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Abstract

A bi-level algorithm is developed to determine
the optimal arrival sequence w.r.t a specific
upper level objective function, e.g. minimiz-
ing pollutant emissions or maximizing runway
throughput. Within a sequence it is assumed
that all aircraft are operated optimally (lower
level optimization), minimizing individual fuel
consumption. However, all aircraft trajecto-
ries adhere to constraints imposed by the up-
per level, such as time and distance separation.
The algorithm combines a direct optimal con-
trol method for solving the lower level problem
with a genetic algorithm, which is applied to
the upper level combinatorial problem.

The lower level problems are fully dis-
cretized by applying a trapezoidal collocation
scheme provided by FALCON.m [1] and subse-
quently solved utilizing the interior point NLP
solver IPOPT [2]. The discretization is per-
formed during initialization of the algorithm
and reused during execution to minimize com-
putational effort. For the upper level prob-
lem an efficient mutation operator is intro-
duced, which exploits the information con-
tained within the Lagrange multiplier of the
discretized arrival time constraint.

The algorithm is validated against a test
case scenario comprising five aircraft destined
for runway 08L of Munich airport, which en-

ter the terminal maneuvering area within four
minutes at multiple way points. Aircraft dy-
namics are represented by a model derived
from BADA 3. The performance of the algo-
rithm allows the application on a pre-tactical
level for a limited number of arriving aircraft.

1 Introduction

The sustaining increase of air traffic around
the world is driving current air traffic control
systems to their limits. The demand resulting
from this growing traffic has set the focus of re-
search on methods to enlarge air space capac-
ity. For instance, in 2005, a high-level goal of
the Single European Sky ATM Research Joint
Undertaking (SESAR JU) has been declared
to triple ATM capacity by the year 2020 [3].
Comparable research programs conducted by
the USA (NextGen) and Japan (CARATS) in-
clude similar goals.

A bottleneck of air traffic systems are
the terminal maneuvering areas (TMA) of
large aerodromes, especially of hub airports
[4]. Increasing congestion dictates that air-
craft are guided to the runway in a most effi-
cient manner. Advanced procedures and sys-
tems, such as Point Merge and Extended Ar-
rival Managers (E-AMAN) help air traffic con-
trol officers to decrease separation and im-
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prove aircraft sequencing, thus increasing run-
way throughput.

SESAR’s User Preferred Routing and i4D
trajectories, as well as comparable solutions
within aforementioned research programs, are
designed to enable innovative approaches to
further increase capacity and mitigate effects
on the environment. Free routing enables
less constrained trajectories, imposing a higher
performance with respect to specific objective
functions.

The subject of this paper is to combine

• direct optimal control methods to find
optimal trajectories for a specific aircraft
(lower level)

• a genetic algorithm to determine the
best sequence of all arriving aircraft (up-
per level).

Each level can be solved with respect to a spe-
cific objective function. Hereby, the solution
of the upper level imposes constraints on the
lower level, e.g. the first time a specific aircraft
is allowed to reach a certain point in space,
such as the final approach fix. Moreover, the
objective function of the upper level depends
on the solution of the lower level. A scheme of
the overall algorithm is displayed in Fig. 1.

Initial Population

Objective Function

Optimal Solution

Candidate Sequence

Upper Level

Lower Level

Direct Optimal

Control Method final time constraint,

distance separation
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Genetic
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Fig. 1 Architecture of bi-level optimization
algorithm

The application of optimal control theory
to optimize trajectories has become a well re-
searched topic within the context of ATM. Dif-
ferent methods have been applied, including
indirect approaches [5], dynamic programming

[6] and direct methods [7, 8]. In particular,
collocation methods have been used to deter-
mine optimal approach trajectories for scenar-
ios containing multiple aircraft [9, 10]. To en-
sure feasible solutions with regard to safety,
the implementation of specific constraints is
required, e.g. to enforce a distance separation
between two aircraft.

Similarly, the combinatorial problem in
ATM has been investigated for several years,
particularly utilizing evolutionary strategies.
In [11], genetic algorithms are applied to solve
conflict resolution problems and find an opti-
mal take-off and landing sequence of ten air-
craft. An efficient cross-over operator for a
multi-runway approach scenario is introduced
in [12]. Aircraft scheduling with respect to
the wake turbulence category has been per-
formed in [13]. Moreover, genetic algorithms
have been applied to similar problems, which
can be transferred to air traffic management.
For instance, a scheduling problem for a ma-
chine process has been solved in [14], respect-
ing deadline constraints.

