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Abstract

In this paper, a new analytical method for sys-
tem identification is proposed. This method is
intended for real-time monitoring of the flight
characteristic of aircraft and especially consid-
ers robustness against the flight condition com-
pared to other existing methods. This method is
characterized by the use of time-frequency infor-
mation, which is provided by wavelet transform.
The time-frequency information is used to cut off
noisy data in terms of both time and frequency.
The performance of the proposed method is val-
idated by applying it to two targets: simulated
mass-spring-damper system, and a small unin-
habited aerial vehicle (UAV). The results show
that the proposed method works well even in dif-
ficult conditions, and performs sufficiently accu-
rate identification.

1 Introduction

This study is motivated by the newly emerging
demands for real-time acquisition of mathemat-
ical models of aircraft dynamics. For example,
for civil aircraft, continuous monitoring of its dy-
namics during flight can be used to detect any
abnormalities. In addition, real-time modeling
using such data can help online reconstruction
or adaptation of control modules to safely make
emergency landings when sudden defects occur.

This new demand is quite different from con-
ventional demands, which are mainly intended
for acquisition of time-invariant characteristics.
In other words, although the conventional de-

mands are met by offline methods such as wind
tunnel tests, the new one requires online methods
with thoroughly short time delays.

Thus, this study utilizes system identification
techniques. The system identification is based
on a simple idea; if input values and observable
variables of a target system are measured, and
the system is sufficiently excited by carefully de-
signed input, the system can be estimated by ana-
lyzing the measured data. This indicates that the
system identification can be easily applied to the
online acquisition of the flight characteristic, be-
cause it only requires flight log such as time his-
tories of angle of attack and deflection of control
surfaces.

In fact, system identification has been used
to acquire the flight characteristic, and improved
as a verification methodology of the wind tunnel
tests. This implies that the accuracy of the es-
timated parameters, which depends on not only
analytical methods but also the measured data ob-
tained by the flight tests, is mainly focused in
the conventional applications. In other words,
arrangement of the flight tests such as selecting
flight area where the wind is stable is as, or more
essential than performing appropriate analysis in
order to obtain better results.

Comparing with requirements for the conven-
tional system identification techniques and this
study, the most significant difference is that the
system identification of this study must work well
even under severe environment such as strong
gust. Therefore, the conventional application
of the system identification is insufficient for
the purpose of this study in terms of the ro-
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bustness against the flight condition. Although
there are Fourier transform regression (FTR) [2]
and unscented Kalman filter (UKF) [4], both
of which have such robustness by using band-
pass frequency filter and considering nonlinear-
ity, respectively, these methods are not theoreti-
cally free from deterioration by the strong distur-
bance and require complicated tuning based on
the noise characteristic in order to perform good
estimation.

Therefore, we propose a new analytical
method of the system identification named
wavelet filtered regression (WFR). WFR utilizes
wavelet transform to provide time-frequency in-
formation, which makes easier to extract mean-
ingful information content from the noisy flight
log. While Fourier transform, which is the fun-
damental algorithm of FTR, also gives such fea-
ture by repeatedly applying to short period data,
wavelet transform is superior to Fourier trans-
form. This is because wavelet transform auto-
matically balances the trade-off between the ac-
curacy and calculation delay of the information.
In addition, a filtering mechanism is introduced.
This mechanism is based on some reasonable as-
sumptions, for example, if the input is preferably
strong, the system is sufficiently excited against
the disturbance and easily identified. It works
with the time-frequency information, which clar-
ifies the signal strength in the aspects of time and
frequency, and theoretically enhances the robust-
ness against the noise. The detail of this new
method is explained in Sect.2.

To validate the performance of WFR, an ex-
ample problem, which estimates parameters of a
simple mass-spring-damper model, is firstly stud-
ied. Its detail and results are elaborated in Sect.3,
and comparisons with other methods are also
shown. Then, system identification of the lon-
gitudinal stability derivatives of a small UAV is
demonstrated in Sect.4. Small UAVs are defined
as fixed wing type aircraft and their wingspan and
weight are about one meter and one kilogram,
respectively. The reason why the small UAV is
chosen is that the flight log of these UAVs are far
noisier than larger aircraft mainly because they
are disturbed by gust easily, and still is a chal-

lenge to estimate its flight dynamics.
In this paper, the flight tests of the small UAV

is also explained in Sect.4. This is because ex-
periments employing such small UAVs are a new
field and there are many problems. The most crit-
ical problem is the strict limitations small UAVs
have on size and weight of their payload. These
limitations make it impossible to use accurate
sensors, which are essential to obtain accurate
flight data. In order to solve this problem, we
developed new special avionics, which consists
of a small INS/GPS navigation unit and air data
sensor.

