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Abstract  

A three-dimensional curve fitting method is 
proposed for approximation of a trajectory 
obtained as the result of numerical optimization. 
The proposed algorithm selects the waypoints 
among the given three-dimensional trajectory 
data points, and the trajectory data points are 
fitted to a three-dimensional polynomial curve in 
the weighted least squares sense. Generated path 
can be utilized for unmanned aerial vehicle path-
following. Numerical simulation is performed to 
demonstrate the performance of the proposed 
curve fitting scheme. 

1 Introduction  

A lot of methods have been developed for path 
planning to handle various considerations arise in 
the path planning problem. In some problems, 
optimality with respect to a given measure, 
dynamic feasibility of the planned path, and 
compliance with given constraints should be 
considered. For example, flight path planning for 
an unpowered UAV (Unmanned Aerial Vehicle) 
with constraints on terminal speed and flight path 
angle is one of the optimal path planning 
problems. To solve this problem, trajectory 
optimization using direct methods such as direct 
collocation or pseudospectral method can be 
used to provide a proper path. 

The result of trajectory optimization is 
usually given by a table of data points. That is, 
the resultant optimal trajectory is not given in the 
form of a closed-form function. If the optimal 
trajectory and the corresponding optimal control 
input histories are saved as a time-indexed data 
tables, a large memory space is required. In 
addition, if the trajectory is given in the form of 
data points rather than in the form of a function, 

then it is difficult to apply a guidance law for 
UAV path-following instead of trajectory 
tracking,. 

A curve fitting method can serve as a 
solution to deal with this issue. Curve fitting 
refers to obtaining a functional formula that 
approximates given data points and reflects their 
tendency. Curve fitting can be classified into 
regression and interpolation. The objective of 
regression is to obtain a curve that fits with data 
points but not necessarily pass through all of 
them. This can be done by reducing an 
approximation error. On the other hand, 
interpolation is to obtain a curve that passes 
through all data points. The derivatives at the 
data points can serve as additional boundary 
constraints in the interpolation to connect the 
data points with continuity. 

For the purpose of reducing the size of 
stored trajectory data while approximating them, 
regression method is considered in this study. It 
is expected that connecting only some 
representative data points (the waypoints) will 
lower the discrepancy between the original 
trajectory and the approximated path. Also, by 
satisfying the derivative boundary conditions at 
the chosen waypoints, smoothness properties of 
the original trajectory data can be preserved and 
the continuity of entire path up to certain degree 
can be guaranteed. 

In this study, a constrained weighted least 
squares polynomial curve fitting method is 
proposed as an alternative to using entire 
trajectory data points. The proposed method 
takes a multi-step approach. First, some 
representative data points are chosen as 
waypoints. The trajectory is then divided into 
several intervals. Each interval is approximated 
by a polynomial curve which is similar to the 
trajectory data points in the interval. The curve 
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fitting method developed in this study stands on 
the basis of polynomial interpolation method [1]. 
However, unlike in [1] where the waypoints are 
only considered for interpolation, the proposed 
method takes the trajectory data points between 
the waypoints into account to approximate them. 

This paper is organized as follows. A curve 
fitting problem is formulated in Section 2, and a 
weighted least squares polynomial curve fitting 
method is proposed in Section 3. The 
performance of the proposed method is 
demonstrated by numerical simulation in Section 
4. Finally, concluding remarks are summarized 
in Section 5. 

 

2 Problem Formulation 

Let us consider a table of trajectory data obtained 
by trajectory optimization. The objective of this 
study is to approximate the data with a three-
dimensional curve. Figure 1 shows the situation 
considered in this study. 