This work is focused on combining both
methods to generate optimal sequences re-
specting an optimized operation of each air-
craft individually. The dynamic aircraft model
used within the optimal control problems is
introduced in section 2. Subsequently, the al-
gorithms to solve the lower level optimal con-
trol and upper level combinatorial problems
are introduced in section 3 and 4, respectively.
Results from case studies are presented in sec-
tion 5 before concluding the work in section 6.

2 Model

The validity of the solution to an optimal con-
trol problem w.r.t. the real system is strongly
dependent on the quality of all mathematical
models involved. Besides the objective func-
tion, modeling of constraints is an important
task. These include the dynamic equations
that represent the aircraft as well as separation
constraints, which are particularly important
when solving problems associated with ATM.
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2.1 Aircraft

The aircraft are modeled as a point mass
moving in three-dimensional space. The fuel
consumption, the aerodynamic and propul-
sion forces are derived from the Base of Air-
craft Data family 3 (BADA 3), published by
EUROCONTROL [15]. Accordingly, the air-
craft model comprises seven states as shown
in Tab. 1.

The aircraft model is controlled by the
kinematic angle of attack, the kinematic bank
angle and the thrust lever position. The lift
coefficient, which can be used as an input
to the aerodynamic force model derived from
BADA 3, is calculated using a linear model
that depends on the aerodynamic angle of at-
tack. The latter is determined by comparing
the coefficients of the transformation matrix

MBA = MBK · MKO · MOA. (1)

The indices denote the body (B), aerodynamic
(A), kinematic (K) and NED (O) coordinate
frames, respectively, which are defined in [16].

Tab. 1 States and control inputs for the dy-
namic aircraft model

Description Min Max
ϕ latitude −90◦ 90◦

λ longitude −180◦ 180◦

h altitude 5000 ft ∞

VK kinematic speed Vmin,k Vmax,k

χK azimuth −180◦ 180◦

γK path climb angle − π
2

0
m aircraft mass 0 m0

αK kinematic angle of attack −8◦ 12◦

µK kinematic bank angle −30◦ 30◦

δT thrust lever position 0 1

2.2 Separation Constraints

While capacity has to be increased to cope
with the growing number of aircraft move-
ments, the safety of every flight has to be
assured. An important part of maintaining
an acceptable level of safety is the satisfaction
of separation constraints, both temporal and
spatial.

2.2.1 Time Separation

The time separation between two landing air-
craft is assured by enforcing a slot time for
each aircraft l that represents the first point
in time that is eligible for aircraft l to reach
the final approach fix:

tSlot,l = t1,l−1 + ∆tSeparation (wl, wl−1) . (2)

The time separation at the runway threshold
∆tSeparation was established by ICAO [17] to
mitigate hazards caused by the wake vortex
turbulences of the preceding aircraft l−1. Ac-
cordingly, this time separation depends on the
wake turbulence categories wl and wl−1 of both
aircraft, respectively. Since negligible time de-
lay is expected during the final approach due
to elaborate procedures, the time separation
is assumed to be valid likewise at the final ap-
proach fix.

2.2.2 Distance Separation

Like the time separation, the distance sep-
aration is modeled according to ICAO Doc.
4444 [17], which defines minimum separation
for the vertical and the horizontal distance,
separately. While vertical separation is fixed
to dh = 1000 ft, horizontal distance dx is de-
pendent on the wake turbulence category of
both aircraft involved.

To enforce both the vertical and horizontal
separation minima, the maximum norm can be
applied

∥

∥

∥

∥

∥

(

√

∆x2 + ∆y2,
dx

dh

∆h

)
∥

∥

∥

∥

∥

∞

− dx ≤ 0, (3)

where ∆x and ∆y are the horizontal distance
components in north and east direction, re-
spectively. ∆h represents the altitude sepa-
ration that has to be scaled by the quotient
dx

dh
to adjust for the lower vertical separation

minimum. Using this formulation, the sepa-
ration inequality constraint takes the form of
a cylinder, which must not be violated by an-
other aircraft at any time.

