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Abstract  
This paper reports the improvement of the two-
degrees-of-freedom, finite dimensional, nonlin-
ear math model, which has been proposed and 
developed by the authors to explain every fea-
ture of the transonic flutter data of the wind 
tunnel tests conducted at National Aerospace 
Laboratory in Japan for a high aspect ratio 
wing. It enables to explain the nonlinear fea-
tures of the transonic flutter such as the sub-
critical Hopf bifurcation of a limit cycle oscilla-
tion (LCO), a saddle-node bifurcation, and an 
unstable limit cycle. By making use of the con-
tinuation method for analyzing the bifurcation 
nature of the math model, quantitative matching 
is obtained for the LCO amplitude between the 
math model and the test results. The wing de-
flections which are defining the bifurcation and 
were previously obtained by numerical integra-
tion of the acceleration data are now confirmed 
by the direct measurement of the deflection us-
ing newly developed laser deflection measuring 
device. 

1  Introduction  

In transonic regions flutter often takes the form 
of a limit cycle oscillation (LCO) caused by the 
nonlinearity of the transonic aerodynamics due 
to a shock wave moving on the wing surface 
coupled with the flow separation [1]-[3]. Recent 
tests in the transonic wind tunnel at National 
Aerospace Laboratory in Japan for a high aspect 
ratio wing have revealed a lot of bifurcation 
phenomena. Every flutter occurred suddenly as 
a subcritical Hopf bifurcation, jumping up to 
large amplitude LCO, while decreasing a dy-

namic pressure kept LCO continued until a sad-
dle-node bifurcation point, where the wing 
stopped to oscillate. In such a way transonic 
flutter has a hysteresis in LCO occurrence. In 
between this range, a stability boundary (unsta-
ble limit cycle) was identified which separates 
the regions into two groups: one going up to 
LCO and the other going down to equilibrium 
[4]-[6]. 

The authors have developed, by the non-
linear dynamics approach, a two-degrees-of-
freedom (2-DOF) nonlinear mathematical 
model, which has fourth order nonlinear terms 
in the diagonal components of the aerodynamics 
damping [7]. The model can explain qualita-
tively the fundamental bifurcation phenomena 
listed above. It also can predict a lot of impor-
tant noise effects on the subcritical Hopf bifur-
cation such as noisy precursors, a coherent 
resonance, and even a stochastic resonance [8]. 

The model has two sets of free parameters, 
which are to be determined to fit the test data. 
With parameters chosen so far, the model can-
not attain quantitative matching with the test 
results; mathematically predicted amplitude of 
LCO is rather smaller than the amplitude ana-
lyzed by the test data. Further examination to 
what extent this model can be improved by op-
timizing the parameters in the model, therefore, 
is necessary. In the following chapters, the au-
thors investigate this problems in two ways: in 
one way, the bifurcation diagram that was ob-
tained by numerically integrating the acceler-
ometers output is examined by a set of deflec-
tion data, which is newly obtained by direct 
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Fig. 1 High aspect ratio wing model 

measurement of the deflection using a laser op-
tical measurement device. The other approach is 
taken to conduct parametric study of changing 
the parameters in the math model making use of 
a continuation method for analysis of the bifur-
cation diagram. 

2  Experimental Observation of Bifurcation 
in Transonic Flutter and Its Nonlinear 
Math Model  

2.1 Experimental Observation 

Figure 1 shows a wind tunnel model of a high 
aspect ratio wing. It has a leading edge and a 
trailing edge control surfaces. They are used for 
active flutter control research [9]. Basically the 
wing has a supercritical section except at an in-
flated middle part where the wing section is 
symmetrical and two sets of electric motors are 
installed. For LCO investigation in the wind 
tunnel tests, a leading edge control surface is 
used as a source of excitation and wing response 
is measured by four accelerometers and seven 
sets of torsion and bending strain gages, which 
are fixed at an aluminum spar of the wing. 

In the series of wind tunnel experiments at 
the transonic wind tunnel of the National Aero-
space Laboratory in Japan, it was turned out that 
this wing behaves a typical transonic flutter. 
The wing has transonic dip phenomena and 
every flutter has the form of LCO. In each flut-
ter, when the tunnel pressure is increased as 
shown at the bottom chart in Fig. 2 as a typical 
case of Mach 0.8, the wing jumps up to LCO at 
a specified (nominal) dynamic pressure as 
shown at the top chart in the figure. (Since this 
figure shows the active flutter test result [9], the 
LCO flutter is stopped right after its occurrence 
by activating a trailing edge control surface as 
shown at the middle chart.) Successive investi-

Fig. 2 Time history of nominal flutter oc-
currence during the increase of the wind 
tunnel pressure. 

