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Abstract

The philosophy of the new approach to multi-
disciplinary optimization of aircraft parameters
by a target criterion are formulated in view of
requirements of aerodynamics, flight dynamics
& control, and strength. The idea of a local de-
composition of the initial problem into mono-
disciplinary subtasks with special criteria — Lo-
cal Distributed Criteria (LDC), is used. The
regular method of LDC formation is proposed
on the basis of sensitivity functions. These func-
tions result from transformation of adjoint vari-
ables and Lagrangian multipliers extracted
from the rigorous solution of the aircraft tra-
Jectory optimization problem by the target crite-
rion with use of the indirect method — the Pon-
tryagin maximum principle. The LDC, on the
one hand, give monodisciplinary subtasks an
independent access to the unified target crite-
rion, and on the other hand, take into account
the specific contribution of all aircraft flight
phases.

The LDC approach application for the
launcher parameter optimization is described.
The qualitatively new solutions are demon-
strated.

1 Introduction

Computer-aided aerospace design software,
which dates back to 60 years, uses, as a rule, the
simplified analysis and synthesis procedures on
separate disciplines to ensure the convergence
of general designing process for reasonable
time. It is possible to expect a qualitative growth
in the efficiency of aerospace design in the
nearest perspective (irrelevant with search for

nonconventional types of aircraft) at the ex-
pense of integration of modern profound devel-
opments in the models and methods accumu-
lated by each of aerospace disciplines, and con-
centration for the solution of the main (target)
problem, for which the aircraft is created.

One of ways to embody such capabilities is
offered on the base of:

the thorough optimization of aircraft control
with use of the automated program complex
ASTER [1], based on application of the in-
direct method, the Pontryagin maximum
principle [2];
formation of the local distributed (on flight
regimes) criteria (LDC) on the basis of the
solution of an adjoint system, ensuring sub-
ordination of “monodisciplinary” problems
(optimization of the aerodynamic shape and
structural scheme) to the unified purpose of
reaching the maximum efficiency of the air-
craft;

the maximum use of available software;

interactions between experts in different ar-
eas of aerospace sciences on the basis of
equal rights and a mutual interest.

In the basis of the approach is the idea of lo-
cal decomposition of an initial problem into
monodisciplinary subtasks with personal criteria
for each discipline. The peculiarity of the ap-
proach consists in a way of setting these criteria:
they are formed objectively, on the one hand, to
give a monodisciplinary problem an independ-
ent output to the target application criterion,
and, on the other hand, to allow taking into ac-
count the specific contribution of all flight re-
gimes.
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The basis for practical embodying of the ap-
proach is the essential progress of the authors
[1] in automation of the optimization problem
solution by the maximum principle for branched
processes with different types of constraints.

It 1s supposed, that the developed approach
will be most useful for optimization of the air-
craft, which characteristics vary essentially on
flight segments, as, for example, for aircraft in
free flight, supersonic planes, aerospace launch-
ers, etc. The LDC application takes objectively
into account the “weight” of each flight regime
(not 1in isolated points only but distributed con-
tinuously) through the criterion of target appli-
cation efficiency.

Advantages of the LCD technique are fol-
lows: an integrated approach, natural subordi-
nation of monodisciplinary variables and pa-
rameters to the single target criterion, an inde-
pendence in selection a research method within
the framework of each discipline, taking into
account a non-linear character (including bifur-
cations) of a functional relation to parameters.

2 Substantiation of the LDC method

Let efficiency of fulfillment of some target task
is characterized by criterion

F P max. (1)
The efficiency of the target application depends
on selection of the control law u(x, /)T 4 R”
and vector parameter pl I R’:

{u, p}opt = arg max F. (2)

Here xI X1 R” is the state vector, I [z, #] is
the time. The parameter p determines the air-
craft layout and influences on the right member
of the motion equation, on constraints on the
admissible control and state vector, including
initial conditions. The parameter p can also be
included explicitly into the functional F. Thus,
the optimization problem (2) breaks up naturally
to the control optimization problem:

{u}opt = arg max F |p=fix, 3)
and the non-linear programming problem:
{P}opt = arg max F |y=yo- 4)

The problem (3) is the typical flight me-
chanics problem, while (4) reflects a multidisci-
plinary problem of the optimal selection of an
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aerodynamic layout, a structural scheme, a pro-
pulsion system, and also a trajectory and con-
trol. The flight mechanics problem arises here
newly because of a possible explicit dependency
of the allowable control and state set on p.

