

Fig. 17 The diagonal terms of the [MD] matrix
vs. frequency: (a) The case of λ0, λ1s, λ1c. (b)
The case of (λ0+ w̃D), (λ1s − p̃D) and (λ1c − q̃D)
(CT = 0.005, Nb = 4).

The corresponding Bode plot appears in
Fig. 18. Note that the two sets of data shown
in the figures of this section represent different
values of perturbation amplitudes (w̃D, p̃D, q̃D =
0.01,0.02) which testify for the generalized na-
ture of the results with that respect.

The general conclusion that emerges from
the above discussion is that one may only eval-
uate the (first-order system) response of λ0+ w̃D,
λ1s − p̃D and λ1c − q̃D and use these directly to
activate the flapping equations.

The evaluation of a simplified “wake curva-
ture coefficient”, Kr, from the above analysis may
be done in various ways since as shown above,
the whole concept of a frequency independent
(“steady”) relation of λ1c = Krq̃D where Kr is a
constant is not accurate. One way to look at Kr

-20

-10

0

-90

0
ω%0.1 10.05

dB

φ°

Fig. 18 Bode plot for the state-space approxima-
tion (solid line) and the free-wake results (sym-
bols) λ1c − q̃D due to q̃D (and λ1s − p̃D due to
p̃D) (CT = 0.005, Nb = 4).

(or its extension to Kp, Kq as the wake curvature
coefficients in roll and pitch, respectively, and Kw
as the “wake stretching coefficient”) is to ignore
the matrix

[
MD] and all the off-diagonal terms of[

L̄D]. This leads to λ1s =
p̃D
L̄D

22
or Kp = 1/L̄D

22 and

similarly, Kq = 1/L̄D
33 and Kw = 1/L̄D

11.
Figure 19 shows the frequency response of

the above coefficients. Evidently, for low fre-
quency, Kp = Kq = −Kw ∼= 1.5, a value that is
reduced to about 1.0 for high frequencies.

-2

-1.5

-1

0

1

1.5

2

0 0.5 1

0.5

-0.5

ω%

wK

p qK K,

Fig. 19 Frequency response of the wake curva-
ture coefficients (Kp, Kq) and the wake stretching
coefficient (Kw).

5 Coaxial-Rotor Analysis

Similar to the hypotheses embedded in Eq. (1),
for a coaxial rotor, the inflow dynamics is written

9
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as the following first order system:

[M]



∗
λU

0∗
λU

1s∗
λU

1c∗
λL

0∗
λL

1s∗
λL

1c


+[L̄]



λU
0

λU
1s

λU
1c

λL
0

λL
1s

λL
1c


=



∆CU
T

∆CU
L

∆CU
M

∆CL
T

∆CL
L

∆CL
M


,

(11)
where superscript U and L represents the upper
and the lower rotors, respectively. The matrices
[M] and [L̄] have the following structure:

[M]≡
[
[MUU ] [MUL]
[MLU ] [MLL]

]
; [L̄]≡

[
[L̄UU ] [L̄UL]
[L̄LU ] [L̄LL]

]
,

(12)
where [MUU ] and [L̄UU ] represent the influence
of the Upper rotor on itself; [MLL] and [L̄LL] rep-
resent the influence of the Lower rotor on itself;
[MUL] and [L̄UL] represent the influence of the
Upper rotor on the Lower rotor and [MLU ] and
[L̄LU ] represent the influence of the Lower rotor
on the Upper rotor.

For a coaxial rotor system, two new nondi-
mensional parameters are introduced: The clear-
ance between the rotors, H, in terms of H/D,
and the system thrust sharing ratio, T L/TU , that
is taken from the basic trim solution that is per-
formed prior to the dynamic inflow extraction
(similar to the case of a single rotor system). Sub-
sequently, the H/D and T L/TU ratios are treated
as independent parameters.

