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Abstract  
This paper presents a methodology for 
analyzing free flexural vibration of rectangular 
plates having single linear cracks. The 
methodology is based on the Levy method and 
boundary element method.   Rectangular plates 
with simply supported boundary conditions 
along all four edges are used to illustrate the 
solution procedure.  Natural frequencies 
obtained using the proposed methodology were 
compared with those obtained using ANSYS and 
those available in the.  The procedure described 
in this paper methodology can be easily 
extended to plates with other boundary 
conditions with the aid of the method of 
superposition.    

1 Introduction 
The objective of this paper is to develop an 
accurate and efficient method for determining 
the natural frequencies and mode shapes of 
flexural vibration of a rectangular panel having 
a crack of arbitrary locations, orientations and 
lengths.  

A literature review indicates that little work 
has been done in this area.  No general 
comprehensive approach has been available 
toward resolving this challenging problem. It 
must be pointed out here that the finite element 
software package such as ANSYS failed to 
produce meaningful results for free flexural 
vibration of a rectangular plate having a general 
crack. Stahl and Keer [1] introduced a dual 
series method for analyzing vibration and 
buckling problems of a rectangular plate having 
a crack along one of the plate centerlines.  

Gorman [2] studied free vibration problems of a 
rectangular plate having three edges simply 
supported and the remaining edge subjected to 
partial boundary conditions.  If the partial 
boundary conditions are simple support and 
free, the natural frequencies are those of 
antisymmetric modes for a plate having twice 
the width and a crack emanating from a plate 
edge.                      

Figure 1 shows a rectangular plate of 
length a, width b, and uniform thickness h. The 
plate, simply supported along all four edges, has 
a linear through-thickness crack characterized 
by its length lc, orientation angle αc, and center 
location xc and yc.  Ranges of variations for  
these four crack parameters are subjected to 
restrictions of plate dimensions.  

To obtain a solution for free vibration of a 
cracked plate, the entire plate is first split into 
two plate segments along the crack as shown in 
Fig. 2. An exact analytical solution satisfying 
the boundary conditions along the three simply 
supported edges may be obtained for each 
segment using the Levy method.  Once the 
analytical solutions for the two segments are 
obtained, they may be joined together to form a 
solution for the cracked plate by enforcing 
continuity and boundary conditions along the 
interface.  For an internal crack, there exist three 
distinct portions along the interface.  For a plate 
having a crack emanating from an edge, the 
number of distinct portions is reduced to two.    

Each segment is free along the cracked 
surface )2(

1Γ  or )2(
2Γ , and subjected to the 

continuity conditions along )1(Γ  or )3(Γ . 
According to the Kirchhoff classical thin plate 
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theory [3], the free boundary conditions may be 
interpreted in flexural vibration as zero lateral 
edge reaction and zero bending moment.  The 
continuity conditions across an interface joining 
the two plate segments may be interpreted as 
continuous lateral displacement, continuous 
slope taken normal to the interface, continuous 
bending moment, and continuous lateral edge 
reaction across the interface between the two 
plate segments.     
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Fig. 1 A rectangular plate having a linear crack 
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Fig. 2 Solution scheme for a cracked plate  

 

2 Mathematical Description  
Using the non-dimensional coordinates defined 
as ax /=ξ  and by /=η , the governing 
differential equations for free flexural vibration 
of the two plate segments may be written as [3] 
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where iW  is the lateral displacement of segment 
i; 2λ ( Dha /2 ρω= ) is the non-dimensional 
eigenvalue parameter; φ ( ab /= ) is the plate 
aspect ratio; ω is the natural frequency;  ρ  is 
the mass density of plate material; h  is the plate 
thickness; D ( )]1(12/[ 23 ν−= Eh ) is the flexural 
rigidity; E is Young’s modulus of the plate 
material; ν is the Poisson’s ratio of the plate 
material.     