From the mathematical point of view the
problem (4) can be solved investigating the re-
lation of the optimal solution of the problem (3)
to the parameter p. The continuation method or
the neighborhood extremals method [4] can be
considered as effective approaches for that.

Let's consider problems (3) and (4) in more
detail. Let the vehicle motion is described by the
vector equation:

%: (X,u,p,f), ti£t£tf ’ (5)

where x(7) and f(x,u,p,?) are piecewise continu-
ous functions.

The state and control vectors are limited to a
system of inequalities:

x1 %:{XT R" : X(x,p,?) £0,X1 R”‘}, (6)
ul @[Z{ui R” :U(x,u,p,f) £0,U1 R'”‘}.(7)
With agree to [4] the state constraint

X, (x,p,t) E0 of the “k;” order breaks up to
constraints of an equality type on the control

(7):
_ a’kIXl (x,p,?) _
U;(x,u,p,?) = —ah 0
and on the function of state vector in isolated
points of the trajectory:

D, (x,p,t) =X,(x,p,)=0,

2

dX
Dj+1(x,p,t) :7/:0’ ()
...... k-1

d" X
Dj+k-1(xapat) = dtkl']lzo

Other similar constraints in isolated points of

a trajectory can be imposed on the state vector.
Generally:

D(x™ (1), X" (,),...,X (2,),
X" (t,),p.1501,) =0, DI R™,

- + —

)

instants of jumps of the function f or state vector
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X, output to state constraints, change of the state
vector structure etc.

The optimal control problem can be formu-
lated as follows: it is required to find the control
u = u(p, ?), ensuring fulfillment of requirements
(5) - (9) and supplying the maximum to the
functional

F O F (X (4 )yer X" (2, )Pty 5ot )P max .(10)

To solve the problem we use the indirect op-
timization method — the Pontryagin maximum
principle [2].

Pursuant to a formalism of the maximum
principle the Hamiltonian is

H =y "f(x,u,p,1) +1 "U(x,u,p,7), (11)
where y T R"is the adjoint vector, | T R™ is
the vector of Lagrangian multipliers.

The adjoint vector is determined by the
equation [2]:

L, T
d Hu
&y _ (12)
dt @ﬂX
and boundary (transversality) conditions:
. T , T
égqe U éqpU
Vi, +0=-8 - &5 n.
ex;g &g
éqe U éqp U
Fo % 7’
yi,-0=er g +6 240, (13
gx;a @4
Ha,+0)- @, -0)=- T nTﬂ—D'

",
The optimal control is determined by the condi-
tion

u,, =argmax /7. (14)

According to Bliss formula [5], adjoint vari-
ables and the Lagrangian multipliers in (11) un-
der the transversality conditions (13) have sim-
ple physical meaning on the optimal trajectory:

a) The adjoint vector is a function of sensi-
tivity of the functional to variations of the cur-
rent state vector:

R O, (15)
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b) The Lagrangian multiplier vector n is a
factor of sensitivity of the functional to varia-
tions of the relevant constraints:

n=gr 0. (16)

At a small variation dp of the parameter p the
variation dF is determined by the formula:
dF =d,F +n"d D+
ty (17)
+ c‘{y d f+1 poU)dt=Np F dp P max,
i
where d, is the variation of a function caused
by dp. The variables in (17) correspond to the

optimal solution at the nonperturbed parameter
p. The gradient of the functional on p:

< g o TF O @)X () Putt,) |

P ﬂp
o’ DX (1)srers X (1), e, N (18)
fip
74 N
+ (\gl T ﬂf(xauapat) +| T ﬂU(X,u,p,t)zdt,
. € fip Tp

sets the direction of the improving variation in
the space of parameters /.

The optimization of aircraft layout parame-
ters p by the target criterion (1) is reached as a
result of successive steps containing calcula-
tions of the characteristics in (17), including
gradients in the space of parameters p, within
the framework of separate disciplines. Im-
provement of aircraft parameters is possible so
long as the gradient of the functional (1) has a
positive projection to the cone of permissible
variations in /°:

N,Fdp30, p+dplP.

