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Abstract

The present paper is concerned with dynamic
analysis of time marching aeroelastic responses
of typical sections in transonic flow with non-
linear strucutral models. An aeroelastic model
is proposed in which the concentrated nonlinear-
ities can be described by continuous functions,
namely using hyperbolic tangent and polynomial
functions. Typical free-play described by con-
tinuous functions is also adopted. Major inter-
est is in verifying how the degree of the struc-
tural nonlinearity affects the transonic aeroelas-
tic behavior. An Euler CFD code based on the fi-
nite volume discretization for unstructured grids
is used for the unsteady aerodynamic loading as-
sessment. The results shown in the paper are
particularly concerned with the investigation of
nonlinear effects for transonic flow over a NACA
0012 airfoil-based typical section. The investiga-
tion considers both time histories of the aeroelas-
tic response as well as phase plane analyses.

1 Introduction

In the last decade, nonlinear dynamic analysis
developed quickly, both from a theoretical and
an experimental point of view, in a vast diver-
sity of fields in science and engineering. How-
ever, most aeroelastic analyses of flight vehicles
are performed under the assumption of linearity.
Under this assumption, the characteristics of flut-
ter and divergence can be obtained using well-

established tools. On the other hand, the influ-
ence of nonlinearities on modern aircraft is be-
coming increasingly important and the need for
more accurate predictive tools grows stronger.

Nonlinear aeroelastic stability and response
analysis has evolved, mainly due to advances in
computational tools. Computational aeroelastic-
ity is a relatively new field emphasizing those
types of aeroelastic problems where loads based
on Computational Fluid Dynamics (CFD) meth-
ods, which can be both unsteady and nonlinear,
are used [1, 2, 3]. A significant amount of effort
devoted toward the numerical solution of tran-
sonic aeroelastic phenomena, not only in the pre-
diction of transonic dip effects [4, 5, 6], but also
toward that of limit cycle oscillations (LCOs).
Euler and Navier-Stokes schemes have been cou-
pled with structural models [7, 8].

The nonlinearities in aeroelastic analyses are
divided into aerodynamic and structural ones. In
this paper, the aerodynamic nonlinearities arise
from the presence of shock waves in transonic
flows. For such flow conditions, the unsteady
forces generated by the motion of the shock
waves have been shown to destabilize the airfoil
pitching motion and affect the bending-torsional
flutter condition by lowering the flutter speed in
the so-called transonic dip phenomenon. Struc-
tural nonlinearities can also lead to LCO whether
the flow is transonic or not. However, the present
understanding of LCO induced by aerodynamic
nonlinearities is less complete, and no systematic
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quantitative correlation between theory and ex-
periment has been achieved [9].

Structural nonlinearities can be classified as
distributed or concentrated. The distributed non-
linearities are spread over the entire structure and
can manifest itself through complex material be-
havior, by aging effects, and due to faulty joints,
junctions, or links. The concentrated nonlinear-
ities are those acting locally, being basically as-
sumed for simplified structural models. Studies
with concentrated nonlinearities have revealed
significant effects on the aeroelastic stability, al-
lowing the presence of chaotic motion and limit
cycle oscillation below the flutter speed [10, 11].
Although it is noticed the effects on aeroelastic
stability of combined aero–structural nonlinear-
ities, more effort in modelling such problem is
necessary. It has been also observed the need for
deeper understanding of aeroelastic mechanisms
due to severe nonlinearities.

Free-play nonlinearities occur in the control
surfaces or components with loose joints [12].
The amount of free-play within the system is usu-
ally small. Although the structural motion is rela-
tively small, the effect of fadigue on the structure
is highly problematic. The conventional method
for studying limit cycles is to perform numer-
ous simulations using Runge-Kutta time integra-
tions. The accuracy of these runs, for free-play,
depends on particularly methods to treat discon-
tinuities [13, 14]. On the other hand, works have
been described structural nonlinearities in terms
of continuous functions, even to represent free-
play [15].

The aim of this paper is to investigate the dy-
namics behavior of typical section with continu-
ous structural nonlinearities in transonic regime.
The modelling methodology is based on cou-
pling typical section motion equations to an Eu-
ler unsteady CFD code to obtain time marching
aeroelastic responses and phase plane through the
fouth-order Runge-Kutta scheme [7, 8]. In or-
der to solve the aerodynamic problem, the Euler
equations are integrated by a finite volume dis-
cretization on unstructured grids [16]. Concen-
trated structural nonlinearities are introduced to
the model by means of functions of the restor-

ing momentversusthe angle of incidence of the
airfoil. In this way, it has been considered con-
centrated nonlinearities described by continuous
functions form, in terms of hyperbolic tangent
and polynomial functions. Typical free-play de-
scribed by continuous and discontinuous func-
tions are also adopted. The results are, then,
presented to illustrate the influence of structural
nonlinearity degree in the aeroelastic behavior in
transonic flow.