2.1 Analytical solutions for plate segments 
For the first segment, an exact Levy type 
solution satisfying the simply supported 
boundary conditions on edges 0=ξ  and 1=ξ  
may be written as  

πξη= ∑
=

mYW
K

m
m sin)(

1
1  (2) 

 
where K  is the number of terms used in the 
series solution.  Substituting Eqn. (2) into Eqn. 
(1), one may obtain a series of ordinary 
differential equations with constant coefficients.  
Exact analytical solutions may be readily found 
for these equations.   After enforcing the 
boundary conditions on edge 0=η , the 
following analytical solution is obtained  

[ ]∑
=

πξηγ+ηβ=
K

m
mmmm mBAW

1
1 sin)(sn)sinh(  (3) 

where mA  and mB  are unknown constants, to be 
determined from the continuity and boundary 
conditions on the remaining edge; 

22 )( π+λφ=β mm , |)(| 22 π−λφ=γ mm ; 
)sin()(sn ηγ=ηγ mm  if 22 )( π<λ m , or  )sinh( ηγm  

if 22 )( π>λ m .  
A solution for the second segment may be 

obtained in a manner similar to that for the first 
plate segment. Upon enforcing the boundary 
conditions along the three edges, 0=ξ , 

1=ξ and 1=η , an analytical solution 
containing two additional sets of unknown 
constants, mC  and mD , may be written as    
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[ ]∑
=

πξηγ+ηβ=
K

m
mmmm mDCW

1
2 sin)(sn)sinh(  (4) 

where η−=η 1 . 

For consistency, the number of terms used in the 
analytical solutions for the two segments are 
taken to be the same.    

2.2 Slope and stress resultants   

Before implementing all continuity and 
boundary conditions, it is necessary to 
determine the slope of a deformed plate segment 
taken normal to a straight edge whose outer 
normal n  makes an angle α  with the ξ axis, the 
bending and lateral edge reaction along the 
same edge. Take the first segment as an 
example. The slope taken normal to the straight 
edge 1,nθ , the bending moment 1,nM , and the 
lateral edge reaction 1,nV , according to 
Timoshenko and Woinowsky-Krieger [4] may 
be written in terms of the lateral displacement is 
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where ia , ib  and ic  are non-dimensional 
coefficients dependent on angle α , Poisson’s 
ratio ν  , and the plate aspect ratio φ.  For the 
second plate segment, relationships similar to 
those in Eqn. (5) may be obtained.     

2.3 Implementation of partial boundary 
conditions  

Now that the analytical expressions for the 
lateral displacements, the slope and stress 
resultants along any straight edge are known.  
The two sets of analytical solutions contain 4K 
unknown constants.    In principle, these 
constants may be determined by enforcing the 
appropriate boundary or continuity conditions  

across different portions of the interface.  
However, in practice, this is a challenging task 
to accomplish because of the non-uniformity of 
the boundary conditions along the interface. It is 
at this point that the concept of boundary 
element method is adopted.   

Assume that each distinct portion is 
divided into a number of line elements. The 
intended boundary conditions are said to be 
approximately satisfied over each line element 
if the solution satisfies the boundary conditions 
at its middle point.  For simplicity, the line 
boundary elements used in this paper have equal 
lengths within each distinct portion of the 
interface.  If a reasonably large number of such 
line elements is used in an analysis, it is 
expected that the so-obtained solution is close to 
the exact solution.        

For a plate having an internal crack, there 
are three partial boundary conditions along the 
interface between the two segments –  
continuity conditions for Aξ<ξ≤0 , free 
boundary conditions for BA ξ<ξ<ξ  and 
continuity conditions again for 1≤ξ≤ξ A , 
where Aξ  and Bξ  are values of the non-
dimensional coordinate ξ  of the two crack tips. 
There are four continuity conditions across each 
mid-point of a line boundary element in the 
portions identified by Aξ<ξ≤0 and 1≤ξ≤ξ A , 
and two free boundary conditions at each point 
on each side of the cracked surfaces identified 
by BA ξ<ξ<ξ .   If iN  represents the number of 
line boundary elements used in the i-th portion, 
a total of N4  equations may be written, where 
the total number of line boundary elements is 

321 NNNN ++= .  To establish just enough 
equations for the unknowns, the number of line 
boundary elements must equal the number of 
terms in the analytical solutions, or KN = . 
Figure 3 illustrates a typical boundary element 
mesh for the two plate segments.     