 

 
Figure 1 Curve fitting problem geometry and notation 

 
In Fig. 1, iWP  is the i -th waypoint, and 

iWPr  

is its position vector. Suppose that total number 
of the trajectory data points is M , and N  out of 
M  data points are chosen as waypoints. 1WP  

and NWP   are the initial and final point, 

respectively. Let ( )i lp  be the curve given by a 

function of l  for the i -th interval between iWP  

and 1iWP+ . 
1i ii WP WPL

+
−r r  denotes the length 

of the straight line between iWP  and 1iWP+ , and 

ˆ
Ii , ˆ

Ij , ˆ
Ik  are unit vectors in the x , y , z  axes 

of inertial coordinate system { }I , respectively. 

ˆ
iWPT  and 

iWPK  are the unit tangent vector and 

curvature vector at iWP , respectively. 

Let us denote kr  as the position of the k -th 

point in the total trajectory dataset, where in  is 

the number of data points in the i -th interval 
except iWP  and 1iWP+ . In Fig. 1, i

jρ  denotes the 

position of the j -th data point among the in  

trajectory data points in the i -th interval. The 
number of data points between 1WP  and iWP , 

which is denoted by is , can be written as follows. 

 ( )
1

1

1 if 1

1 1 if 2, ,
i

i
l

l

i

n i N
s −

=

=
=  + + =

 
  (1) 

Then, we have, 

 
if 0

if 1, ,
i

i

WP

j i
j i

j

j ns +

==  =

r
r

ρ 
  (2) 

 
1

1

N

i
i

M N n
−

=

= +   (3) 

The curve fitting problem can be stated as 
follows; “For each interval between adjacent 
waypoints, find ( )i lp  which approximates the 

given trajectory data points i
jρ  by regression, 

while satisfying the given waypoint boundary 

conditions such as 
iWPr , ˆ

iWPT , and/or 
iWPK  at the 

same time.” 
 

3 Constrained Weighted Least Squares Curve 
Fitting 

3.1 Selection of Waypoints 

The similarity between the original trajectory 
data and the fitted curve depends on the choice of 
waypoints. Therefore, the number and position of 
waypoints should be carefully selected. 

In this study, the data points with maximum/ 
minimum coordinates in each axis of the inertial 
coordinate system are chosen as the waypoints. 
The initial and final points are also chosen. Then, 

( )ˆ  NIi

( )ˆ  EIj

( )ˆ  DIk

iWP

1iWP+iWPr

1iWP+
r

( )i lp

1WP

NWP

ˆ
iWPT

1

ˆ
iWP+

T

iWPK

1iWP+
K

iL

1
i
j+ρ

i
jρ



 

3  

APPROXIMATE THREE-DIMENSIONAL PATH GENERATION FOR
UAV PATH-FOLLOWING

the list of waypoints is sorted in the order of time 
sequence. If the distance between the 
neighboring waypoints is larger than a threshold, 
then a point in the middle of them can be selected 
as an additional waypoint. 
 

3.2 Local Path Coordinate System 

The local path frame is utilized to simplify the 
problem [1]. Figure 2 shows the definition of the 
local coordinate system { }iS  for the i -th interval. 

 

 
Figure 2 Local Path Coordinate System 

 
As shown in Fig. 2, the local path coordinate 

system { }iS  is defined as the Cartesian 

coordinate system with its origin at iWP  and its 

basis vectors given by the following unit vectors. 
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 ˆ ˆˆ
i i iS S S= ×k i j   (6) 

The rotation matrix describing coordinate 
transformation from the inertial coordinate 
system { }I  to the local path coordinate system 

{ }iS  is given by 
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3.3 Structure of the Fitted Curve 

An arbitrary point can be projected on a specific 
straight line in three-dimensional space, and the 
distance between a point and the straight line can 
be easily obtained. In this regard, it is useful to 
define a curve fitting error with respect to the 
straight line between iWP  and 1iWP+ . 