2 Aerodynamic Model

In the present study, the flow is assumed to
be governed by the two-dimensional, time-
dependent Euler equations, which may be written
in conservative form and Cartesian coordinates as

∂
∂t

∫ ∫

V
Qdxdy+

∫

S
(Edy−Fdx) = 0, (1)

whereV represents the area of the control volume
andS is its boundary,Q is the vector of conserved
quantities and the inviscid flux vectors,E andF,
are given by

Q =









ρ
ρu
ρv
e









, E =









ρU
ρuU + p

ρvU
(e+ p)U +xt p









,

F =









ρV
ρVu

ρVv+ p
(e+ p)V +yt p









, (2)

whereρ, u, v, p andeare density, Cartesian com-
ponents of the velocity, pressure, and specific en-
ergy, respectively.U andV are Contravariant ve-
locity components, defined as

U = u−xt , V = v−yt , (3)

wherext andyt represents the Cartesian velocity
components of the mesh.

The Euler equations can be rewritten for each
i-th control volume as

∂
∂t

(ViQi)+
∫

Si

(Edy−Fdx) = 0 . (4)
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The 2-D Euler equations are discretized by a
finite volume procedure in an unstructured mesh.
The equations are discretized in space by a cen-
tered scheme, together with added artificial dissi-
pation terms. The artificial dissipation operator,
Di, can be written as

Di = d2(Qi)−d4(Qi) , (5)

whered2(Qi) represents the contribution of the
undivided Laplacian operator, andd4(Qi) is the
contribution of the biharmonic operator [17]. The
biharmonic operator is responsible for provid-
ing the background dissipation to damp high
frequency uncoupled error modes and the un-
divided Laplacian artificial dissipation operator
prevents oscillations near shock waves. The Eu-
ler solver is integrated in time by a second-order
accurate, 5-stage, explicit, Runge-Kutta time-
stepping scheme, as presented in [1].

3 Aeroelastic Equations

The physical model considered in the present
work is a typical section with pitch and plunge
degrees of freedom and free of mechanical fric-
tion [18]. The equations of motion of this aeroe-
lastic system, with a linear structure, can be writ-
ten in the form

dws

dt
= Rs , (6)

where

Rs =


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(7)

andws = [h, ḣ,α, α̇]T . In the previous equation,
h is the plunge linear displacement andα is the
incidence, or pitch angular displacement. Here,
rα =

√

(Iα/m) is the radius of gyration defined
in terms of the pitch moment of inertiaIα and

the airfoil mass per unit spanm, xα is the offset
between the center of mass and the elastic axis,
µs = m/πρ∞b2 is the airfoil-to-fluid mass ratio
defined in terms of the fluid freestream density
ρ∞ and the semi-chord,b. Moreover,ωR = ωh

ωα
is the ratio of the natural frequencies of plunging
(ωh) and pitching (ωα), Ū = U∞

bωα
is the reduced

velocity defined in terms of the fluid freestream
velocity U∞, andCl andCm are the lift and mo-
ment coefficients about the elastic axis, respec-
tively.

The fouth-order Runge-Kutta time stepping
scheme is used for the time marching aeroelastic
analyses. Time integration of the coupled fluid-
structural equations of motion (Eq. (7)) is incor-
porated within the CFD Euler code as follows:

1. At time leveln, perform an iteration of the
Euler equation and calculate values forCl

andCm;

2. This information is used by the equations
of motion to determine the position and ve-
locity of the airfoil through the fouth-order
Runge-Kutta scheme;

3. The aerodynamic mesh is moved to a new
position and velocity of the airfoil and the
process is repeated.

4 Torsional Structural Nonlinearity

Several classes of nonlinear stiffness contribu-
tions have been studied in papers treating the
open-loop dynamics of the aeroelastic system
[19]. In this work, the linear torsional moment
fuction is replaced by the nonlinear function

M̄(α) = K̄αα = Kα f (α) , (8)

whereKα is considered as a global stiffness. The
functional form of f (α) can be expressed as a
polynomial nonlinearity for restoring torsion

f (α) = fα0 + fα1α+ fα2α2+ ...+ fαnαn . (9)