For a plate having a crack emanating from 
an edge, thee are only two partial boundary 
conditions along the interface.  In this case, 1N  
or 3N  may be set to zero.   

To ensure continuity between the two 
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deformed plate segments across the two 
portions of the interface, the following 
conditions are enforced at the midpoint of j-th 
boundary element     
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where 1,...,2,1 Nj =  for the first portion; 

3212121 ,...,2,1 NNNNNNNj ++++++=  
for the third portion.   
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Fig. 3 An illustration of line boundary element mesh 
along the interface 

Along the surface on either side of the 
linear crack, the completely free boundary 
conditions should be satisfied.  From the 
classical boundary conditions in [4], this leads 
to the following conditions  

01, =n
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where 2111 ...,,2,1 NNNNj +++=  for the third 
portion.   

Enforcing the continuity and boundary 
conditions at midpoints of all line boundary 
elements along the interface, one obtains the 
following homogeneous algebraic equations  
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where [ ]H  is a 4K×4K coefficient matrix; { }A , 
{ }B , { }C , and { }D  are column vectors 
containing all unknown constants mA , mB , mC , 
and mD , Km ,...2,1= .     

A non-trivial solution requires that the 
determinant of the coefficient matrix of Eqn. (4) 
vanish.  Eigenvalues or natural frequencies are 
determined by searching for the zero roots of λ, 
which causes the determinant to be zero. As the 
number of terms used in the analytical solution 
or the number of line boundary elements 
increases, the analytical solutions converge to 
the exact solution. In the root-finding stage, the 
incremental method is first used to identify the 
intervals where zero roots exist.  Newton’s 
second-order method is then used to determine 
accurately the root in each interval.      

3 Numerical Results   
Numerical results for several test cases were 
obtained to verify the methodology presented in 
this paper.  

The first test case involving a simply 
supported rectangular plate with a central crack 
shown in Fig. 4 was designed to examine the 
rate of convergence of computed natural 
frequencies versus the number of terms used in 
the series solutions. The natural frequencies 
obtained using different terms are presented in 
Table 1.  To ensure the natural frequencies 
converge to the correct values, the ANSYS 
program was used to obtain a finite element 
solution.   It is pointed out here that ANSYS 
cannot handle directly the flexural vibration 
analysis of a plate having cracks.  To obtain a 
FEM solution, the  symmetry in geometry and 
boundary conditions is taken into consideration. 
For vibration modes that are symmetric with 
respect to the crack interface line, the slip-shear 
boundary conditions [2] are imposed on the two 
portions of interface while free boundary 
conditions are imposed on the crack surface.  
Two families of vibration modes, symmetric or 
antisymmetric with respect to the plate 
centerline parallel to the crack, were obtained 
separately using ANSYS.  Results shown in 
Table 1 indicate that the natural frequencies of 
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the first ten modes converge rapidly to the 
ANSYS results.  The maximum difference 
between the two solutions is –0.58%.    

0.4 m  0.2 m  0.4 m  

1 m  

0.75 m  

0.75 m  

 
Fig. 4 A simply supported plate having an internal central 

crack (h = 0.05 m, E = 69 GPa, ν = 0.3)  

Table 1 Convergence Test and Comparisons of 
Computed Natural Frequencies (Hz) 

Number of Terms Used  
Modes K = 10 K = 15 K = 20 

 
ANSYS 

%  
Diff. 

