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For increasing the size of new aircraft and for increasing
the timeablebility (flying in poor wether the modern
future aircraft should have a higher flight safety. /
Therefore, the investigation of the unconventional // /
flights e.g flights out of the normal flight and load &\A
envelopes is a very actual practical and theoretical ; 7 B ~
problem. | '

S ¥
The lecture investigates the aircraft real motion after
loosing the conventional control. K.

The free flying model of aircraft is used in the practical Fig 1/a.
investigation. The motion -of airplane model with
simulation of loosing the control is recorded on video.
The film is digitalized and the flight path is ‘
reconstructed on the basis of special marks made on the T }

|

|

|

flying model.

The Fokker-Planc equations are used during the K. 'Xa
description of the real motion of aircraft. The entire
process of aircraft motion is analyzed as the realizations K,

of time series parameters and set up a hypothesis on the Fig. 1/b.
approximation of diffusion coefficient functions.

So, the statistical data of aircraft motion after loosing the z

control is obtained by solution of diffusion equations. ' 1. kesord. s,

The results are demonstrated in from transition
probability matrix functions describing the changes in
flight characteristics of airplane after loosing its
conventional control.

The results of investigations can be applied to the
aircraft accident investigations and crash analysis.

1. The problem Fig. 2/a.

Building up the mathematical model required for the

statistical analysis of the motion parameters after the - i
control (X.,;Y;etc.) of an acroplane, as well as the
planning of the experimental process.

The aim of building up three-dimensional 3D geodetic
grids is the determination of the grid points 3D (x;v;z)
{or their orientation, respectively). In our case, the
application of is method provides the possibility of
orientation in plane or in space of the corrected geodetic
co-ordinates of the cameras used in our experiment.

Fig. 2/b.
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In our case. during building up the functional model of
the motion analysis grid, the examined object
(aeroplane) is replaced by its identifications points. The
positions of the identification points of the aeroplane is
determined at different instants #, € 7 as starting from

the reference points taken outside the aeroplane, and on
the basis of those we can deduce the respective motion
parameters of the above object with the help of function-
approximate method.

2. The motion analvsis grid:

The identification point of the aeroplane + reference
points outside the aeroplane (camera positions). When
building up the functional model of measurements, we
should consider two main phases, namely:
1. Replacement of the examined object (aeroplane) by
its corresponding identification point.
2. Analysis of the effects caused by the duration of
measurements

Points 1 requires further examinations. In this paper it
will be not treated. The following considerations are
associated with point 2. The number of recordings by
camera per seconds and the dynamics of the motion
system examined is of such character that the
measurements belonging to the individnal occasions can
- be considered as belonging to one instant. Accordingly,
the above functional model will be as follows:
A measurement-vector Y; i=1,2, ...k and a co-ordinate-
vector Y; 1=1,2, ...k are assigned to each instant t;
i=1,2,.nt; €T;. T; is the period of the j* experiment.
In the functional model described above, the
measurements belonging to the individual occasions can
be quantities characterising the motion can be defined
on the basis of the corrected quantities after the
correcting compensation of the grid has been performed.
The phases of correcting the motion analysis grid are the
any correction

1. Preliminary correction

2. Actual correction

3. Interpretation of corrected quantities.
The photogrammetic motion analysis grid involves the
discrete sampling of the stochastic motion over the
predetermined time-interval 7; € [tO;T].
The motion analysis grid shown in Fig.l/a. and 1/b.
makes possible the approximate 6D determination of
any identified point of the aeroplane by the solution of a
conditional extermization problem belonging to each
=12, . M; ¢ e [to;T] instant of the examination.
With the knowlidge of the co-ordinate systems represen-
ted in Fig.2/a and 2/b. (when the 2/a co-ordinate system
is such cordinate system, wich is moving with the

aeroplane) vector ¥ R0 ,1) in (1) can be derived for each

instant of examination with the help of a mathematical
model similar to those used above.