Combination of hyperbolic tangent functions
to represent polynomial nonlinearity is also pro-
posed here [15]. This approach provides an easier
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way to produce variations to the functions gov-
erning the nonlinear torsional behavior. There-
fore, the representation for torsion by means of
hyperbolic tangent functions is

f (α) =
1
2

[1− tanh(ε(α−α−))](α−α−)

+
1
2

[1+ tanh(ε(α−α+))](α−α+) , (10)

whereα− andα+ are the lower and upper bound-
aries, respectively, to be adjusted depending on
the nonlinear behavior range in terms of inci-
dence angle, andε is a variable that determines
the intensity of the function shape.

The free-play model is relatively simple and
considers that any pitching displacement between
a range ofα− and α+ of the incidence angle
would result in no structural restoring reaction.
The f (α) function for the free-play case is given
by







f (α) = α−α+ for α > α+

f (α) = 0 for α− ≤ α ≤ α+

f (α) = α−α− for α < α−

(11)
Discontinuous free-play nonlinearity has

been normally utilized to represent loose hinges
or linkages backlash of control surfaces and for
nonlinear aeroelastic behavior analyses [8, 10].
Previous details on smooth nonlinear function
shapes for torsional restoring structural moments
have shown that hyperbolic tangent functions can
be easily modified to cover from linear to ex-
treme shapes similar to discontinuous forms. For
instance, in the Fig. 1 is illustrated hyperbolic
tangent function for a particulary choice ofα−

andα+ boundaries and increasingε. Here, the
discontinuous free-play representation (Eq. (11))
in the model is used to compare aeroelastic be-
havior with continuous free-play representation
(Eq. (10)).

5 Time-Marching Aeroelastic Analysis

The results for the time marching method have
been studied through the time histories of the so-
lution and through phase plane analyses. The pa-
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Fig. 1 Restoring moment in torsion astanhfunc-
tions ofα.

rameters for the structural model are given in Ta-
ble 1. The results were calculated by first com-
puting a converged steady flow solution about the
airfoil with angle 0.5 degree of pitching about
the elastic axis. The steady Euler solution was
determined using the steady portion of the orig-
inal unsteady Euler solver. Then, the coupled
computational fluid dynamic (CFD) and compu-
tational structural dynamics (CSD) method to the
two-dimensional typical section was performed.
It consists of a NACA0012 airfoil.

Table 1Structural model parameters.

Parameter Value

rα 0.539
xα -0.2
ωR 0.343
µs 100.0
xea -0.1
yea 0.0

Time marching analyses including torsional
polynomial and hyperbolic tangent nonlinearities
in the structure have been calculated. Torsional
polynomial nonlinearities are added according to
type and incidence considered in the model. For
all cases previously analyzed, one can observe
that the LCO amplitudes, with parameter model
given in Table 1, typically involve very small in-
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cidences. As a form of further evaluating the
analysis procedure implemented, three types of
polynomial nonlinearities are added to the model.
These are classified according to the degree of
the polynomial, and the same incidence interval
is considered, as indicated in Fig. 2.

The first structural nonlinearity is a 7-degree
polynomial, P7, given by

f (α) = (3.672×10−1)α − (2.838×10−12)α2

+(3.440×106)α3 + (1.285×10−5)α4

−(8.191×1012)α5
− (1.769×10)α6

+(6.440×1018)α7 . (12)

The second structural nonlinearity is a 11-degree
polynomial, P11, given by

f (α) = (1.307×10−1)α − (2.321×10−11)α2

+(1.006×107)α3 + (3.348×10−4)α4

−(6.081×1013)α5
− (1.677×103)α6

+(1.785×1020)α7 + (3.399×109)α8

−(2.480×1026)α9
− (2.437×1015)α10

+(1.307×1032)α11 . (13)

Finally, the third structural nonlinearity is a 13-
degree polynomial, P13, given by

f (α) = (3.579×10−2)α + (7.940×10−10)α2

+(1.451×107)α3
− (1.752×10−2)α4

−(1.197×1014)α5 + (1.384×105)α6

+(5.116×1020)α7
− (4.861×1011)α8

−(1.157×1027)α9 + (7.757×1017)α10

+(1.317×1033)α11
− (4.588×1023)α12

−(5.938×1038)α13 . (14)

The first case considers the pitch response for
the flight conditions whenM = 0.75 and the re-
duced velocity isŪ = 1.2. In order to compare
aeroelastic results, time-marching analysis calcu-
lations have been evaluated with the same non-
linear curve described by hyperbolic tangent and
polynomial, as indicated in Fig. 3.