The variation of the functional (17) has a
meaning of the local distributed criterion for
contiguous disciplines. “Locality” of the LCD
is stipulated by its correspondence with the
quickest descent in the space /° at a small varia-
tion dp only. For “large” variations the influ-
ence functions in the expression of the gradient
(17) 1s generally corrected as a result of the so-
lution of the relevant optimal control problems
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for changed values of p on intermediate steps
with small dp. “Distributiveness” of the LDC
is determined by that the integration function
takes into account a change of the influence of
the parameter vector p on the functional along
the optimal trajectory x(z). Thus, the criterion
(17) allows objectively taking into account a
distribution of the specific influence of p on the
target application criterion on all flight regimes.
The criterion (17) realizes the integrated ap-
proach because while solving the monodiscipli-
nary problems it allows to pass from the space
of internal monodisciplinary parameters and
variables to the general target application crite-
rion.

The role of such LDC capabilities is clear if,
for example, the classical problem of the aero-
dynamic shape optimization for a supersonic
plane is considered. Obviously, the solutions of
this problem by any ‘“conventional” criterion
(the maximum lift-to-drag ratio, the wave or full
aerodynamic drag etc.) will result not only to
different, but also, probably, opposite recom-
mendations if subsonic and supersonic flight re-
gimes are considered separately. The LDC make
it possible to take objectively into account “the
weight” of each flight regime (distributed con-
tinuously) to maximize the target efficiency.

3 “Monodisciplinary” components of the LDC
technique

The LDC method does not impose any special
requirements to software used inside each disci-
pline, except for, may be, the trajectory optimi-
zation program. It should provide the LDC cal-
culation, for what an effective mean is the Pon-
tryagin maximum principle. At the same time,
an accuracy of obtained results, their reliability,
and the calculation time are obviously con-
nected to the efficiency of used monodiscipli-
nary methods.

Described below in this section are the basic
features of techniques and software used by the
authors for practical implementation of the LDC
method of the multidisciplinary optimization.
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3.1 The trajectory optimization software
ASTER based on the Pontryagin
maximum principle

To calculate the LDC enabling to implement the
decomposition of the initial integrated problem
into monodisciplinary ones, it is necessary, ac-
cording to (17), (18), to provide a regular nu-
merical procedure for the solution of a multi-
point boundary value problem for the state (5)
and adjoint (12) differential equations.

For this purpose the technique of rigorous
solution of the trajectory optimization problem
with regard to practical constraints on the basis
of the Pontryagin maximum principle is used in
the automated program complex ASTER [1].
The ASTER complex was developed originally
for the control and trajectory optimization of
spacecraft injected into an Earth orbit, of a sub-
orbital flight or interorbital transfers.

Mathematical models of the ASTER complex
enable to vary objects of research by quantity of
stages, a type of the propulsion system (liquid-
or solid-propellant rocket engines, airbreathing
engines), types of constraints (on control: angle
of attack, thrust, g-load etc.; on a trajectory:
Mach number, dynamic pressure, heat flows
etc.; on conditions of spent components reentry:
impact or landing sites, thermal or g-loads,
Mach number etc.). The complex is supplied
with the interface software for Microsoft Win-
dows.

The ASTER complex was tested and used for
design and feasibility studies of current and ad-
vanced space transportation systems from
“Proton” to MAKS.

The following information of the ASTER
solution is important for the LDC technique:

the optimal control and trajectory;

external loads on the nominal (optimal) flight

trajectory;

influence functions of the parameter p de-

termining the right member of the motion

equation (5) and constraints (6) - (9) on the
functional;

influence functions of disturbances of state

coordinates at each point of the optimal tra-

jectory on the target functional.
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For example, in the aerodynamic shape op-
timization problem with strength constraints on

the dynamic pressure ¢: Dy;= ¢ — gaam £ 0 and
the normal g-load n,: U,.=n, — 1, agm £ 0, the
LDC can be written as follows:

ly
NPF = nqﬂ_q ¢ po Ty +FL/D—ﬂ(L/D)maX +
TP Tp Tp
U, 0
+Fkﬁ+| . 10, =dt,
fp *p 5
r . .
where £ =y ﬂ_" ] = (cpo, (L/'D)max, k) In-
J
Lo Frp
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Fig. 1 The Lagrangian multiplier | ,., the sensitivity
function F7/p and normal g-load n. versus Mach number
in the problem of winged launcher ascent into the LEO.
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Fig. 2 The dependency of sensitivity factor n, on the
maximum admissible dynamic pressure q,dm.
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cludes the zero-lift drag coefficient, the maxi-
mum lift-to-drag ratio, and the induced drag co-
efficient consequently. The aerodynamic coeffi-
cients are piecewise continuous functions of the

state vector and time. The functions Fj and |,

reflect the distribution through flight regimes of
the specific influence of j and n, on the func-
tional. The typical behavior of Frp and
|, calculated by the ASTER for the problem of

the winged launcher ascent into the low Earth
orbit (LEO) is shown in Fig. 1. Figure 2 demon-
strates the typical dependence of the sensitivity
factor n, (see (16)) on Gadm.