2 Wavelet Filtered Regression (WFR) as
Proposed Method

In this section, WFR, the proposed method,
which is characterized by using Wavelet trans-
form and the filtering mechanism, is explained.
Firstly, in addition to wavelet transform, multi-
resolution analysis, which is an effective way
to calculate time-frequency information, is de-
scribed briefly. Then, the filtering mechanism
called parallel-projection using multi-resolution
analysis (PPMRA), which enhances the robust-
ness against noise, is introduced. Finally, WFR,
which integrates PPMRA and recursive least
square (RLS), is explained.

2.1 Wavelet Transform and Multi-resolution
Analysis

Wavelet transform converts time series dataf (t)
into time-frequency informationW(a,b) by

W(a,b)≡
∫ +∞

−∞
f (t)

1√
a

ψ∗
(

t −b
a

)
dt, (1)

wherea,b are scaling and shift parameter which
correspond to frequency and time, respectively,
andψ∗ is a mother wavelet function. Compared
to Fourier transform, which converts time series
data f (t) into frequency seriesF(ω) with focus-
ing on a corresponding angular speedω like:

F(ω)≡
∫ +∞

−∞
f (t)eiωtdt, (2)
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wavelet transform has two arguments,a and b.
This characterizes wavelet transform as a good
way to handle time-series data whose frequency
changes temporally. For example, a signalfchirp

and its power spectra calculated by both wavelet
and Fourier transforms are shown in Fig.1,
whose middle, top, and bottom subfigures cor-
respond to these items. The signalfchirp is a
chirp signal whose frequency moves higher as
time passes like

fchirp(t) = sin
( π

900
t2
)
, (3)

and the strongest part of its true power spectrum
should also be shifted to higher frequency as time
passes. Although the power spectrum calculated
by Fourier transform cannot express the change,
power spectra calculated by wavelet transform
describes it clearly.

In reality, measured data such as flight log
is not continuous time series data, and is dis-
cretized by certain sampling time. To apply such
type of data, discrete wavelet transform (DWT)
is utilized. Furthermore, time-frequency infor-
mation can be calculated effectively by choos-
ing parametersa,b and mother wavelet function
ψ∗ appropriately. The calculation procedure is
shown in Fig.2, which depicts that by cascad-
ing higher time-frequency information calculated
by a transform to another transform, lower time-
frequency information is determined. This is
multi-resolution analysis (MRA), and is utilized
in this study. It is also noted that Daubechies
wavelet [1] is used as its mother wavelet.

2.2 PPMRA: Parallel Projection using
Multi-Resolution Analysis

In this subsection, the idea and procedure of
PPMRA, the filtering mechanism, is elaborated.

Typically, a postulated model, which defines
parameters to be estimated in the system identifi-
cation scheme, is linear and summarized as

dx
dt

= Ax+u+v, (4)

whenx, u, andA are state variables, input values,
and a coefficient matrix, respectively.v is process
noise, which cannot be measured.
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Fig. 1 Chip signal (middle) and its power spec-
tra calculated by wavelet (top) and Fourier (bot-
tom) transform. The power spectrum calculated
by wavelet transform, whose power strength is
shown by color, depicts clearly the change of fre-
quency as time passes.
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Fig. 2 Procedure of multi-resolution analysis
(MRA), which convert periodically-sampled data
represented by a black point to time-frequency
information represented by red points.
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Here, the input valuesu is assumed to be rep-
resented by summation of oscillation like

u= ∑ f eωt . (5)

Then, by neglecting process noisev, state vari-
ablesx of Eq. (4) can be solved analytically as

x=

(
∑
i

Cix0,ie
λ0,it

)
+∑(ωI −A)−1 f eωt , (6)

where the first term of the right-hand side is
called as the general solution, which consists of
another coefficient matrixCi , eigen valuesλ0,i

and eigen vectorsx0,i of matrix A. The second
term is also called as the special solution, which
correlates with the input valuesu, because it con-
tains the same elementsf andeωt of u.