Fig. 3 Quasi-steady decrease of the dynamic 
pressure at the saddle-node bifurcation 
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Fig. 4 Bifurcation diagram obtained 
          by the wind tunnel tests 

gation cleared that, even at lower dynamic pres-
sure than the nominal pressure stated above, the 
wing can be brought into LCO state if it’s ex-
cited above a certain energy level. Once LCO 
state is attained, it is kept continuing even after 
removing the excitation. LCO thus attained is 
stabilized again if the tunnel pressure is further 
decreased. These phenomena are presented in 
Fig. 3 where the LCO is established by a lead-
ing edge excitation as shown at the middle chart 
in this case, and continues to oscillate even after 
removing the excitation. Then LCO continues to 
oscillate during the quasi-steady decrease of the 
wind tunnel pressure until it ceases to rest at a 
certain value of the pressure. That point corre-
sponds to a saddle-node bifurcation. 

Figure 4 summarizes these phenomena 
found in the tests as a bifurcation diagram 
where the LCO amplitude is depicted against 
the dynamic pressure. In this figure the stability 
boundary, or unstable limit cycle expressed by 
the crosses, has a significant deviation and the 
stable region under the boundary is rather nar-
row. Disturbances around the wing such as tur-
bulence in the wind tunnel flow, the flow sepa-
ration occurred at the wing surface, etc., may 
decrease the stable region in the experimentally 
obtained diagram. This point will be discussed 
further again in Chapter 3. 

In the previous tests wing surface deflec-

tions were not measured directly but the accel-
erometers attached to the wing spar measured 
the acceleration. The LCO amplitude was ob-
tained numerically integrating the acceleration 
data. In the latest test, a laser optical deflection 
device of an ultra long rage was developed and 
introduced to the test. Validation of the inte-
grated deflection will be discussed in chapter 4. 

2.2 Nonlinear Mathematical Model  
The basic principle of modeling is to construct a 
model that is as simpler as possible and still 
have a physical meaning and can explain the 
wind tunnel test observation. As a simplest 
model, the first author et al. have developed a 
nonlinear mathematical model in the form of a 
2-DOF, finite state nonlinear differential equa-
tion [7]. Introducing the fourth order nonlinear-
ity in qi, i=1,2 to the generalized aerodynamic 
damping terms, they have obtained the follow-
ing sixth order nonlinear differential equation, 

[ ] 6)( R, zqq, x;   xAAx T
NL ∈=∆+= DD       (1) 

where q is the generalized coordinates and z is 
the augmented variable expressing the unsteady 
aerodynamic delay. The matrix A is a linear part 
of the system matrix and is an ordinary matrix 
for flutter analysis. It takes a form as, 
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In this equation M, C, and K are mass, structural 
damping, and stiffness matrices, respectively, 
used in the following fundamental aeroelastic 
equation of a flexible wing. 

afKqqCqM =++ DDD    (3) 
The aerodynamic term fa in right hand side is 
approximated by the finite state form: 
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where ),,( λλ −−= mdiag� . 
The matrix ∆ANL in eq. (1) represents a 

nonlinear terms and has the following form. 
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where the diagonal components of the aerody-
namic damping part 
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where aa11 and aa22 are the aerodynamic damping 
coefficients for torsion and bending deflection, 
respectively. The parameters β’s and γ’s are free 
parameters to be determined to fit the wind tun-
nel test data. When the parameters β’s and γ’s 
are set to be zero, the equation (1) is reduced to 
an ordinary linear flutter equation. 

In order to make comparison with the test 
results, an output equation that relates the state 
variables in Eq. (1) with the output variables 
measured in the wind tunnel tests is necessary. 
Since two sets of measured and derived vari-
ables, acceleration a a1 2, , velocity v v1 2, and 
deflection d d1 2, at two accelerometer positions 
on the wing are enough for comparison, the 
output equation will take the form 

[ ] 6
212121 ,,,,,; RddvvaayCxy T ∈==    (7) 

A set of equations (1) and (7) comprises the 
nonlinear 2-DOF math model for transonic flut-
ter. 