3.2 Calculation of three-dimensional nonvis-
cous flows about aircraft components based
on the universal multi-zone technique

Applied software as mean of automation of
computation is widely used for solving numeri-
cally a variety of aerogasdynamic problems.

Developed in TsAGI the universal software
ARGOLA-2 is based on the Godunov method
[9], the principle of stabilization time relaxation
technique, and the multi-domain technique of
dividing a calculated region into subregions.
The Godunov method was modified by replac-
ing the first-order difference scheme by Kolgan
gradient scheme of the higher order of accuracy
[10, 11]. This approach is known as TVD.

The computation of each subregion and inter-
face between subregions are performed by uni-
fied algorithms. The interfaces between subre-
gions are set up automatically regardless of the
order of grid cells numbering.

The ARGOLA-2 makes it possible to carry
out numerical simulation of steady and unsteady
flows of sophisticated geometry and topology
over a wide range of defining parameters such
as Mach number M, angle of attack a and so

on. In particular, the Mach number of the on-
coming stream can vary from low subsonic to
hypersonic values. At hypersonic flight veloci-
ties and high angles of attack, the developed
software makes it possible to take into account
factors that are not modeled in wind tunnels
(flight thermodynamic air properties).
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The Godunov method represents the special
case of the finite volume method. The whole
flow area is divided into a large number of tiny
cells for which the laws of mass, momentum,
and energy conservation are considered. Two
separate problems are solved:

- mass, momentum, and energy flux from one
cell to another is determined for each couple
of neighboring cells depending on current
values of gas parameters in cells;
change of mass, momentum, and energy in
each cell is determined in every short time
span Dt depending on fluxes from the
neighboring cells.

In the ARGOLA-2, each region is cut into
subregions (‘curvilinear’ cubes), and then
subregions are divided into elementary cells, i.e.
a 3-D calculation grid is built up. Here, in the
case of well-designed grid for the whole calcu-
lated region, numerical modeling for different
flow envelopes can be made with the same grid
that increases the efficiency of the software at
all stages of the numerical experiment.

With classical approach for nonviscous
flows, the system of Euler’s equations with
boundary and initial conditions is used to solve
specified mathematical task by any existing
method. However, in the case of the Godunov
approach, this formal stage is redundant since

Y
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Fig. 3 Pressure isolines in the plane of symmetry Z=0
of blunted cone-cylinder, My = 3, a = 20°.
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Fig. 4 Pressure isolines in the plane of symmetry
7=0 of the elliptic cone, My=0.8, a=10°.

Euler’s equations do not appear explicitly in the
Godunov method. Instead, a direct discrete
modeling of gasdynamic flow process based on
integral conservation laws is carried out.

The ARGOLA-2 is used in applied research
of a variety of aircraft. In particular, within the
framework of developing the LCD technique,
parametric calculations of the flow about sam-
ple body like “blunted cone-cylinder” with the
cone half-angle 20°, bluntness radius 0.15, and
the radius of the cylindrical part 1.5 were car-
ried out. As an example, pressure isolines in the
plane of symmetry Z=0 are shown in Fig. 3 with
My = 3 and the angle of attack a = 20°. Looking
at the behavior of isobars in the shock layer, one
can see the bow shock and the inner suction
wave near the leeward surface.

Numerical computations were also accom-
plished for the elliptic cone with a triaxial ellip-
soid bow of the radius 0.25 in the plane of sym-
metry. Numerical modeling was performed for
nonviscous perfect gas (g=1.4) with the fol-
lowing  parameters of oncoming flow:
0.6 £ My £20, 0 £ a £ 30°, pressure p = 10° Pa,
density r =1 kg/m’’. Total number of cells was
taken up to 4X0°.

The calculated pressure isolines p=const in
the plane of symmetry Z=0 for the flow of el-
liptic cone are shown in Fig. 4 with My =0.8,
angle of attack a = 10°, and the ratio of semi-
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axis in the cross section 0.5. The shown picture
gives an idea of the flow peculiarities and com-
plex topology of the perturbed flow field, in-
cluding behind the bottom cross section.