5.1 Calculating the [M] and [L̄] Matrices for
a Coaxial Rotor

Along the lines of the single rotor analysis, per-
turbational loads are the derivers of the analy-
sis in the case of a coaxial rotor system as well.
Subsequently, we apply periodic perturbations to
both rotors, one perturbation at the time, at a
given frequency, ω, e.g. ∆CU

T , of the type:

∆CU
T =CsU

T sin(ωt)+CcU
T cos(ωt). (13)

Figure 20 summarizes the methodology in this
case which is essentially based on doubling

the process by introducing ∆CU
T (ψ1), ∆CU

L (ψ1),
∆CU

M(ψ1) periodic perturbations in addition to
∆CL

T (ψ1), ∆CL
L(ψ1), ∆CL

M(ψ1) perturbations. The

Collection of
Coef cients &fi
Linear System

Solution

Periodic
Excitation

In ow Timefl
History

In ow Linearfl
Coef cientsfi

Harmonics of
Coef cientsfi

All Matrices72
Elements

[M], [L]Detailed
Aerodynamic

Analysis

Extraction of
Linear In owfl
Coef cientsfi

FFT

U

T
ΔC

U

M
ΔC

U

L
ΔC

L

T
ΔC

L

M
ΔC

L

L
ΔC

Fig. 20 Scheme of the Single frequency analysis
methodology for a coaxial rotor system.

definition of induced velocity over each rotor is
similar to Eq. (2) and so the methodology of ex-
traction the linear variation from the actual inflow
distribution described in Eq. (7). Yet, to avoid
confusion and to eliminate the need to deal with
two opposite azimuth angles of the two rotors,
we have defined the linear inflow variation over
the lower rotor by the upper rotor azimuth angle
(ψU ):

∆ṽU
i (ψ1, r̃,ψ) (14)
= λU

0 (ψ1)+λU
1s(ψ1)r̃ sin(ψU)+λU

1c(ψ1)r̃ cos(ψU),

∆ṽL
i (ψ1, r̃,ψ) (15)
= λL

0(ψ1)+λL
1s(ψ1)r̃ sin(ψU)+λL

1c(ψ1)r̃ cos(ψU).

Using this notation, λU
1s > 0 indicates increased

inflow over the upper rotor disc at the ψU = 90◦

area, while λL
1s > 0 indicates increased inflow

over the lower rotor disc at the area below ψU =
90◦. Such definitions simplify the examination of
the physical phenomena as it views both disc in a
similar way.

Figure 21 shows the upper and the lower rotor
wakes and their interactions in hover. As demon-
strated, the wakes interact and both wakes induce
velocity on both disc plans.

5.2 System Characteristics

The [M] and [L̄] obtained for a coaxial rotor sys-
tem enable several “sanity” checks that were ex-
ecuted and proven to be true. The following is
written for the [L̄] matrix but holds also for the
[M] matrix as well:

(a) For infinite clearance:

[L̄UU ] = [L̄LL] = [L̄]|Single

10
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Upper Roll Moment

perturbation

Lower Roll Moment

perturbation

NO

perturbation

U
L

C L
L

C

Fig. 21 The upper and the lower rotor wakes in
hover: No perturbation; Roll perturbation in the
upper rotor; Roll perturbation in the lower rotor.

[L̄UL] = [L̄LU ] = [0].

(b) For zero clearance:

[L̄UU ] = [L̄LL] ̸= [L̄]|Single

[L̄UL] = [L̄LU ] ̸= [0].

(c) For finite (practical, see Fig. 22 below)
clearance:

[L̄UU ] ̸= [L̄LL] ̸= [L̄]|Single

[L̄UL] ̸= [L̄LU ] .

Figure 22 presents typical coaxial matrices
compared with those of single rotor system in
hover. First note that in this hover case, many
of terms vanish. It is also shown that [L̄11], [L̄14],
[L̄41] and [L̄44] dominate in magnitude as they are
related to the rotors’ thrust, similar to the [L̄11]
term for a single rotor. Similar trend is observed
for the corresponding terms of [M].