It is assumed that the critical encounters
occur between two adjacent aircraft within the
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sequence. Thus, the constraint is evaluated
for the preceding aircraft l − 1, respectively,
where the first aircraft of a sequence is not
constrained. In order to determine the dis-
tance (∆x,∆y,∆h)T to the previous aircraft,
the optimal trajectory is stored after a solution
has been found. Using a cubic spline interpo-
lation between the time points tl, the geodetic
position (λ, φ, h)T

l of the preceding aircraft l−1
can be evaluated at all time points. Finally,
the geodetic coordinates are transformed to
the Cartesian distance. [18]

Because the analytic Hessian of the La-
grangian is used to solve the optimal con-
trol problem, the formulation of every con-
straint must be twice continuously differen-
tiable. Hence, the spatial separation con-
straint is relaxed to

(

(

√

∆x2 + ∆y2

)p

+

(

dx

dh

∆h

)p) 1
p

≤ dx, (4)

which has to be fulfilled in every time step.
The parameter p can be adjusted to ensure suf-
ficiently smooth edges of the cylindrical sep-
aration constraint model to avoid numerical
difficulties.

3 Lower Level Optimization

The lower level optimization represents non-
cooperative action of aircraft operators who,
are determined to minimize the aircraft’s op-
erating cost. Yet, constraints imposed by the
air traffic control, i.e. the upper level opti-
mization problem, are adhered. The task of
optimally operating dynamic systems can be
formulated as an optimal control problem.

3.1 Optimal Control Problem

The solution to the lower level optimal control
problem defines the optimal state trajectory

xl (t) ∈ R
n (5)

and the corresponding control history

ul (t) ∈ Ul ⊆ R
m (6)

of each aircraft k over the time

t ∈ [tl,0, tl,1] ⊆ R. (7)

from the point of entering the TMA t0 until
reaching the final approach fix at t1, where
the latter is a parameter of the optimization
problem. Optimality is defined by a specific
objective function, which can be represented
by a Mayer formulation

J = −m (t1) (8)

in the context of this paper, where the Mayer
term represents the negated final mass of each
aircraft. Maximizing the final mass is equiv-
alent to minimizing the fuel consumption ac-
cording to the dynamic model described in sec-
tion 2.1, which in turn can be consulted to
account for approximate pollutant emissions.

The optimal control problem is subject to
a set of constraints, which contain the differ-
ential equation governing the dynamic system

ẋ = f (x (t) ,u (t) , t) . (9)

Additionally, boundary conditions for the
state trajectory are imposed in the form

Ψ (x (t0) ,x (t1)) = (Ψ0,Ψ1)
T

≤ 0. (10)

The final boundary conditions correspond to
the MAGAT final approach fix of runway 08L
[19], displayed in Tab. 2:

Ψ1 = x (t1) − x1 = 0. (11)

The velocity Vk,app at the final approach fix is
dependent on the aircraft type.

Tab. 2 Final boundary conditions for the final
approach fix (MAGAT )

state final value
ϕ latitude 48◦ 20′ 30′′

λ longitude 11◦ 29′ 48′′

h altitude 5000 ft

VK kinematic speed Vk,app

χK azimuth 82◦

γK path climb angle −3◦

Similarly, the initial boundary conditions
are formulated for the entry point of the TMA.
Four way points [19] have been used as shown
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in Tab. 3. Aircraft are assigned to one of these
way points, which are set as initial boundary
condition for the aircraft’s position. Remain-
ing states are chosen to resemble realistic air-
craft operation and partially depend on the
aircraft type.

Tab. 3 Initial way points

way point latitude longitude
AKANU 49◦ 03′ 06′′ 10◦ 39′ 30′′

ANORA 48◦ 57′ 00′′ 10◦ 32′ 54′′

RIXED 48◦ 49′ 48′′ 10◦ 25′ 06′′

ABGAS 48◦ 35′ 36′′ 10◦ 23′ 30′′

Finally, algebraic equalities

ceq (x (t) ,u (t) , t) = 0 (12)

and inequalities

cineq (x (t) ,u (t) , t) ≤ 0 (13)

are introduced as additional constraints to re-
flect typical limitations in ATM, such as re-
stricting the altitude by introducing an in-
equality condition for the path climb angle

γK ≤ 0, (14)

thus disallowing aircraft to climb during the
approach (see Tab. 1). Similarly, limitations
on the flight performance are introduced, e.g.
by limiting the load factor in the z-direction
of the body frame

0.8 ≤ (nz)B ≤ 1.2. (15)

To ensure feasibility of the bi-level algorithm,
the time and distance separation constraints
are crucial. The final time is subject to the
inequality constraint

tSlot − t1 ≤ 0, (16)

where tSlot is determined as described in sec-
tion 2.2.1. Similarly, the distance separation
is ensured by introducing the separation con-
straint modeled in section 2.2.2.