Nonlinear simulation of solving the equa-
tions (1) and (7) was conducted by making use 
of MATLAB/Simulink software. The coeffi-
cients in the math model was set as 5.021 −== ββ , 

2.021 == γγ  since this set of values are reference 
ones for a typical 1-DOF nonlinear differential 
equation, which gives an LCO solution of a 
subcritical Hopf bifurcation type. For each dy-
namic pressure, simulation was conducted by 
changing equal initial conditions for x1 (= q1) 
and x2 (= q2) with the other states equal to zero. 
In Fig. 5 the simulation results in term of the 
deflection at the accelerometer #1 are displayed 
with circles and crosses. With this method of 
simulation it was difficult to get the points fur-

ther near to the saddle-node bifurcation as 
shown in the figure. 

The Danish authors have applied the con-
tinuation method to the math model (1) modify-
ing a computer program package of the method 
[10]. The package features a fourth order 
Runge-Kutta integrator with fixed size which is 
capable of making analysis of limit cycles using 
Poincaré sections as the control parameter (dy-
namic pressure in the present case) is continu-
ously changing. The continuation method can 
thus trace continuously the Poincaré section, 
even through the unstable limit cycle branch, 
once at the initial stage LCO amplitude has been 
captured. They could obtain the smooth curve in 
the bifurcation diagram as shown as a solid line 
in Fig. 5. The continuation and the Simulink re-
sults are almost identical except at the unstable 
limit cycle branch and the saddle-node bifurca-
tion area where some difference can be noticed. 
The former difference will be discussed in the 
next chapter. Figure 5 has a good correspon-
dence with the test results in Fig. 4 at least 
qualitatively in that it explains every feature of 
nonlinear phenomena such as the subcritical 
Hopf bifurcation, a saddle-node bifurcation, and 
an unstable limit cycle. However Fig. 5 still has 
a large difference from Fig. 4 in amplitude of 
LCO. The math model has one-order smaller 
amplitude than the experimental results. 
 

 

 
Fig. 5 Bifurcation diagram of 2-DOF  

nonlinear equation (1) 

--- : by continuation 
o, x: by Simulink 
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3 Parameter Optimization by Continuation 
Method  

Christiansen and Lehn-Schiøler studied the ef-
fect of the parameters β’s and γ’s on the bifurca-
tion diagram [10]. Particularly they got the am-
plitude and the velocity map at the saddle-node 
bifurcation for each bending parameters (β1, γ1) 
with torsion parameters (β2, γ2) neglected. De-
creasing β1 gives larger amplitude near the sad-
dle-node and also moves it to a higher velocity. 
γ1 can be used to adjust the amplitude. 

Based on this study, parametric study has 
been executed to explore the proper values for 
the parameters in order that the analytical bifur-
cation diagram comes closer to the experimental 
one. The constraint of exploring is the condition 
that the bifurcation diagram should keep the dis-
tance of 10 % between the subcritical point and 
a saddle-node point, which corresponds to the 
experimental results. We started to search the 
optimal direction of the set of parameters β’s 
and γ’s to change in order to increase the LCO 

amplitude. Applying the continuation method to 
Eq. (1) with the two parameters doubled and 
halved, we can get the sensitivity chart as shown 
in Figure 6. The figure shows that as γ is re-
duced, the amplitude of LCO increases but the 
saddle-node bifurcation point greatly decreases, 
and as β is reduced in its absolute value, the 
saddle-node point increases a little, keeping the 
amplitude of LCO almost unchanged. Conse-
quently the right direction we have to take may 
be upper left direction. 

Making a lots of efforts to search an opti-
mum combination of parameters, we have 
reached the values of β = -6.5e-3 and γ = 2.5e-5. 
It is worth notifying that the parameters thus 
obtained are surprisingly small, which means 
that a small nonlinearity is enough to put a wing 
into LCO state.  

Resulting bifurcation diagram is shown as 
a solid line in Fig. 7. In the figure experimental 
data are also plotted. The correspondence of the 
LCO between the math model and the experi-
ment is quite good; the amplitude of LCO is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Parameter sensitivity for increasing the amplitude of LCO 
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Fig. 7 Bifurcation diagram of the math model 
with optimized parameters and the ex-
perimental results.

Fig. 8 Wind tunnel test data of accelerometers 
and laser deflection devices at flutter (M=0.8). 

 
almost identical and the position of the saddle-
node bifurcation is exactly the same. There still 
remains a difference in unstable limit cycle; the 
mathematical model has a wide stable area under 
the unstable limit cycle, while the experimental 
data shows a limited region of stability. As stated 
earlier, the main reason of this discrepancy may 
exist in the noise effects. In real situation, even 
at the stable region disturbance may energize the 
wing to jump up to unstable region and push the 
wing to LCO state.  