'
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Measuring vector:

(1)
ZJ(tk)z[xl(ti);XZ(t)_);xi’:(tk);@l(tl)7¢72(t/1)>¢3(tit);]6R6
t; elt:7] 1.2, ... M: A=12, ... k index set.

When x,{; ) :1=1,2,3 the centre of gravity coordinate of
airplane for the discreet time.

;(t): i=1,2,3 are the realization in the time of
the angle swing, what is round the inert
wain course of airplane.

M: Number of the experiment.

Note: I~ J (r,)vt, =12 .. kis burdened with error

in the 7=1.2. .. k time.
On the basis of these experimental results. let us fire the
transitional probability description of the real random
vector-variable (1) the following wav:
3. The first task is the filteration of the measuring
results

At any instant of the motion, there is always a threshold
vector € which can not be exceeded by the system due to
its mechanical properties.

Conclusion:
No frequency vectors of greater norm than that of the
boundary frequency vector ® can exist among the

realizations.

That is all the time of moving is the g[z ] limit vector.

The execution of the filteration.
Let’s perform the next expansion for the all examination
result.

i= 1.2,...6] 2)

(3)
EJ () if te [[OQT]
0, if te(-oro)fry:T]

L)~

It is true for all coordinate function of Y, (t,)

* measuring vector:

“
Y ,(t)~ Yilt)e Cty:T] 1dan=2; =12 .6

The consequence of (4).
Because: 1, [tO;T ] is compact set.
2, fﬁ (t)are limited and single-valued
functions i=1,2, ...6; J=1,2, .M
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Therefor:
For the every ge ! [to; T] functions are:
)
=12,..6
j 7, (e~ j FOele-ar

As a consequence of (4), the (3) discrete convolution is
in force for any discrete distribution of time-interval

[tO:T].
(6)
For above task let’s apply the binomial filteration (it is

filteration on the basis of convolution).
The generation function of binomial filteration:

—2;_“£m2fliflj

The next function will be in consequence of the
filteration.

C,=C =

)

®)
T, . (t; ) >binomial filteration> ¥, {t, ) v.J: ViV A

By applying binomial filteration to (1) and all J, a set of
vectors is obtained which continuous ¥, (t,) realiza-
tions that will not contain frequencies higher than the
boundary frequency (produced by the measurement
errors) determined by (2).

4. The interpolation

The next problem to be solved is the proper qualitative
mterpolation of the set of points 6D determined by,
which should be performed separately for each co-
ordinate. The quality of interpolation is predetermined
by mechanical properties which are shown in (4).

The quality of integration:

Y5t ) =Y (0)e €Oty T)

Let’s apply SPLINE interpolation.

With the use of the above screening and interpolation:
The discrete measurement results (loaded with
measurement error) of each experiment can be
represented by screened, continuous realizations

belonging to functional class C d[to ; T] VJ Vi

5. The analitical approximation of the transitional
probability functional for the at_;ove Process.

Bathory

Let’s perform the approximation of the transitional
probability function on the class the Gauss density
functions.

The next 1s true:
The ¥,() J=1.2, ..

bounded and closed set in the every points of [ZOLT],
that so: ZJ(IX[‘ 7] cQcR® W,
101

.M functions enclose in the QeR®

Since - as our experimental results show - we have no
information about the distribution properties of the
random vector variate ¥ ,{t) outside the set O therefore

the behaviour the set Q) of the approximated density
function “f" can be accepted for us only as a hvpothesis.
Let’s examine the quality of the approximation.
Let’s define the next function class.
Let be: '
G={the class of the independent Gauss-vectors dencity
function}
That is:

sleom)=

(10)
exp{— ﬂJz (xJ —m, )2}
J=1

Let’s apply extension of the G function class to the other
function class.