3.3 The technique and software for airframe
design

Optimizing structural parameters is one of the
most challenging issues in the multidisciplinary
approach to airframe design. Used as the “sin-
gle-discipline”, the internal optimality criterion
for forming and choosing a configuration to
maximize the vehicle target efficiency is most
commonly the structural mass - or another
functional including masses. The design process
is bound to meet constraints for: geometry,

stiffness, displacements, stresses, manufacturing
process parameters, etc.

Within the design parameters space these

constraints establish an allowable area within
which the optimum values are sought. The gen-
eral methodology of the search process is de-
picted in Fig. 5.

Described below is the operation of the com-

plex for designing configurations and structural
concepts of launch vehicles (boosters) which is
based on the methodology and automated fine
(high-dimension) finite-element models. It is
seen from Fig. 5 that the procedure is iterative,
including three major optimization blocks:

for determining design loads,
for establishing configuration parameters, and
for defining structural concept.

Results of each block are continually moni-

tored by the control module incorporating the
database which intended for:

analyzing input data,

forming the variation domain for basic pa-
rameters,

compiling approximation functions for geo-
metric description,

establishing constraints and restrictions and
analyzing optimality criteria for the entire set
of structural variables, and so on.
The database contains also the statistical in-

formation obtained as the result of certification
analysis. Each of the three blocks corresponds
to interaction with adjacent disciplines.

91 |9 OUTLINING THE
g GEOMETRY
L4 A v
(‘ T
DESIGN
CRITERIA
SELECTING CHOOSING
DESIGN LOAD STRUCTURAL
CONDITIONS CONCEPT

Fig. 5 The methodology of designing an optimal
airframe configuration.

Optimum parameters are sought within an it-

erative process. Design load determination is as-
sociated with flight path optimization. Estab-
lishing the configuration parameters is associ-
ated with external geometry optimization.
Lastly, the structural concept selection stage in-
cludes optimizing principal loads and defining
the rational structural concept (with its respec-
tive optimal thickness and cross-sectional ar-
eas). The iterations are carried out until all op-
timality conditions are met.

Calculation of strength, stiffness and mass
variables i1s based on finite-element design
models capable of fine discretization.

The necessary dimension of the finite-
element model is determined automatically - by
proceeding from the requirement of suitable
modeling of stress fields and structural and
manufacturing features of major components. In
the case of a large number of variables the
structural optimization is an extremely cumber-
some and time-consuming process which almost
impractical. A solution for particular configura-
tions can be performed with use of specialized
automated design module that rely on repre-
senting the structural parameters vector { a; } as
a function a; = Fi({A;}) of a small number of ba-
sic parameters {A;}. The types of approximating
functions {F;} depend on the allowable domains
of the basic parameters, {DA;}.

The algorithm 1is exemplified in Fig. 6
showing results of studies for determining how
the structural mass depends on ellipticity of the
launcher cross section. Two structural concepts

142.7



A.S. FILATYEV, A.A. GOLIKOV, A.P. KOSYKH, G.G. NERSESOV,

\
\
N
N

I\
N
X
N
N

G
N
W0
\

N
:\“\
Y
\

=

\

=

O

KSS-1 KSS-2
(Stiffened skin + frames) (Stiffened skin + longitudinal ribs)
a
G \
1.3 T Ib
—
' Kss-1,”~ -]
1.1 \\ 7 //
1.0 N /
= —[KSS-2
0.9]
O.Q
1.0 1.1 12 13 14 15 a/b

Fig. 6 Dependence of the structural weight on
structural concept type.

were considered, differing in their composition
of primary elements:

KSS-1 = stiffened skin + frames,

KSS-2 = stiffened skin + longitudinal ribs.

The vehicle was assumed to be subjected to
pressurization, longitudinal compression, and
bending.

The other example is the preliminary study of
strength, stiffness and mass of a cylindrical
booster as functions of transverse loads caused
by the lifting force. The aerodynamic loads add
bending to the usual pressurization and longitu-
dinal compression. Therefore, the structure must
be strengthened by adding a load-carrying mate-
rial. The major challenge here is to minimize the
extra mass, provided that all restrictions are
obeyed. Figure 7 demonstrates loading the cy-

Trim force from
engine

Distributed load due to mass
inertia

Fig. 7 Scheme of additional loading of the launcher.
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lindrical booster subjected to aerodynamic
forces and the thrust.