If the system is nearly stable, that is, the trim
x0 is nearly constant, the second term is domi-
nant and the first term is negligible. This implies
that, when the input valuesu change periodically
in some frequency in addition to such stability,
the state variablesx also change periodically in
the same frequency. Therefore, by only focusing
on frequencies in which the input values include,
we can extract desirable relation of the state vari-
ables and input values and estimate the coeffi-
cient matrixA more accurately. This is the idea
of PPMRA.

PPMRA is approved under some assumptions
as described above, and their validity will be dis-
cussed below. The first is that process noisev is
neglected. This is reasonable, because when the
system is controllable, the input excites the sys-
tem sufficiently against the process noise. More-
over, the assumption can be easily achieved when
the input and noise differ in terms of frequency,
because PPMRA only focuses on the portion
of the system which correlates to the input fre-
quency. The second is about the stability of the
system. Any system can be considered as stable
in a pretty short time, which is enough to apply
MRA in order to extract periodically changes by
using time-frequency information. Thus, the sec-
ond assumption is reasonable to consider the sys-
tem as nearly stable when MRA is utilized. In

addition, most aircraft can fly stable without con-
trolling actively. The third assumption is that the
input values changes periodically, which is vali-
dated in this study because they can be controlled
arbitrary. Furthermore, the input is usually de-
signed to include broad frequency band by using
combination of pulse pattern represented by the
3-2-1-1 and M-series random inputs [3]. The last
is that there is no difficulty to focus on certain
frequency. Using MRA solves this problem, be-
cause unlike Fourier transform, MRA can extract
time-frequency information even though the pe-
riodically changes are instantaneous.

The procedure of PPMRA will be explained
by using an example shown in Fig.3. Firstly,
the state variables and the input values are con-
verted from time-series data to time-frequency
information by MRA. This first process is shown
in the subfigures on the first and second rows
of Fig. 3. In the figure, the angle of attackα
and elevator deflectionδe represent the state vari-
ables and input values, respectively. Then, the
time-frequency information of the state variables
Wstate is suppressed if the strength of the cor-
responding time-frequency informationWinput is
lower than a threshold∆. The second process is
depicted by using an operator⊗ on the second
row of the figure, and its applied results is shown
in the subfigure on the third row. The operator⊗
is exactly written in the form of an equation as

Wleft (a,b)⊗Wright(a,b)

≡


if a ̸= 0

andWright(a,b)≥ ∆ then
Wleft (a,b)

else
0

. (7)

The reason why the suppression is always oc-
curred ata = 0 is to eliminate the bias, which
is unnecessary for the analysis. These two
processes explained above are the procedure of
PPMRA.

The subfigure on the forth row of the Fig.3
is shown in order to indicate the effectiveness of
PPMRA. It is the reconstructed time-series data
of angle of attack and calculated from the results
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Fig. 3 Example results of PPMRA. The angle of attack is filtered by the elevator deflection input with
PPMRA. The bottom subfigure shows the PPMRA results as the time-series data, which are purposely
calculated by inverse wavelet transform and redundant description.

of PPMRA on the third row by inverse wavelet
transform. Compared the subfigure on the forth
row to the left one on the first row, the change lo-
calized around GPS time 272973s is recognized
as process noise and suppressed because there
is no input around this time. In addition, small
vibration which exists in entire time is also re-
moved as the measurement noise because its fre-
quency does not correspond to one of the input.
These features provided by PPMRA are useful
for the system identification.

It is noted that PPMRA named after the idea

of subspace identification [5, 7], which is a gen-
eral approach to system identification of a com-
plex system. In the subspace identification, by
applying orthogonal transform such as singular
value decomposition (SVD), a target identified
system will be separated into deterministic and
stochastic subsystems. Here, to determine pa-
rameters of a postulated model equals to analyze
the deterministic subsystem, which is called as
the parallel projection part of the system. There-
fore, the proposed filtering method can been
seen as analyzing the parallel projection parts ex-
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tracted by MRA.