::z”"

ey 1153

J

(11)
i1 55,,‘_’3,2 Celuotim)

K

~

G=5eG

~
(o4
o

2.K € R that
C.eR" Vi

Zlgn <

ime N orm=-+o
Note: The necessary and satisfactory condition of the
secund property is:

a € [, Hilbert space

— S

(77r)” H OJ

7

{ge[al:az...]; a

Let’s apply the fixing for the every function of the G.

~ '=gif xeQ
G'= e (13)
0 if xeR"\Q
- After these can understand the following:
Next true are: (14/1)

(L3

1. If pip, eQ and P, 7P, when is true that

tis 7 e &' = 2lp Je 2(p,)

2. If pe ) whenis true that (14/2)
Itis §'eG' = §’(&)¢ 0
3. If3h8 eG = when is true that (14/3)
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vgg8,eG 50

~y o~y

&8i8r =

= {ZC,-&-K (co2im,e )HZCJgJK (ot )}
k k

is true that:
m” € R" and diagC”

§£&;éf;m,—)§} (wo2im,)=7 (o7

g* EE&“‘Z

w_)

4 Ifgigie G’ when is true that (14/4)
g +2;eC
Proof :inthe 3

Conclusion:

"fhe consequence of the (14/1), (14/2), (14/3), (14/4) and
STONE - WEIERSTARSSE thesis, that every in the O
continuous real function can approximate, with function
of set of G on the Q set.

That is:

Inthe every 1,.¢; € [IO;T] points transitional probability
function can approximate with function of G onthe Q

set.
Let’s solve the previous task with the follow:

Test function

fé;mi;éf;z)zZCizgi(m,-;éf;f) (15/1)
i=1

Maximum — Likelihood procedure (13/2)

The (15/1) and (15/2) together define the condition —
limit value problem.
(17/a)

. . o2l .
O =0,, + AP, = maximumbn,:5;c | 1—1.2,...m)

M m

cDaim = H [ ZCingEi:éflgj )} (17/b)
J=1 \ =l J

@, =1—ic,.2 ]]g o 17/

The (17/b) assure, that (15/1) test function will be
density function in the continuous function class from
the solution of the conditional-limit value problem are
determined by (17/a), (17/b),(17/c).

b = e e e Y ol
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4=

The Likelihood function will be next:

(18/a)
i= 1_.2,4..m)z

b} m]]

L(XXZ;Q;@;Q?

4

Jj=1

m

ZCizgikJ(l‘i),ZJ

i=1
7994 e[tO;T]

Actyu
21,

J=12 .M
where:

G={the class of the independent Gauss-vectors
dencity function}

The modified Likelihood function will be next:
(18/b)

|

L'()'(xz;g;mi;éiz ‘ i= LZ,...m)=

m

_ ZCI_Z

i=1

- tfexiem:s? |i= 1’2"--’”)“{1

The space of the parameters:
Aslgxmixéiz 'i=1,2,..mJ></'L (19)
H
The next true are:
If: 1, The required probability function'is in the G
space that is:
gestﬂZlc,.gi(g;ég;mf) (20/1)

2, The ®" € A is the required parameter vector
(20/2)

3, Kel|liLys i Lpeamnn i 512 (20/3) .

where:
SloglL
L =[H: &Y, (0}, ()] = 22

T BH,

1

d*logl
" OH0H,

Ly =—My | i,J =12,...(20/4)
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when:
LIf K(©),,,=0 when: Q1/1)
lim lim p{j@—@* N < g}: VeeR'
(1/2)

2, lim lim p{‘Mﬂ -1, (@*)l <ef=l VeeR®
m m—owx
where: ] (@*), Fischer information matrix

Let's construct 7,1, e[to:T] bhave transitional
density functions.

Because it is true. that:

f(»ﬂf r# 1)

)= Aty et 00D 1
RS

The f(y) density function may procedure with integrate
of f(X;Y) on the R®.

Frle, ke, YY)

(22)
f Y(u—l

6. The connection of the constructed transitional
density function and diffusion process.

Can verify the following:

Y,;(t) are diffusion process VJ; i=1,2, ...6.