Let us consider the straight line between 
adjacent waypoints iWP  and 1iWP+ . By the 

definition of the local path coordinate system, the 

straight line is parallel to ˆ
iSi . The ˆ

iSi -axis 

coordinate of a point is the distance between the 
projection of the point on the straight line and 

iWP . The ˆ
iSj -axis and ˆ

iSk -axis coordinates of 

the point are the distances from the straight line 
to the point in each axis. The structure for the 
fitted curve in the i -th interval can be designed 
in the local path coordinate system { }iS  as 

follows 

 ( ) ( )
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where 
0n n

Ti i i
y y yc c  c    and 

0n n

Ti i i
z z zc c  c    are the constant 

coefficients, and ( ) 1
Tn

n l l l =  f   is the 

polynomial basis function vector. In Eq. (8), 

( )i
ny l  and ( )i

nz l  are the n -th order polynomials 

for ˆ
iSj  and ˆ

iSk -axes components of the curve in 

the i -th interval. The right superscript notation 

( ) iS⋅  means that ( )i lq  is represented in the local 

path coordinate system { }iS . 

The trajectory data points are usually 
represented in the inertial coordinate system, and 
therefore it is convenient to represent the curve 
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in the same coordinate system. The curve for the 
i -th interval can be written as follows 

 ( ) ( )
0

i

i i

SI I
i WP I S i il l l←= + −p r R q   (9) 

where ( )iS
i lq  is given in Eq. (8), and 

0i
l  is the 

value of parameter l  at the initial point of the i -

th interval. By designing the ˆ
iSi -axis component 

of the curve ( )iS
i lq  to be l , without any scaling, 

the curve given by Eq. (8) is parameterized to 

take the Euclidean distance along the ˆ
iSi -axis as 

the parameter l  of the curve. Therefore, it is 
obvious that 
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3.4 Differential Geometric Waypoint 
Boundary Conditions 

Position, unit tangent vector, and curvature 
vector at the waypoints can be used as the 
boundary conditions to determine the 
coefficients of the polynomial curves [1].  

For convenience, let us write the first and 
second derivatives of ( )n lf  as 
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For the curve from 1WP  to NWP , which is 

obtained from the final result of curve fitting to 
have the m -th order geometric continuity ( mG  
continuity), the continuity of 1m +  geometric 
quantities at each waypoint is required as the 
boundary conditions. To guarantee 1G  
continuity of the path, the continuity of position 
and unit tangent vector at the waypoint should be 

satisfied. Moreover, to guarantee up to 2G  
continuity of the path, the continuity of curvature 
vector at the waypoint should be additionally 
considered. 
 

3.4.1 Position Boundary Condition 

The position boundary condition requires the 
position of iWP  and 1iWP+  to be equal to that of 

the initial and final point of ( )I
i lp , respectively. 

The position boundary condition at iWP  can be 

written as follows. 

 ( )
0 i

I I
i i WPl =p r   (15) 

By substituting Eq. (8) into Eq. (9) and 
considering Eq. (15), the following two 
equations can be obtained. 
 ( )0 0

n

i T
y n =c f   (16) 

 ( )0 0
n

i T
z n =c f   (17) 

In a similar way, the following two 
equations can be obtained from the position 
boundary condition at 1iWP+ . 

 ( ) 0
n

i T
y n iL =c f   (18) 

 ( ) 0
n

i T
z n iL =c f   (19) 

 

3.4.2 Unit Tangent Vector Boundary 
Condition 

The unit tangent vector boundary condition 
requires the unit tangent vector at iWP  and 1iWP+  

to be equal to that at the initial and final point of 

( )I
i lp , respectively. The unit tangent vector 

boundary condition at iWP  can be written as 

follows. 
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where ˆ
i

I
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from trajectory data as ˆ i

i

i
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WP
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v

T
v

. By 
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substituting Eq. (11) into the first derivative of 
Eq. (9), representing in the local path coordinate 
system { }iS  by coordinate transformation, and 

considering Eq. (20), the following two 
equations can be obtained. 