3.2 Direct Collocation Methods

Among numerous numerical approaches to
solve optimal control problems, which can be
found in extensive literature, e.g. [20, 21, 22],
a good performance of direct collocation meth-
ods has been observed for comprehensive prob-
lems [8, 9, 10]. The method implies that the
augmented objective function is discretized at
a number of collocation points, where state de-
fects are introduced to account for the system
dynamics. Along with further constraints a
non-linear, constrained optimization problem
results with the Lagrangian

L (x,u, λ)
= ϕ (x1) + σTψ (x0,x1)
+

∑N−1

i=0 λT
i+1 (xi + hΦ (ti,xi,ui, h) − xi+1)

+
∑N

i=0 µ
T
i c (ti,xi,ui) ,

(17)
where σ, λ and µ are the Lagrange multipliers
to the boundary conditions ψ, the state defects
and the constraints c. Comprehensive theory
can be found in [7, 20, 22]. As described in
section 3.1, the inequality constraint

ctf
= tSlot,l − t1 ≤ 0 (18)

is implemented within each optimal control
problem according to equation (16), where the
corresponding Lagrange multiplier µt,Slot, to
the first order, expresses the sensitivity of the
objective w.r.t the mentioned constraint [20]:

µt,Slot ≈ −
df

dc
(19)

This Lagrange multiplier is zero, if the con-
straint is inactive, i.e. if the optimal solution’s
final time is larger than the assigned first slot
time.

In optimal control theory, the collocation
method is applied to transform the continuous
optimal control problem into a discrete, non-
linear program (NLP). This is achieved by uti-
lizing the FSD Optimal Control Tool for Mat-

lab (FALCON.m) [1], which has been devel-
oped at the Institute of Flight System Dynam-
ics of the TU München. The tool offers meth-
ods for automatic differentiation to obtain lo-
cal gradient and Hessian matrices of the ob-
jective function, the system dynamics and all
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constraints [23]. The local gradients and Hes-
sians are subsequently assembled to represent
the overall problem. All functions are evalu-
ated and results are passed to an NLP solver in
each iteration until convergence. Within this
work the interior point NLP solver IPOPT has
been used [2].

4 Upper Level Optimization

The upper level optimization problem repre-
sents the air traffic control officer’s (ATCO)
task to determine a sequence of arriving air-
craft such that a specific objective function is
minimized. The sequence is enforced by im-
posing slot times on each aircraft (see. equa-
tion 2). Additionally, path constraints are im-
posed on each aircraft to maintain a safe sep-
aration (see section 2.2.2).

Similarly, the upper level control problem’s
objective function depends on the solution of
all lower level problems. E.g., if the capacity of
the considered runway is to be maximized, the
objective function can be modeled as the time
of reaching the final approach fix of the last
aircraft within the sequence. This results in a
combinatorial problem, which has been in the
focus of mathematicians for several years. [24]

4.1 Combinatorial Problem

The combinatorial problem of scheduling n ar-
riving aircraft can be described as finding the
optimal permutation

a∗ = (a1, a2, a3, . . . , an) ∈ An (20)

that represents the global extremal of a spe-
cific objective function, where An represents
the set of all feasible permutations (a)i, that
each represent a specific sequence of arriving
aircraft.

Within this paper, no constraints are im-
posed on the sequence (a)i, which results in a
search space of n! possible permutations. Ad-
ditionally, the computational cost of an up-
per level objective function evaluation for each
candidate sequence (a)i increases linearly with

n. Finally, the objective function may be dis-
continuous over the search space. Hence, an
efficient algorithm is needed to generate solu-
tions at a reasonable computational cost.

4.2 Genetic Algorithm

Genetic algorithms are well researched meth-
ods of numerical optimization, which are de-
signed to resemble the process of natural se-
lection. These are especially suitable for large,
noisy and discontinuous search spaces, which
are difficult to be handled by traditional op-
timization techniques [24]. Within every iter-
ation of the algorithm, a population consist-
ing of candidate solutions is updated in a way,
that the overall fitness is increased. In most
cases, the fitness can be defined by a specific
objective function. The algorithm consists of
several steps, which are explained in more de-
tail below.