2.3 Wavelet Filtered Regression (WFR)

WFR is the proposed system identification
method, which combines PPMRA and RLS like
shown in Fig.4.
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Fig. 4 Wavelet filtered regression (WFR)

RLS is the well-known simplest system iden-
tification method, but does not have robustness
against process noise. To compensate for the
weakness of RLS, PPMRA is utilized as the fil-
tering process before application of RLS. Al-
though the data filtered by PPMRA can be recon-
structed in time series data with inverse wavelet
transform, the input data of RLS is the time-
frequency series data, that is, the direct outputs
of PPMRA, to reduce the calculation cost. The
reason why the direct outputs can be used as the
input of RLS is easily understood by applying
wavelet transform to both sides of Eq. (4) as

W dx
dt
(a,b) = AWx(a,b)+Wu(a,b) , (8)

where capitalW represents a wavelet trans-
formed value of a subscript value. Here, the co-
efficient matrixA, which is supposed to be es-
timated by RLS, is or can be seen as constant
and invariant under the transform. Therefore,
the time-frequency information directly given
by PPMRA can be used as the input of RLS.
WFR can continuously estimate parameters with
preferably short delay and is categorized as an
online method, because both PPMRA and RLS

have capability to process data sample by sam-
ple.

3 Example Parameter Estimation of Mass-
spring-damper Model using WFR

This section describes the example problem in or-
der to evaluate the performance of WFR. Com-
putational simulations is utilized to generate re-
quired data, because it can exactly control the
difficulties of the problem. In the following sub-
sections, the model postulation, simulation con-
ditions and results are explained.

3.1 Postulated Models and Simulation Con-
ditions

The target system of the problem is a simple
mass-spring-damper model represented as

d
dt

(
ẋ
x

)
=

[
−0.5 −3

1 0

](
ẋ
x

)
+

(
u+v

0

)
, (9)

wherex, ẋ are the position and velocity, respec-
tively, and compose state variables.u is the con-
trollable input, and corresponds to the force.v
is process noise pertaining to the input. Param-
eters to be estimated are the coefficient matrix
of the first term of the right hand side, that is,
−0.5,−3,1 and 0 are the solutions of this prob-
lem. The eigen modes of this system are calcu-
lated by performing eigenvalue decomposition to
the coefficient matrix. They are damped oscilla-
tion and indicated by one conjugate pair of com-
plex values. The natural frequency of the system
indicated by these eigen modes is about 100deg/s
in angular speed.

To make the problem realistic, it is assumed
that all the state variables cannot be obtained di-
rectly. The observable variables are defined as
the following observation equation:

x̃=
[
0 1

](ẋ
x

)
+w, (10)

which indicates that only the position ˜x is explic-
itly observable, but deteriorated by measurement
noisew. This also implies that if the velocity ˙x is
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required for the estimation, it must be calculated
with numerical differential of the positionx.

The evaluations are conducted under combi-
nations of the following conditions.

• RLS, FTR and WFR are utilized as the es-
timation methods.

• The waveform of the inputu is sinusoidal
or chirp signal. The angular speed of the si-
nusoidal wave is 50,100 or 200 deg/s. The
angular speed of the chirp signal changes
gradually from 0 to 200deg/s. The mag-
nitude of the input is adjusted to excite the
system sufficiently.

• The process noisev is either zero or a white
noise. The white noise influences the input
u, and its magnitude is 5 deg/s in phase er-
ror.

• The measurement noisew is a white noise,
and its magnitude is small (0.01) or large
(1) in standard deviation.

• The velocity, which cannot be observed di-
rectly, is calculated by the first order nu-
merical differential, and there is no mecha-
nism such as low-pass filtering to suppress
the numerical noise.

• The frequency band used for FTR ranges
from 0.2 to 5 Hz. PPMRA of WFR moni-
tors frequency over 0.2 Hz.

• The calculation step is 0.1 s, that is, the
Nyquist frequency is 5 Hz. The length of
the analyzed data is 100 s.

• The initial values of the estimated param-

eters are

[
−2 −1
0.5 0

]
corresponding to the

coefficient matrix of Eq. (9).