 ( ) 2

1

ˆ
0

ˆ

i

i

n i

i
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WPi T
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⋅
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where ie  is the unit vector with its i -th 

component given by 1 , and ˆ ˆi

i i i

S I
WP S I WP←=T R T  is 

the unit tangent vector at iWP  represented in 

{ }iS . It is assumed in Eqs. (21)-(22) that 

1
ˆ 0i

i

S
WP ⋅ ≠T e . 

In a similar way, the following two 
equations can be obtained from the unit tangent 
vector boundary condition at 1iWP+ . 
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3.4.3 Curvature Vector Boundary Condition 

The curvature vector boundary condition 
requires the curvature vector at iWP  and 1iWP+  to 

be equal to that at the initial and final point of 

( )I
i lp , respectively. The curvature vector 

boundary condition at iWP  can be written as 

follows. 
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With the unit tangent vector boundary condition 
given by Eq. (20), Eq. (25) is equivalent to the 
following equation 
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where 1i
k  is a constant that should be determined. 

By substituting Eq. (12) into the second 
derivative of Eq. (9), representing in the local 
path coordinate system { }iS  by coordinate 

transformation, and considering Eq. (26), 1i
k  can 

be determined as 

 1
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Note that Eq. (27) is true because the second 

derivative of the ˆ
iSi -axis component of ( )iS

i lq  is 

zero. From Eqs. (21)-(22) and ˆ 1i

i

S
WP =T , we have 
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By rewriting Eq. (26) with Eqs. (27)-(28), the 
following two equations can be obtained. 
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In a similar way, the following two 
equations can be obtained from the curvature 
vector boundary condition at 1iWP+ . 

 

( )

1

1 1

1 1

2

1
2

1 1

1 ˆ
ˆ ˆ

n

i

ii i

i ii i

i i

i T
y n n i

S
WPS S

WP WPS S
WP WP

L

+

+ +

+ +

=

   ⋅
− ⋅   

   ⋅ ⋅   

c B f

K e
K T e

T e T e

 (31) 

 

( )

1

1 1

1 1

2

1
2

1 1

1 ˆ
ˆ ˆ

n

i

ii i

i ii i

i i

i T
z n n i

S
WPS S

WP WPS S
WP WP

L

+

+ +

+ +

=

   ⋅
− ⋅   

   ⋅ ⋅   

c B f

K e
K T e

T e T e

 (32) 



Namhoon Cho, Youdan Kim 

6 

3.4.4 Alternative Curvature Vector Boundary 
Condition 

Guaranteeing the continuity of geometric 
quantities does not necessarily require setting the 
quantities at waypoints by certain specified 
values. In this study, it is favorable to specify the 
position and unit tangent vector at each waypoint 
by the trajectory data. 

Unlike the position and unit tangent vector 
boundary conditions, however, specifying the 
curvature vector at each waypoint by the value 
from trajectory data can be stringent and 
impractical. This is because the order of 
polynomial is increased if higher degree of 
continuity is required. Higher order polynomial 
can be more fluctuant than that of lower order. 
Therefore, if it is not necessary to have a curve 
with specific curvature vector at each waypoint, 
and the continuity of curvature vector is 
important, then a backward propagating method 
can be utilized.  

The backward propagating method is to find 
the polynomial coefficients of each interval from 
the last one, i.e., ( )1N − -th interval, to the first 

one. It is not too restrictive to set the curvature at 
the last waypoint NWP  be zero. Since the 

continuity of the second derivatives ( )i l′′p  is 

sufficient for the continuity of curvature vector 

( )
i

lpK , the second derivative boundary 

condition ( )
01 1 1N N Nl L− − −

′′ + =p 0  can replace the 

curvature vector boundary condition 
NWP =K 0 . 