1 171.37 171.57 171.66 171.69 -0.02 
2 331.80 332.48 332.73 331.82 0.27 
3 533.85 533.84 533.84 533.45 0.07 
4 580.45 582.25 583.02 586.45 -0.58 
5 694.11 694.12 694.13 692.64 0.22 
6 955.19 960.31 960.34 957.67 0.28 
7 960.39 962.42 964.95 965.97 -0.11 
8 1129.44 1130.02 1130.25 1130.40 -0.01 
9 1283.00 1287.58 1289.12 1289.90 -0.06 

10 1334.52 1334.57 1334.67 1329.20 0.41 

For vibration modes that are antisymmetric 
with respect to the crack line coinciding with 
the horizontal plate centerline, the continuity  
conditions along the interface are equivalent to 
simple supports.  For this reason, antisymmetric 
modes of a simply supported plate, of 1 m by 2 
m, shown in Fig. 5 with a central crack 
emanating from an edge must be identical to a 
half plate (1m by 1 m) simply supported along 
the interface and free along the cracked surface.   
The latter is a mixed boundary problem, studied 
by Gorman [2].     The purpose of the second 
test case is to compare results of Gorman using 
the analytical method.    

For crack length varying between 0 and 1 
m, the eigenvalues of the first antisymmetric 
modes were found and compared with those of 

Gorman in Fig. 6.  The maximum difference is 
about 3%.      
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Fig. 5 A simply supported plate having a central crack 

emanating from an edge(h = 0.05 m, E = 69 GPa, ν = 0.3)  
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Fig. 6 Eigenvalue vs. for a plate having a central crack 

emanating from an edge 
 
In the third case, a 1 m × 1.01 m × 0.05 m 

plate (ν = 0.3) having a central crack of various 
lengths was studied.  Figs. 7-10 illustrate the 
mode shape contours for the first four modes.  
In these figures, the blue dotted lines represents 
the nodal lines on which the plate lateral 
displacement is zero; the green dotted lines 
represent the contour lines of equal positive 
displacement; the red-dotted lines represent the 
contour lines of equal negative displacement; 
and the solid red line represents the linear crack.       
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(a) no crack (λ2 =19.54) 

 
(b) a crack of 0.25 m (λ2 =19.44) 

 
 (c) a crack of 0.5 m (λ2 =18.43) 

Fig. 7 Contour plot of the first mode shape of a 
simply supported 1 m by 1.01 m plate 

 

 
(a) no crack(λ2 =48.57) 

 
(b) a crack of 0.25 m (λ2 =48.43) 

 
(c) a crack of 0.5 m (λ2 =41.20) 

Fig. 8 Contour plot of the second mode shape of 
a simply supported plate having 
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(a) no crack (λ2 =49.15) 

 
(b) a crack of 0.25 m (λ2 =48.79) 

 
(c) a crack of 0.5 m (λ2 =47.73) 

Fig. 9 Contour plot of the third mode shape of a 
simply supported plate 

 

 
(a) no crack(λ2 =78.18) 

 
(b) a crack of 0.25 (λ2 =77.12) 

 
(c) a crack of 0.5 m (λ2 =62.78) 

Fig. 10 Contour plot of the fourth mode shape 
of a simply supported plate 
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It is obvious that the presence of cracks in 
plates reduces the natural frequencies of all 
modes and changes the mode shapes as well.  
However, the variations of natural frequencies 
and mode shapes with the crack lengths are very 
complicated even for a fixed crack orientation 
and a fixed crack location.  In the case of a 
nearly square plate with a central crack 
emanating from a plate edge, there seems to 
exist a characteristic length or the size of the 
half sine wave measured in the direction of the 
linear crack.  If the crack length varies between 
0 and 50% of the characteristic length, the 
effects of cracks on free flexural vibration are 
very small.  However, if the crack length 
exceeds 50% of the characteristic length, the 
effects are significant. This information may be 
useful when the vibration technique are 
employed to detect the presence of a crack in a 
panel.  For short cracks, measurement of higher 
mode vibration response may be necessary 
while for long cracks, measurement of lower 
mode response should be considered.   

4 Conclusions 
This paper presents an accurate analytical-

numerical  approach for free vibration analysis 
of cracked rectangular plates. The approach may 
be extended to cracked plates with other 
boundary conditions with the help of the method 
of superposition.  
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