4.2.1 Initialization

An intelligent initialization of the population
is crucial to increase overall performance of the
algorithm. This is achieved by choosing initial
candidate solutions from the part of the search
space, which will most likely contain the opti-
mal solution.

To generate sequences with a high likeli-
hood of optimality, efficient arrival times t̃i,1
for all aircraft are estimated by the efficient
cruise speed published in BADA 3 [15]:

t̃i,1 = ti,0 +
1

VCr

√

(x1 − x0)
T (x1 − x0). (21)

Subsequently, the aircraft are sorted by their
estimated arrival time.

Initial sequences are generated using a
Markov Transition matrix as displayed in
Fig. 2, where the state is defined as the air-
craft landing in the current slot. It is assumed
that the most likely transition from a leading
aircraft to a following respects the order of ef-
ficient arrival times. A normal distribution is
assigned around this aircraft to create transi-
tion probabilities to different aircraft and nor-
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malized over the respective column. An exam-
ple of the Markov Transition matrix for four
aircraft is shown in Tab. 4, where columns
represent leading aircraft and rows following.
The first column (0) contains the probability
that a specific aircraft is the first in leading
the sequence.

Tab. 4 Markov Transition Matrix

Aircraft 0 1 2 3 4
1 0,46 0 0,41 0,18 0,07
2 0,35 0,65 0 0,41 0,28
3 0,15 0,28 0,41 0 0,65
4 0,04 0,07 0,18 0,41 0

A sequence is generated be creating a set
of random numbers containing n + 1 scalars
between zero and one, where n represents the
number of aircraft. The first element of this
set is compared to the cumulated first column
of the Markov Transition Matrix. When the
cumulated values exceed the random number
for the first time, the respective aircraft is cho-
sen. E.g., if a random number of 0.6 is gen-
erated, aircraft 2 is assigned to the first slot.
Subsequently, the values in the second row are
set to zero, all columns are normalized and
the process is repeated for the second slot, i.e.
column two.

tr
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preceding
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Fig. 2 Normalized Markov transition matrix
for an example including ten arriving aircraft

4.2.2 Objective Evaluation

In every iteration, the objective function is
evaluated for each chromosome, i.e. each se-
quence. The overall objective of the upper
level problem is a function of the solutions of
all lower level problems. Furthermore, the so-
lution of each lower level problem depends on
the trajectory of the preceding aircraft. The
objective can thus only be evaluated by solv-
ing all optimal control problems subsequently.
For efficiency it is thus crucial to avoid any
unnecessary computations.

This computational overhead is mitigated
by storing common results of the solution pro-
cess, e.g. if the sequences

ak = (1, 2, 3, . . . )

and
al = (1, 2, 4, . . . )

are elements of the population, the optimal
control problems for the subsequence

akl = (1, 2)

are only calculated once and stored along with
any relevant data, such as the optimal trajec-
tories for aircraft one and two. It has to be
noted that common subsequences only exist
for the first part of a sequence, because the
constraint for the first terminal time depends
on the aircraft preceding the subsequence, in
general. However, the landing time for the
first aircraft is unconstrained.

4.2.3 Selection

The selection step is performed by sorting all
candidate sequences by the corresponding ob-
jective function. Subsequently, the best so-
lutions are selected, while all other candidate
sequences are discarded from the current pop-
ulation. The number of selected candidate se-
quences is determined by a specific fraction,
which is a parameter of the algorithm.

4.2.4 Mutation

Within a genetic algorithm, one or multiple
genetic operators are applied to generate new
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chromosomes. Efficient operators are subject
to several requirements. Firstly, only feasible
chromosomes can be evaluated in the next gen-
eration. Moreover, operators must ensure ge-
netic diversity to prevent the algorithm from
quickly converging to local minimums, that
may not be globally optimal. Finally, the op-
erator’s efficiency has a great influence on the
overall performance of the algorithm and thus
is to be maximized.

Mutation operators can be considered as
a straight-forward means of generation feasi-
ble chromosomes. For instance, swapping two
slots within the sequence preserves unique as-
signments of aircraft to slots. To ensure basic
efficiency by respecting the estimate for the
initial sequence, swaps are only allowed be-
tween aircraft with adjacent slots. However,
the swaps will occur with a uniform probabil-
ity. Hence, a large number of unreasonable
chromosomes will be generated.