Polynomial coefficients for the ( )1N − -th 

interval can be found considering the following 
five boundary conditions 
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  (33) 

After obtaining the polynomial coefficient for the 

( )1N − -th interval, ( )
01 1N Nl− −

′′p  can be 

evaluated. Using this result, the second 
derivative condition for the next ( )2N − -th 

interval can be given by 

 ( ) ( )
0 02 2 2 1 1N N N N Nl L l− − − − −

′′ ′′+ =p p   (34) 

The polynomial coefficients for the ( )2N − -th 

interval can be determined similarly. The same 
procedure can be repeated to obtain the 
polynomial coefficients of all intervals while 
guaranteeing 2G  continuity. 
 

3.5 Constrained Weighted Least Squares 
Polynomial Fitting 

Both the n -th order polynomials ( )i
ny l  and 

( )i
nz l  have 1n +  coefficients. In this section, the 

problem of determining the coefficients is 
formulated as a kind of weighted least squares 
problem with the equality constraints given by 
the boundary conditions.  

Let us denote ( ) i

i

S Ti i i i
j WP j j jx y z −  ρ r   

as the position of the trajectory data point i
jρ  in 

the local path frame { }iS . The point on the curve 

( )iS
i lq , which has the same ˆ

iSi -axis coordinate 

with i
jρ , can be easily obtained as ( )iS i

i jxq . For 

each of in  trajectory data points i
jρ  in the i -th 

interval, a corresponding point ( )iS i
i jxq  can be 

defined, and the straight line distance between 
i
jρ  and  ( )iS i

i jxq  can serve as a measure of curve 

fitting error. Let us consider a performance index 
defined by the weighted squared sum of the curve 
fitting error 
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z

z

z

xx z z

zx z x

   −        = −        −          
−

f

z c

f

F c ζ

   



  (37) 

 ( )1diag , ,
i

i i i
nW WW     (38) 

Note that iy  and iz  are the curve fitting error 

components in the ˆ
iSj  and ˆ

iSk  axes of the local 

path frame, respectively, and iW  is a weighting 
matrix. The performance index given by Eq. (35) 
can be considered as the sum of an 
approximation error between trajectory data 
points in the i -th interval and the fitted 
polynomial curve. 

If all weights are positive, i.e., 0i
jW > , j∀ , 

then 0i >W . Trajectory data points in the 
middle of the interval are expected to have larger 
approximation error than the points near the ends 
of interval. Thus, putting greater weights on the 
trajectory data points which have larger distance 
from the straight line between iWP  and 1iWP+  

may provide better accuracy of curve fitting. In 
this respect, the distance of i

jρ  from the straight 

between iWP  and 1iWP+  can be used as the 

weighting factor, and it can be written as 

 ( ) ( )2 2i i i
j j jW y z= +   (39) 

To guarantee 1G  continuity of the curve, 
Eqs. (16), (18), (21), and (23) should be satisfied 
with respect to 

n

i
yc , and Eqs. (17), (19), (22), and 

(24) should be satisfied with respect to 
n

i
zc . On 

the other hand, to guarantee 2G  continuity of the 
curve, Eqs. (29) and (31) should be satisfied with 
respect to 

n

i
yc , and Eqs. (30) and (32) should be 

satisfied with respect to 
n

i
zc . If the curvature 

vector is not required to be equal to the trajectory 
data, then the backward propagating method can 
be used to guarantee 2G  continuity. 

In any cases, the waypoint boundary 
conditions constitute a set of linear equality 
constraints about the coefficients. Suppose that 
the number of boundary conditions given for 

iWP  and 1iWP+  is m , in total. The boundary 

conditions can be rewritten as follows 
 

n

i i i
y =C c g   (40) 

 
n

i i i
z =C c h   (41) 

where ( )1m ni × +∈C  , ( )1 1,
n n

ni i
y z

+ ×∈c c  , and 
1,i i m×∈g h  . Note that 1n m+ ≥  should be 

satisfied by the choice of n , for the existence of 
solution. For example, if 1G  continuity of the 
curve is required, the matrix iC  and the vectors 

ig , ih  in Eqs. (40)-(41) can be written as follows. 
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  (42) 
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i i
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   = =⋅ ⋅   
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  (43) 

Finally, the curve fitting problem becomes a 
problem of weighted least squares optimization 
with linear equality constraints. This problem can 
be written as the following Quadratic 
Programming (QP) problem. 