First, the results are concerned about to check
the efficience of hyperbolic tangent functions to
represent continuous polynomial and free-play
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Fig. 2 Structural nonlinearity: 7-degree polyno-
mial, 11-degree polynomial and 13-degree poly-
nomial.
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Fig. 3 The same nonlinear curve, P11 and hyper-
bolic tangent (ε = 5100) structural nonlinearity.

structural nonlinearities. Comparisons between
the time histories for the P11 polynomial and hy-
perbolic tangent function forε = 5100 are indi-
cated in Figs. 4 and 5. One can observe from
these figures that aeroelastic responses are es-
sentially the same, the system exhibits conver-
gent response. However, differents initial behav-
ior in the results are observed, and such behav-
ior seems to be associated to the differences be-
tween hyperbolic tangent and polynomial curves.
For instance, in the Fig. 3 is indicated a differ-
ence between the curves by the square, that cor-
respond the same incidence where initial attrac-
tor has been located in aeroelastic response with
polynomial nonlinearity (see Fig. 4).
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Fig. 4 Time history forM = 0.75 andŪ = 1.2,
P11 structural nonlinearity.
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Fig. 5 Time history forM = 0.75 andŪ = 1.2,
hyperbolic tangent (ε = 5100) structural nonlin-
earity.

In order to evaluate aeroelastic behavior with
stronger structural nonlinearity, time marching
analyses have also been performed for the P13
polynomial and hyperbolic tangent function for
ε = 6400, indicated in Figs. 6 and 7. As be-
fore, these nonlinear functions correspond the
same curve. The first aspect that can be checked
concerns the fact that these aeroelastic responses
show more complex behavior. It can be observed
that system, initially, exhibits irregular oscilla-
tions and, afterwards, follow somewhat regular
oscillations with constant amplitude. The sys-
tem again shows initial attractor in response with
polynomial structural nonlinearity (see Fig. 6).
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Fig. 6 Time history forM = 0.75 andŪ = 1.2,
P13 structural nonlinearity.
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Fig. 7 Time history forM = 0.75 andŪ = 1.2,
hyperbolic tangent (ε = 6400) structural nonlin-
earity.

Finally, the case of free-play is performed for
the same flight conditions,i.e., whenM = 0.75
andŪ = 1.2. In this case, the free-play is repre-
sented for the hyperbolic tangent function where
α− andα+ are±0.005◦. Figures 8 and 9 repre-
sent, respectively, time history and phase plane
responses with the continuous freeplay nonlin-
earity in the structure. One can observe that
the system exhibits LCO. Comparisons between
the aeroelastic responses with structural free-play
for the discontinuous representation (Eq. (11))
and hyperbolic tangent representation (Eq. (10))
are evaluated. Time history and phase plane for
discontinuous free-play structural model, in the
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Fig. 8 Time history forM = 0.75 andŪ = 1.2,
hyperbolic tangent free-play structural nonlinear-
ity.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

α (deg)

dα
/d

t

Fig. 9 Phase plane forM = 0.75 andŪ = 1.2, hy-
perbolic tangent free-play structural nonlinearity.

same flight conditions, are shown in Figs. 10
and 11, respectively. The system behavior is
similar that presented with continuous structural
free-play, it can be observed when are compared
the phase planes in Figs. 9 and 11. Such behavior
seems to indicated that discontinuous free-play,
in this case, do not show problems with solution
accuracy.

The next case considers aeroelastic behavior
in flight regime grather than before. Figures 12
to 21 represent the aeroelastic responses for the
cases whenM = 0.86 and the reduced velocity
is Ū = 2.0. In order to verifty the structural

0 100 200 300 400 500 600 700
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Nondimensional time

P
itc

h 
[d

eg
]

Fig. 10 Time history forM = 0.75 andŪ = 1.2,
discontinuous free-play structural nonlinearity.
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Fig. 11 Phase plane forM = 0.75 andŪ = 1.2,
discontinuous free-play structural nonlinearity.
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Fig. 12 Time history forM = 0.86 andŪ = 2.0,
P7 structural nonlinearity.
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nonlinearities degree in aeroelastic behavior, the
polynomial representations has been considered
in the model. Figure 12 shows the time history
for aeroelastic behavior considering P7 polyno-
mial representation (Eq. (12)), where the result
indicate that the latter is convergent response.