The results of these estimation are shown by
eigen values projected on complex plane. This is
because it is difficult to evaluate them by compar-
ing numerical differences between the estimated
and true parameters. On the other hand, the
closeness of the estimated eigen values to their
references can be easily evaluated. Needless to
say, the closer the estimated values are to their
references, the better it is. It is also noted that the
time histories of the estimations are shown in the

results, because every method performs the esti-
mation sample by sample.

3.2 Results

Figure 5 shows the estimation results of RLS,
FTR and WFR under the easiest condition, that
is, the 100 deg/s sinusoidal input, no process
noise, and small measurement noise. The reason
why the 100 deg/s sinusoidal input is the easiest
is because its frequency corresponds to the natu-
ral frequency of the system and it excites the sys-
tem most effectively. Under the easiest condition,
FTR and WFR perform the best estimation, and
the results of RLS, which seems to be most af-
fected by noise of the numerical differential, are
also acceptable. This implies that if the target is
under such preferable condition, it is easily iden-
tified regardless of the analytical methods.

Figure6 shows the results under little more
difficult condition: the chirp input, no process
noise, and small measurement noise. While FTR
and WFR still show the same performance as
under the easiest condition, the results of RLS
change. This indicates that the performance of
RLS clearly depends on the nature of the input.

Finally, Fig. 7 shows the results under the
most difficult condition, which consists of the
chirp input, process noise, and large measure-
ment noise. RLS and FTR completely fail to es-
timate the true eigen modes, because the fact that
the system has natural oscillation is not found.
Meanwhile, the results of WFR is relatively ac-
ceptable. Therefore, it can be concluded that
WFR is superior to RLS and FTR in terms of the
robustness against the conditions.

4 Application to small UAV

WFR is also applied to the system identifica-
tion of the flight characteristic of the small UAV.
Small UAVs are easily disturbed by wind and
their flight characteristic is difficult to be identi-
fied. Therefore, it is suitable to check the perfor-
mance of WFR with the small UAV. The param-
eters to be estimated are the dimensional stabil-
ity derivatives of its longitudinal motion. In the

7



MASARU NARUOKA, TAKUMA HINO, TAKESHI TSUCHIYA

-2

-1

 0

 1

 2

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

Im
ag

in
ar

y

Real

Estimated, Initial
Estimated, Last

True

RLS -2

-1

 0

 1

 2

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

Im
ag

in
ar

y

Real

Estimated, Initial
Estimated, Last

True

FTR -2

-1

 0

 1

 2

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

Im
ag

in
ar

y

Real

Estimated, Initial
Estimated, Last

True

WFR

Fig. 5 Estimated eigen modes under the easiest condition
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Fig. 6 Estimated eigen modes under the easiest condition except for using the chip input
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Fig. 7 Estimated eigen modes under the most difficult condition

following subsections, the target UAV, postulated
model defining these parameters, data measure-
ment environment required for the identification,
and results are elaborated.

4.1 Target small UAV

Figure8 and Table1 show a picture and specifi-
cation of the target small UAV, respectively. Its
wingspan and weight is 1.38 m and 2.5kg, which
fall within the definition of small UAVs described
in the introduction.

Fig. 8 Target small UAV

Table 1Target small UAV main specifications
Item Symbol Value

Main wing
Span[m] b 1.38
Area[m2] S 0.271
Aspect ratio A 5.32

Overall length[m] l 1.39
Typical cruise speed[m/s] U0 25
Gross weight[kg] m 2.5
Wing loading[kg/m2] 9.23

4.2 Postulated model composed of longitudi-
nal stability derivatives

The model is same as one of conventional fixed-
wing aircraft and postulated as

d
dt


u
α
q
θ

=


Xu Xα −W0 −gcosθ0
Zu
U0

Zα
U0

U0+Zq
U0

−gsinθ0
U0

Mu Mα Mq 0
0 0 1 0




u
α
q
θ



+


0

Zδe
U0

Mδe

0

δe+v,

(11)

8



Real-time System Identification of Aircraft Dynamics using Time-Frequency Wavelet Analysis

where X,Z,M are parameters to be identified
and known as the dimensional longitudinal sta-
bility derivatives. State variables are perturbation
speedu, angle of attackα, pitch rateq, and pitch
θ. Symbols with subscript 0 are trim values, and
v is process noise. Input value is elevator deflec-
tion represented asδe. It is noted that although
derivatives and input related to throttle deflection
should be included, these values are omitted in
this study because the throttle is difficult to mea-
sure and treated as constant.