( ) ( )
( ) ( )

minimize  

                    

subject to  

                 

n n

n n

n

n

Ti i i i i i i
i y y

Ti i i i i i i
z z

i i i
y

i i i
z

J = − −

+ − −

=

=

F c ψ W F c ψ

F c ζ W F c ζ

C c g

C c h

 (44) 

Since 
n

i
yc  and 

n

i
zc  are independent from each 

other, the QP problem of Eq. (44) is equivalent to 
the following QP problems for each coefficient 
vector. 
(1) minimize  

                          2

      subject to  

n n

n

n

y i T iT i i i
i y y

iT i i i iT i i
y

i i i
y

J =

− +

=

c F W F c

ψ W F c ψ W ψ

C c g

  (45) 
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(2) minimize  

                          2

      subject to  

n n

n

n

z i T iT i i i
i z z

iT i i i iT i i
z

i i i
z

J =

− +

=

c F W F c

ζ W F c ζ W ζ

C c h

  (46) 

The solution for the linear equality 
constrained QP problem can be easily obtained 
using the well-developed methods [2]. In this 
paper, only the result is described. The optimal 
coefficients can be found by solving the 
following equations. 

 n

iiT i i iT iT i i
y

i i
y

∗

∗

    
=    

     

cF W F C F W ψ

C 0 gλ
  (47) 

 n

iiT i i iT iT i i
z

i i
z

∗

∗

    
=    

     

cF W F C F W ζ

C 0 hλ
  (48) 

If the matrix in the LHS of Eqs. (47) and (48) is 
invertible, then Eqs. (47)-(48) can be solved 
directly. 
 

4 Numerical Simulation 

4.1 Simulation Setup 

The performance of the proposed three-
dimensional polynomial curve fitting scheme is 
demonstrated by a numerical example. A table of 

101M =  trajectory data points was given by 
trajectory optimization using GPOPS-II [3], and 

6N =  points are selected as the waypoints by the 
method explained in Section 3.1. 1G  continuity 
of the curve is considered as the constraint, and 
the curve fitting is performed with polynomials 
of order 4n = . 
 

4.2 Simulation Results 

Figures 3-9 show the result of approximate 
trajectory fitting. Figure 3 shows the result 
depicted in three dimensions. Figures 4 and 5 
show the result projected on the x y−  plane 
(horizontal plane) and the x z−  plane (vertical 
plane), respectively. In Figs. 3-9, the solid blue 
line is the given trajectory data, the red circles are 
the waypoints, and the solid red line is the fitted 
curve. 
 

 
Figure 3 Curve fitting result: 3-D picture 

 

 
Figure 4 Curve fitting result: 2-D picture in horizontal 
plane 

 

 
Figure 5 Curve fitting result: 2-D picture in vertical 
plane 
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Figures 6-9 show some parts of the result in detail. 
In this particular simulation case, the error 
between the given trajectory and the fitted 
function is small enough. 
 

 
Figure 6 Curve fitting result: detailed view – 1 

 

 
Figure 7 Curve fitting result: detailed view - 2 

 
Figure 8 Curve fitting result: detailed view - 3 

 

 
Figure 9 Curve fitting result: detailed view - 4 

 

5 Conclusion 

A constrained weighted least squares polynomial 
curve fitting method was proposed for 
approximation of a given three-dimensional 
trajectory. The given data is divided into several 
intervals separated at some waypoints. The data 
points in each interval are fitted to a polynomial 
curve. The waypoint boundary conditions to 
guarantee the continuity of geometric quantities 
over entire path are considered as linear equality 
constraints. The generated curve can be utilized 
for the path-following guidance of the unmanned 
aerial vehicle. 
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