Figure 13 shows the time history with the
P11 polynomial strutural nonlinearity (Eq. (13)).
In this case, the system exhibits an LCO type
response, however the effect of the nonlinear
restoring torsion moment shows strange attrac-
tors in the dynamics of the resulting aeroelastic
system, as indicated in phase plane in Figure 14.
The connection to chaos is inevitable, but chaotic
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Fig. 13 Time history forM = 0.86 andŪ = 2.0,
P11 structural nonlinearity.
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Fig. 14 Phase plane forM = 0.86 andŪ = 2.0,
P11 structural nonlinearity.

behavior is still not well explored and understood
as far as aeroelastic systems is concerned. In this
case, comparisons between the response for the
P11 polynomial and hyperbolic tangent function
for ε = 5100 are performed. Figures. 15 and 16
show time history and phase plane, respectively.
One can observe from phase planes, indicated in
Figs. 14 and 16, that aeroelastic responses do not
show significant differences. However, the time
histories show differents initial behavior, as ob-
served in Figs. 13 and 15. As observed before,
whenM = 0.75, such behavior seems to be asso-
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Fig. 15 Time history forM = 0.86 andŪ = 2.0,
hyperbolic tangent (ε = 5100) structural nonlin-
earity.
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Fig. 16 Phase plane forM = 0.86 andŪ = 2.0,
hyperbolic tangent (ε = 5100) structural nonlin-
earity.
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ciated to the differences between hyperbolic tan-
gent and polynomial curves.

Figure 17 shows time history response
for P13 structural nonlinearity in the model
(Eq. (14)), the system apparently exhibits the
same response observed in P11 strutural case.

The case of free-play is also performed for
this flight conditions,i.e., when M = 0.86 and
Ū = 2. As before, the free-play is represented
for the hyperbolic tangent function whereα−

and α+ are ±0.005◦, and ε = 5100. Fig-
ures 18 and 19 represent, respectively, time his-
tory and phase plane responses with the contin-
uous freeplay nonlinearity in the structure. One
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Fig. 17 Time history forM = 0.86 andŪ = 2.0,
P13 structural nonlinearity.
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Fig. 18 Time history forM = 0.86 andŪ = 2.0,
hyperbolic tangent free-play structural nonlinear-
ity.
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Fig. 19 Phase plane forM = 0.86 andŪ = 2.0,
hyperbolic tangent free-play structural nonlinear-
ity.

can observe that the system exhibits strange at-
tractors in the dynamics of the resulting aeroelas-
tic system. Comparisons between the aeroelastic
responses with structural free-play for the discon-
tinuous representation (Eq. (11)) and hyperbolic
tangent representation (Eq. (10)) are also evalu-
ated. Time history and phase plane for discontin-
uous free-play in the structural model are shown
in Figs. 20 and 21, respectively. The system be-
havior is similar that presented with continuous
structural free-play, it can be observed when are
compared the phase planes in Figs. 19 and 21. As
in case ofM = 0.75 andŪ = 1.2, discontinuous
free-play seems do not cause problems with so-
lution accuracy when compared with continuos
representation in the model.

6 Concluding Remarks

Concentrated nonlinearities are shown to have
significant effects on the aeroelastic responses in
transonic flow. For the computations performed
so far, that typically involve very small inci-
dences, aeroelastic response has presented LCO
when a certain degree of nonlinearity is added in
the restoring torsion moment. It has been also
observed that an increase on degree of the struc-
tural nonlinearity the phase plane revels complex
behavior. In the free-play case, the results show
the higher effect of structural nonlinearity. How-
ever, further analyses are still necessary in or-
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Fig. 20 Time history forM = 0.86 andŪ = 2.0,
discontinuous free-play structural nonlinearity.
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Fig. 21 Phase plane forM = 0.86 andŪ = 2.0,
discontinuous free-play structural nonlinearity.

der to characterize the complete behavior of such
nonlinear systems.

The detailed comparison of hyperbolic tan-
gent and polynomial nonlinearities revel a good
appoximation between these representation of the
curves in the aeroelastic solutions. Results of dis-
continuous free-play nonlinearity have not been
shown significant differences in the responses
for those cases with continuous representation
of free-play. However, continuity is a necessary
condition to guarantee accurate solutions with
the Runge-Kutta method employed in the present
work. The next step is to apply such torsional
polynomial nonlinearity in the structure for the
Hopf Bifurcation analysis to check wich terms of

the polynomial influence the flutter boundary.
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