As described in section 3.2, the Lagrange
multipliers can be seen as a sensitivity of
the objective function with respect to small
changes in a constraint. Hence, the Lagrange
multiplier corresponding to the lower bound
of the final time can be considered to aug-
ment the mutation. This way, additional in-
telligence is added to the operator to increase
the algorithm’s overall performance by apply-
ing the following steps:

• sort aircraft by Lagrange multiplier

• compare a random number to a cumu-
lated normal distribution as described in
section 4.2.1

• interchange selected aircraft with prede-
cessor

The probability to select the first aircraft
is assigned to zero to avoid infeasible swaps.
Anyway, since landing time of the first air-
craft is unconstrained, the Lagrange multiplier
is identically zero and thus receives a low prob-
ability of selection in any case.

4.2.5 Termination

The genetic algorithm can theoretically be ter-
minated by applying several different condi-
tions independently or in combination. These
have to be chosen with care to prevent the al-
gorithm from performing unnecessary compu-
tational overhead, especially when the fitness
evaluations are costly.

However, due to the efficient storing of
all required properties as described in sec-
tion 4.2.2, the computational overhead is min-
imized in this case once the genetic algorithm
has converged to a specific sequence. Hence,
it is sufficient to set a terminal condition for
the maximum number of iterations.

5 Results

The algorithm is tested for a scenario of five
aircraft entering the TMA of Munich airport
within under four minutes at different way
points, as can be seen in Tab. 5. The al-
gorithm is executed on a desktop computer
equipped with a Core i7 CPU and 16 GB of
RAM running Windows 10. The optimal se-
quence is found within 31 min and 56.4 s. A
total number of 47 optimal control problem are
solved due to the efficient storage and reuse of
solutions for subsequence. Each optimal con-
trol problem is discretized on a grid of 501
points in time, resulting in a overall problem
size of 5011 optimization variables and 4503
constraints.

Tab. 5 Arriving aircraft during the test case

Number Type
initial

way point
initial

time / s
1 A320 ABGAS 45
2 A380 ANORA 90
3 B737 AKANU 135
4 B747 RIXED 180
5 A330 ABGAS 225

The trajectories within the optimal se-
quence are displayed in Fig. 3. The trajec-
tories for aircraft one and 5 are almost identi-
cal, indicating a fuel efficient operation. The
maximum norm of the Lagrange multipliers
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to the slot time constraints yields a value of
0.23 · 10−6 kg

s
, i.e. by moving the slot time, the

objective can only be increased by a very small
amount.

Fig. 3 Optimal trajectories for a five aircraft
scenario on runway 08L of Munich Airport

In comparison, Fig. 4 displays all feasible
solutions obtained by the algorithm. It can be
clearly seen that several sequences force indi-
vidual aircraft to create considerable detours
to fulfill the separation constraints. However,
these solutions have a low fitness value and
will quickly be excluded by the algorithm.

Fig. 4 All feasible trajectories evaluated dur-
ing runtime of the algorithm

6 Conclusion

A bi-level algorithm has been introduced,
which combines direct optimal control meth-
ods with a genetic algorithm, resembling air-
craft operators (lower level) and ATCO (up-
per level). An optimal sequence has been

found under the assumption that all aircraft
are operated in a fuel-optimal way individu-
ally and non-cooperatively, however respect-
ing constraints imposed by the upper level al-
gorithm.

The utilization of the analytic Hessian ma-
trix of the problem within the numerical inte-
rior point solver (IPOPT), as well as the de-
velopment of an efficient genetic mutation op-
erator, which is based on the Lagrange multi-
plier of the slot time constraints, has signifi-
cantly improved the algorithms performance.
The computation time for a limited number
of aircraft can be considered reasonable, if the
algorithm is utilized within pre-tactical plan-
ning. Moreover, the bi-level approach shows a
robust behavior and quickly outputs feasible,
suboptimal solutions.

The bi-level structure of the algorithm al-
lows for several extensions and modifications.
Firstly, the existing combination may be en-
hanced by additional or alternative genetic op-
erators, such as a cross-over. The functionality
may be extended by an optimal runway allo-
cation for multi-runway scenarios.

Secondly, the modular structure allows for
the integration of alternative methods, such
as the cross entropy method proposed by Ru-
binstein [25]. Finally, convergence properties
may be investigated when additional aircraft
are added during the runtime of the algorithm,
resembling the fixed horizon of an optimal
A-MAN.
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