Then: VeeR+; VxeR6; Vi<s and t.se {tO;T]

(23)

Let’s examine, that in our case wether (23) can realised
for the stochastic process is represented by (1) measu-
ring vector.

letbe: 1, efry:T]1 2={12, ..

hrlnn m/_f"&([p —zﬂ_1)= 0

n} index set (24)

Because (1) ¥;;(¢) vJ; Vi are probability and continuous

functions, therefor they have not second-rate rent.
Then is true:
(25)

hmZp{d[ ( )ZJ(I‘#_I)]>8}:0 VeeR"

n—)OO

Happen the properties of the “p” probability and “d”
distance functions, that strongly true:

Bathory

2, The lim Z, 4, nthe ¥

1

(26)
$}= 0 Vuy,u-1e [tO;T]

P{dIXJ (t;x,l-XJ (t#—l )J >

 lim
(u-1)ou

If: are the follow density functions.
Jx:Y)

then: The (26) is equal to the next equation.
(27/b)
j A,

(XY)dan— (/1 ,ul)
£l i)

Lt = Jr(e, o, 27/a)

Because the next equation is true:

jﬁ (.l (_})d"—fy

(28)
L@)=0 | vy er”

Because: fy(, ,}(X)>0 and continouos function

when: 29)
X Y
ly*"l(’___)d o(t‘u _t,u-—l) Ve ER+

e, 2, )ioe L&)

On the basis of above is true, that in the continuous
realisation functions case the (23) surely true.

Questions:

Density function, which is approximated by above
process wether perform the (23).

The answer is Yes, because are true next:

The Y,(r) ze[tOLT] is continuous function, that is
=t =Yl )1, 0) v

So it is true:

& [1:7] (30)

—t o S ( }LJ ([;L)}E R hypervector.

Vit e

lim Zi .t —>; " 3h
1, -t *

when:

LItis Z, . Vi1, €[t:T]

( ) and Y ,(z;) subspace

>

indicate the same points.

The can sequence of above:

lim Zr g, >Bcp

i i’

(32)
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where:
B is hyperplane in the R'* and true

B=tvrer b <1, 6) | nr=0 n={1..1}

The properties of the statistical functions are known
from the statistics theory:

1 4 i ~n
£=_ Lot (33)

n ura

i=1
1 i

lim p —Z;; . —ll<er=1VeeR
e
Where: 1. the t is the consintens and undeformed

estimate of the probable value.
2, the & is the assimptotic undeformed estimate
of the square of standard deviation.

So that is shown:

limf—>Bcp

o,

(34)

lim C>E
ty=t, = =

C: covariant matrix

From the (33) and (34) is sown, that in lim case the
1=t

sample concentrate to § hiperplane.

For the vector of the probable value of the conditional

density function is true:

lim m—>m"ep

1,1t

For the vector of the square of standard deviation of the
conditional density function is true, that:
lim C — £ is in the subspace wich is perpendicular

> =

to P.

Conclusion: will be realised (23) equation.
Let’s examine:
Letbe: 1, € [tO;T]; . index set.

We look for its probability, that examined system across

Alt;)c RS sets comes from A(tl) cR®to Alt,)c R®.

The Kolmogorov — Chapman equation gives the answer
for the task.
That is:

(33)
plocr(o )X, )e 4]=
b [ 1 R (GRS TARYA . T (A T (874
ARS

Bathory

Wher:
p[ thai Xt ke, 1 Z ] can produced recursive from the

known pl[ P e (t P } t; ;X(t 7] )J transitional density function
Arise the next question: )

The pltﬂ;)_’ (tﬂ}t g (t p )J wether possible continuous
extend to [tO;T].

The L\H A Y, (t# )x Y, (@, )) L. function there
picks
ity <l T Y () B sample space
where is true for (12).

can maximum on the

Klr.... (36)

Lzmnnt ], =0
st m+2m -l H =

Where: H'x 4 is set of poinis. where the Likelihood

function picks maximum.