 

4  Examination of the Deflection Data  
Previously a wing deflection was not di-

rectly measured, but it was obtained by numeri-
cally integrating the acceleration data. Since in-
tegrated data may have a numerical error, a laser 
deflection measurement device has been devel-
oped to directly measure a wing surface deflec-
tion. The wind tunnel test was recently con-
ducted to measure the wing deflection and accel-
eration at the same time. 

Figure 8 is a typical result of measurement 
at the first flutter case in the recent test. The fig-
ure shows, from top to bottom, original voltage 
outputs from #1 and #2 accelerometers and #1 
and #2 laser deflection devices. As can be seen, 
accelerometer outputs contain higher harmonics 

components, while laser deflection outputs are 
small and contaminated by the noise. 

The accelerometer outputs are integrated 
by the following procedure; after subtracting the 
mean value, acceleration signal is integrated 
once to get the velocity. Then low frequency 
components contained in the velocity such as the 
bias and trend are filtered out applying a high 
pass Butterworth filter of 7.5 Hz cut-off fre-
quency. Integration is applied once more and the 
deflection is obtained. Attenuation ratio intro-
duced by these process is 97% which was ob-
tained using the test function of 360sin(2πft) 
[m/s2], where the frequency was taken nearly 
equal to flutter frequency, f = 23.9Hz. 

Newly developed laser deflection meas-
urement device has a very long range. A set of 
mirrors is installed to make separation between 
the laser emission point and the detection point 
larger so that a ultra-long range from 250mm to 
750mm of the commercial device is further 
enlarged. It has the deflection range from 
437mm to 1316mm and can measure the deflec-
tion of the wing from outside the wind tunnel. 
The wing is placed at the center of the test sec-
tion of 2m×2m square. Two sets of the devices 
were developed and attached outside of the wind 
tunnel sidewall. They measured two points of 
accelerometers at the wing surface through the 
holes of the perforated wall. Problem exists in 
that the measuring range of the wing deflection 
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Fig. 9 Comparison of a wing surface deflection 
between integrating accelerometer signal and 
direct measuring by laser deflection device. 

is rather small compared with the wide full range 
of the device. As will be seen in the next Figure 
9, the wing deflection is at most 50mm p-p 
against 877mm full range, i. e., measurement 
uses only 5.7% of full range.  

Figure 9 shows a result of data processing. 
In the figure first two channels are deflections d1i 
and d2i obtained by integrating twice a1 and a2 
acceleration, respectively; while the next two 
channels are directly measured deflections, d1d 
and d2d. Actually a low pass filter of 30Hz cut-
off frequency is applied in order to filter out the 
noise components. It can be seen that there is a 
difference between two sets of deflections; the 
integrated deflection is 72% of the direct meas-
urement. 

Although the direct measurement of the 
wing deflection produces a small level of signal 
containing a noise and the differences between 
two sets of deflection are not small, the inte-
grated deflection used so far for defining the bi-
furcation diagram is checked out for the first 
time by direct measurement and it can be con-
cluded that the integrated deflection, and the in-
tegrated velocity as well, has a reasonable value 
and can be used to define a phase diagram and 
bifurcation but with consideration of 20 to 30 % 
amplification in amplitude. 
 

5  Conclusions  
This paper reports the present status of improv-
ing the simple 2-DOF nonlinear mathematical 
model of a transonic limit cycle flutter. The 
model has an ordinary flutter equation of the first 
(bending) mode and the second (torsion) mode 
coupling type in a state space representation as a 
linear part, and has a fourth order nonlinearity in 
aerodynamic damping parts. By making use of 
the continuation method of continuously tracking 
the bifurcation diagram of the math model, pa-
rameter optimization is tried and quantitative 
matching is obtained for the LCO amplitude be-
tween the math model and the test results. Re-
sulting model enables to explain quantitatively 
an LCO amplitude, a subcritical Hopf bifurca-
tion, and a saddle-node bifurcation, which were 
observed in the transonic wind tunnel test at Na-
tional Aerospace Laboratory in Japan for a high 
aspect ratio wing. There still has discrepancy for 
the unstable limit cycle with the wind tunnel 
tests, which suggests the limitation of this type 
of a model. 
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