4 The LDC approach applications:
the launcher parameter optimization

Intensive search for ways to drop the costs of
the ascent into an Earth orbit is pursuing at pre-
sent. Two tendencies stand out here: to modify
rocket launchers of a conventional type and to
advance aerospace planes. From the point of
view of flight mechanics the key distinction
between them consists in the attitude to a role of
the atmosphere.

The representatives of the first tendency tra-
ditionally treat the surrounding medium as a
source of a resistance, which should be mini-
mized. This reason (in the absence of additional
reentry requirements) results in the selection of
the corresponding aerodynamic layout of the
“rocket” type and the “traditional” control
schedule, which is characterized by a vertical
start, zero angles of attack in flight in dense at-
mospheric layers, and the quasilinear time pro-
gram of pitch angle in rarefied atmosphere [7,8].
In the classification of the optimal control laws
[3] this traditional type of the control laws is re-
ferred to as type B (“ballistic”).

The representatives of the second tendency,
on the contrary, lean on the atmosphere (both in
a literal and a figurative sense). For this purpose
the aerospace planes are given the perfect aero-
dynamic shape with high lift capabilities. For
the planes the optimal control laws (type A4,
“aerodynamic”, in the classification [3]) are
qualitatively differ from traditional ones: the
time program of pitch angle has the oscillatory
structure in dense atmospheric layers, the quasi-
horizontal start is optimal, higher dynamic pres-
sure is realized on the optimal trajectories [3].

The multidisciplinary optimization technique
allows to perform an objective investigation and
to determine clearly, in terms of geometrical pa-
rameters of a layout, the boundary dividing ar-
eas of the optimality of two indicated classes of
aircraft.
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Fig. 8 The relative injected mass’ m, versus the relative outer wing area’ F,, for the winged cylindrical vehicle and the el-
lipticity parameter a/b for conical one. The bold lines are relevant to the global optimum of 4 and B types.

Presented in Fig. 8 are the typical relations of
injected mass to geometrical parameters of the
launcher layout such as the cross-section ellip-
ticity (the width-to-height ratio) a/b and the
relative outer wing area’ F',, [6]. Markers A and
B sign the curve segments corresponding to the
relevant qualitatively different types the optimal
control laws.

It 1s seen that the new A-type control laws
can be optimal alongside with traditional B-type
ones for aerodynamic shapes which look at first
glance like conventional rockets. It is important
that small changes of shape parameters of the
launchers can result in a qualitative (bifurcation)
change of the optimal trajectory and control law
structure. In turn, it leads to essential non-linear
relations (with gradient jumps) of the target cri-
terion (" my ) to all vehicle parameters (the thrust-
to-weight ratio, the aerodynamic shape, etc.)
[6].

Shown in Fig. 9 are the relations of the
maximum dynamic pressure g and product (ga),
indicating a local load level, to the relative outer
wing area F,, . Although the optimal control
laws of A-type are accompanied by higher aero-
dynamic loads on the launcher construction, the
loads do not exceed the reasonable (in practice)
level for current launchers of the “rocket” type.
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Fig. 9 Maximum dynamic pressure gmax and factor

(¢°@)max versus the relative outer wing area’ F,
on the optimum injection trajectories.
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Moreover, if the maximum admissible loads
Gadm and (ga).am are smaller than the maximum
values gmax and (¢ga@)max on the optimal trajecto-
ries, the losses of the injected mass are small

values of higher order than variations
dQadm = @dmax - {adm and d(qa)adm = (qa)max -
(g@)adm:

a my =" 0(0gadm , AgO)adm).

The typical relation of the maximum injected
mass to (ga)aam 1 shown in Fig. 10 for the outer
wing which area equals to the cross section one
(CF, =1). According to Fig. 10 the (ga)adm
drop on 30 % results in loss of target func-
tional m,of only 0.2%.

-
106 o

4 the maximum level (without constraints)
1.04 —
1.02

l -

0.98 with “traditional”

i control law (9 O max
0-96 ' | ' | ' |

0 10000 20000 30000

(@0 adm kgf'grad/m2
Fig. 10 The relative injected mass® m, versus (¢-@)adm
for the winged cylindrical vehicle,” F,, = 1.

5 Conclusions

The developed LDC approach to the inte-
grated optimization of multiregime aircraft pa-
rameters by a target criterion allows to find ef-
fectively the optimal solution in the cases of
complex functional relations including bifurca-
tions. Potentially, it would be a reliable tool for
objective analysis of aircraft marginal possibili-
ties in any applications.

AN. SHANYGIN, V.S. VOITYSHEN, V.L. YUMASHEV
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