5.3 Bode Plots in Hover

Figure 23 presents the bode plot for λU
0 and λL

0
due to ∆CU

T and ∆CL
T . Symbols represent the free

wake results while lines show the state-space ap-
proximation. As shown, the behavior of λU

0 due
to ∆CU

T is very similar to the behavior of λ0 due
to ∆CT for a single rotor shown in Fig. 12. As
expected, λU

0 due to ∆CL
T is lower due to the fact

that the upper rotor is placed above (and out of)
the lower rotor wake. On the other hand λL

0 due to
∆CU

T and λL
0 due to ∆CL

T are similar in magnitude.

0.848

-0.097

-0.097

0.150

-0.050

-0.050

1.069 -0.574

-0.123 0.039

-0.123 0.039

-0.406 1.015

0.011 -0.109

0.011 -0.109

0.515 -0.407

-0.079 0.031

-0.079 0.031

-0.550 0.659

0.100 -0.091

0.100 -0.091

[ ]L

Single Coaxial

[ ]M

Fig. 22 The matrices [M] and [L̄] for coaxial ro-
tor system in hover, H/D = 0.1, T L/TU = 1.0,
CU

T +CL
T = 0.01, compared with single rotor sys-

tem matrices for CT = 0.005.

Note that the above observation regarding the
similarity of the behavior of λU

0 due to ∆CU
T and

the behavior of λ0 due to ∆CT for a single rotor
occurs despite the fact that the relevant matrices
in Fig. 22 are clearly different. For example, re-
placing [L̄UU ] and [L̄LL] with [L̄] of a single rotor
in addition to setting [L̄UL] = [L̄LU ] = [0] is not an
acceptable approximation at all. It is evident that
in this case, the off diagonal matrices [L̄UL], and
[L̄LU ] play a major role.

0.1 1

0.1 1

ω%

ω%

dB

dB

φ°

φ°

0
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0

0
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-90

0
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U U
T0

|λ | |ΔC |

U L
T0

|λ | |ΔC |

L U
T0

|λ | |ΔC |

L L
T0

|λ | |ΔC |

Fig. 23 Bode plot of λU
0 and λL

0 due to ∆CU
T

and ∆CL
T (Hover, H/D = 0.1, T L/TU = 1.0,

CU
T +CL

T = 0.01).

In addition, Fig. 24 presents the bode plot for
λU

1s and λL
1s due to ∆CU

L and ∆CL
L (similar plot may

be drawn for λ1c and ∆CM of both rotors). As
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shown, the moments over the upper rotor induce
similar perturbations over both rotor plans due to
the fact that the lower rotor is placed below (and
mostly within) the upper rotor wake, while the
moments over the lower rotor induce larger per-
turbation over the lower rotor than over the upper
rotor, again due to the fact that the upper rotor is
placed above (and out of) the lower rotor wake.

L U
L1s

|λ | |ΔC |

U U
L1s

|λ | |ΔC |

0.1 1

0.1 1

ω%

ω%

dB

dB

φ°

φ°

0.05

0.05

L L
L1s

|λ | |ΔC |

0

10

20

-270

-180

0

10

20

-270

-180

0.1

U L
L1s

|λ | |ΔC |

Fig. 24 Bode plot of λU
1s and λL

1s due to ∆CU
L

and ∆CL
L (Hover, H/D= 0.1, T L/TU = 1.0, CU

T +
CL

T = 0.01).

5.4 Forward Flight

A general view of the wake structure of a coaxial
rotor system in forward flight in the rotor vicin-
ity is shown in Fig. 25. Careful examination
of the wake geometry with and without pertur-
bation shows that unlike the hover case shown
in Figure 21, the mutual modifications in the
wake structures in the rotor vicinity are negligi-
ble. Similar to the case of a single rotor, even for
very slow forward speed, the free stream veloc-
ity carries the wake away from the rotor in such a
manner that the main interference between the ro-
tors lies mainly in the mutual velocities induced
by the time varying magnitudes of the tip vor-
tices.