The state variables are explicitly or implicitly
observable defined by the following observation
equation:

Ṽwind

α̃
q̃
θ̃

=


√
(U0+u)2+(W0+U0α)2

α
q

θ0+θ

+w, (12)

where the left hand side is measured values and
w is measurement noise.

4.3 Measurement environment

The elevator inputδe of Eq. (11) and the observ-
able values defined in Eq. (12) are measured in
real flight of the small UAV. That required data is
measured by the specially developed avionics [6].
This is because existing avionics used in general
aircraft is too big and heavy to be installed in the
small UAV.

A picture of the developed avionics is shown
in Fig. 9. It consists of MEMS INS/GPS nav-
igation unit, air data sensor, and command log-
ger. The navigation unit provides position, veloc-
ity and attitude by integrating an inertial naviga-
tion system (INS) composed by MEMS sensors,
and a global positioning system (GPS) receiver.
The air data sensor provides wind speed, angle
of attack and side slip angle information accu-
rately and simultaneously using a pitot tube with
5 small orifices. The command logger records
the input. This system is very small and light, yet
provides sufficiently accurate data for the system
identification.

It is noted that in the flight tests, specially de-
signed commands such as 3-2-1-1and doublet are
issued to the control surfaces to excite the sys-

MEMS INS/GPS Navigation Unit
Command Logger

Radio Receiver

Air Data Sensor

Speed Controller

Servo

Fig. 9 Image of internal components of the small
UAV including the developed avionics

tem effectively after the trim condition has be ob-
tained. Furthermore, wind condition is carefully
selected not to affect the flight severely when the
tests are carried out.

4.4 Results

The estimated parameters of WFR are shown in
Table 2 comparing to those of UKF. Reference
values of the target parameters, which are ob-
tained by the wind tunnel tests, are also shown
in the table. It is difficult to discuss the perfor-
mance of the results by directly comparing nu-
merical differences of the parameters. Therefore,
same as the previous section, the eigen modes
shown in Fig.10 are calculated in order to be
discussed. The calculated eigen modes of both
WFR and UKF are sufficiently close to the ref-
erence those, and it indicates that WFR has the
same accuracy of UKF. Considered the fact that
UKF has many tuning parameters to keep its per-
formance, it concludes that WFR is comprehen-
sively superior to UKF. It is also noted that the
results estimated with RLS and FTR are omitted
because their estimation are far worse than those
of WFR and UKF.

5 Conclusion

In this study, wavelet filtered regression (WFR),
the new analytical method for the system iden-
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Table 2Estimated and reference stability derivatives

Item Scaling Ref. UKF WFR
Xu ×10−2 −7.34 63.0 −2.50
Xα ×100 5.19 −13.0 2.09
Zu ×10−1 −8.91 77.3 1.34
Zα ×102 −1.74 −1.43 −0.25
Zq ×10−1 −6.70 33.0 −14.0
Zδe ×101 −1.69 4.57 −0.36
Mu ×100 0 3.50 0.84
Mα ×102 −1.07 −0.65 −0.25
Mq ×100 −4.63 −5.85 −8.40
Mδe ×102 −1.19 −0.64 −0.72
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Fig. 10 Eigen modes calculated from results of
WFR and UKF

tification was proposed. WFR is characterized
by using wavelet transform, which enables the
analysis to avoid undesired content via the time-
frequency information. This results in the ro-
bustness against the conditions under which the
required data of the system identification is ob-
tained. The validity of WFR was demonstrated
in the two applications. One was the simu-
lated mass-spring-damper system, and showed
that WFR was superior to RLS and FTR in terms
of both the accuracy and robustness. The other
was the small UAV, and also indicated that WFR
was as accurate as UKF, which has to be tuned
in order to obtain better results. Finally, it con-
cluded that WFR is suitable for the real-time sys-
tem identification of aircraft dynamics.
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