μ=0.1

μ=0.2

Fig. 25 Upper and lower wake structures in for-
ward flight (H/D = 0.1, T L/TU = 0.9).

6 Conclusion

A methodology for extracting linearized state-
space dynamic inflow model from high fidelity
aerodynamic analysis for various helicopter ro-
tor systems in all flight regimes is offered. The
methodology is also extended to the case where
dynamic inflow model is required for maneuver-
ing flight.

The present methodology employs a Sin-
gle frequency analysis procedure and is differ-
ent from the classical one in two ways: First,
the methodology may employs any high fidelity
aerodynamic modeling. Such models have far
fewer limitations and represent the state-of-the-
art in rotorcraft aerodynamic modeling. Hence,
the outcome ought to be of higher quality. The
second difference is the definition of the “inflow
states” that is different from the classical one.
The states defined in this study are “exact” in the
sense that they are directly related (only) to the
inflow distribution along each blade at each in-
stant. Hence, these states may adequately repre-
sent any rate of inflow dynamics and are directly
relevant to the instantaneous load estimation re-
quired during real time simulations. This feature
is of high importance in maneuvering flight.

The analysis is completely a non-dimensional
one and deals only with global thrust and mo-
ments over the rotors. Additional advantage of
the present methodology lies in the fact that there
is a complete separation between the inflow anal-
ysis and loads evaluation.

The results demonstrate that the Single fre-
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quency analysis methodology is capable of di-
rect calculations of all involved state-space co-
efficients within the first-order hypothesis of the
dynamic inflow model. The methodology deter-
mines the coefficients per given frequency (18
coefficients for the single case and 72 coefficients
for the coaxial case) while uniformity over the
relevant frequency range testifies to the level of
validity of the basic first-order system hypothe-
sis.

In general, for a single rotor, the results show
similarity to the classical results and indicate re-
gions where the basic hypothesis is less applica-
ble. It is also shown that the rotor response to
heaving, rolling and pitching motion may be de-
scribed as a first order as well.

For a coaxial rotor system in hover, it is
shown that in general, the basic hypothesis of
first-order system behavior holds as well in most
of the cases with some exceptions. The associ-
ated matrices demonstrate the fact that due to the
high coupling in the system, the resulting matri-
ces are clearly different from the case of a single
rotor.

References

[1] Pitt, D. M., and Peters, D. A., “Theoretical Pre-
diction of Dynamic Inflow Derivatives”, Ver-
tica, Vol. 5, No. 1, 1981, pp. 21–34.

[2] Gaonkar, G.H., Peters, D.A., “Effectiveness of
Current Dynamic-Inflow Models in Hover and
Forward Flight”, Journal of the American Heli-
copter Society, Vol. 31, No. 2, 1 April 1986, pp.
47-57(11).

[3] Peters, D. A., and HaQuang, N., “Dynamic
Inflow for Practical Applications”, Technical
Note, Journal of the American Helicopter So-
ciety, Vol. 33, No. 4, Oct 1988, pp. 64-68.

[4] Peters, D. A., and He, C.-J., “Correlation of
Measured Induced Velocities with a Finite-State
Wake Model”, Journal of the American He-
licopter Society, Vol. 36, No. 3, July 1991,
pp. 59–70.

[5] Johnson, W. “Feasibility Investigation of Gen-
eral Time-Domain Unsteady Aerodynamics of
Rotors”, NASA CR 177570, 1990.

[6] Ellenrieder, T. J., and Brinson, P. R., “The Dy-
namic Induced Velocity Field of a Model Rotor

in Hover Conditions”, The Aeronautical Jour-
nal, Vol. 102, No. 1016, Jun-Jul 1998.

[7] Bagai, A., Leishman, J.G., Park, J., “Aero-
dynamic Analysis of a Helicopter in Steady
Maneuvering Flight Using a Free-Vortex Rotor
Wake Model”, Journal of the American Heli-
copter Society, Vol. 44, No. 2, 1 April 1999, pp.
109-120(12).

[8] Leishman, J. G., Bhagwat, M. J., and Bagai, A.,
“Free-Vortex Filament Methods for the Analy-
sis of Helicopter Rotor Wakes”, Journal of Air-
craft, Vol. 39, No. 5, September-October 2002,
pp. 759–775.

[9] Bhagwat, M. J., and Leishman, J. G., “Time-
Accurate Modeling of Rotor Wakes Using A
Free-Vortex Wake Method”, Journal of Air-
craft, Vol. 39, No. 5, September-October 2002,
pp. 759–775.

[10] Rand, O., Khromov, V., “Compound Helicopter:
Insight and Optimization”, Journal of the Amer-
ican Helicopter Society, Vol. 60, No. 1, January
2015, pp. 012001-1–012001-12.

[11] Joglekar, M., and Loewy, R., “An Actuator-
Disc Analysis of Helicopter Wake Geometry
and the Corresponding Blade Response”, US-
AAVLABS Technical Report 69-66, Dec. 1970.

[12] Rand, O., Khromov, V., Hersey, S., Celi, R.,
Juhasz, O., and Tischler, M., “Linear Inflow
Model Extraction from High-Fidelity Aerody-
namic Models for Flight Dynamics Applica-
tions”, Proceedings of the American Helicopter
Society 71st Annual Forum, Virginia Beach,
Virginia, May 5-7, 2015.

[13] Rand, O., Khromov, “Free-Wake Based Dy-
namic Inflow Model for Hover, Forward and
Maneuvering Flight”, Proceedings of the Amer-
ican Helicopter Society 72st Annual Forum,
West Palm Beach, Florida USA, May 17-19,
2016.

[14] Rand, O., “RAPiD - Rotorcraft Analysis for
Preliminary Design”, TAE 987 Report, Tech-
nion - Israel Institute of Technology, Faculty
of Aerospace Engineering, Haifa, Israel, July
2012.

[15] Chen, R. T. N., and Hindson, W. S., “Influence
of Dynamic Inflow on the Helicopter Vertical
Response”, NASA TM-88327, June 1986.

[16] Keller, J.D., “An Investigation of Helicopter Dy-
namic Coupling Using an Analytical Model”,

13



O. RAND, V. KHROMOV

Journal of the American Helicopter Society,
Vol. 41, No. 4, 1 October 1996, pp. 322-330(9).

[17] Prasad, J. V. R., Nowak, M., and Xin, H., “Fi-
nite State Inflow Models for a Coaxial Rotor in
Hover”, Proceedings of the 38th European Ro-
torcraft Forum, Amsterdam, Netherlands, 4-7
September 2012.

[18] Howlett, J.J., “UH-60A Black Hawk Engineer-
ing Simulation Program - Vol. II - Background
Report”, NASA CR-166310, Dec 1981.

[19] Curtiss, H.C., “Stability and Control Model-
ing”, Vertica, Vol. 12, No. 4, pp. 381-394, 1988.

[20] Tischler, M. B. and Remple, R. K., “Aircraft and
Rotorcraft System Identification: Engineering
Methods with Flight Test Examples”, AIAA,
2nd ed., 2012, Reston, VA.

[21] Houston, S. S., “Identification of a Coupled
Body/Coning/Inflow Model of Puma Vertical
Response in the Hover”, Vertica, Vol. 13, No. 3,
1989.

[22] Krothapalli, K.R., Prasad, J.V.R., Peters, D.A.,
“Helicopter Rotor Dynamic Inflow Modeling
for Maneuvering Flight”, Proceedings of the
American Helicopter Society 55th Annual Fo-
rum, Montreal, Canada, April 1999.

7 Contact Author Email Address

Omri Rand: rand@technion.ac.il
Vladimir Khromov: rapid@technion.ac.il

Copyright Statement

The authors confirm that they, and/or their company or or-
ganization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give per-
mission, or have obtained permission from the copyright
holder of this paper, for the publication and distribution of
this paper as part of the ICAS proceedings or as individual
off-prints from the proceedings.

14