Transform the (36) in the following way:

m+2mn+1

o2 4.
cxmxo; AI=12 ..

where A= {

>

1 (38)
J=12...M

B={ e, %X, () =12, A0 § (39)

where are true:
(40)
1. It is F function wich : F/,(4; B]at , = 0and continuous

2. Itis {F (4 B] . }1 function and contiﬁuous

Therefor consequence of the implicit function thesis
that:

f: &, — &, Is continuous function. 41
Where are true:
(42/a)
VL5250 < Kl — ] wa,0, €[ 7]
(42/b)

2] £0,)-rlr)

SKZ'XJ _Zju VY ;Y €&

The consequence of (41), (42/a), (42/b) it is true that:

Il - A 6l < &

et (43)

if: 1, €& 11 €8,

The consequence of 43 it is true that:
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The wanted continuous extension doesn’t on the [¢,; 7|
on the basis of discrete measuring data.

The vertical — probability description of the stochastic
process in the [to;T] time
Given: 1; € [tO;T] A: index set, discrate division

Z 7 (t ,1) VJ measurement vectors are at 1, € [to;T]
disposal. After filteration (3.chapter) and interpolation
(4.chapter) Y, (t) will be from ¥, (z,) V1.

Let’s apply result of 4. chapter for vertical probability

description of the stochastic process with following:
Let be the test function similar to (15/1).

That is: (44)

7 Cl’ﬂilézzliit/‘.)E Zszgl Lﬂ; ()87, Y x(; )]
1=

Where:

g mz.;g“f;)_c;tl)e G:. xeR®

The Likelihood function is:

(45/2)
Ltz(&;g;m,-;éf \ i =l,2,...m)z

M m
E'H{Zcz-zgih(&léf;mi]} el 7]
i=1 \Ui=1
The modified Likelihood function will be next:
(45/b)
L, (,X;g;mi;c_?iz ‘ i= LZ,..,m)z

=L, Wem;:s? |i= Lz:-~-’")+ ’{“ ZC;J

i=1

The space of the parameters:

Azlgxmixéf }i 1,2,..me/1 (46)

H
The (45/b) equation similar to 4.chapter is the limit
value problem.

The solution of above problem can be according to
description of 4. chapter.

That is:

Il geGs= ”}ggécjgk-gf 1_") +7)
2. (20/2); (20/3); (20/4) are realised (where n=6 in
(20/3))
The next is true:
The solution of (46) limit value problem give solution
vectorto V¢, e [tO;T].

That is: (48)

v Eme)(Fee) fe )]

¥’

U=R" b=2mn+m; £(t/:)ebf

Bathory

Because (44) test function is in the class of parametrical
density function therefor (48) p(t';- ) solution vector give

density function — which is approximate the task — for
Y,(;)e RS 1 e [to;T]; J=1,2, ...m measuring vector
set.

Question

Density function wether possible continuous extend to:

The task can solve with taking to 2 subset (ct.p) of U set
in (43).

That is:
Look for the continuous expansion of the density
function. Let’s apply two different interpolations.

n
a. .\ ¢; subspace

i=1

(49)

Because (17/c) is true:
clt;)= [Cl (2 )et; ),...cm(tl)] €R™; ”C“ =1Vt e [toéT]

Let’s approximate c(f;) (49) vectors in the
e[tO;T] A: any index set on the spherical shell,
continuously.

™

[)_11 m, ] X (1}’1 [ zz ) subspace (50)

Any the continuous interpolation procedure should
apply.

The application of the o.. and 8. determine the next
approximating probability.

For the any B < RS set:

(51)
p{[(tfl)eB ] t=1, }z “ﬁ:Ci(f,z)gi[ﬂi(ﬁ):é?([;.)x]dr

w e

In that case if use examine of the spherical province B.

Then:
. The transformational function of 6D spherical
coordinate system.

(52)

X, =rCcosg, ©; e[O;H]J:1,2,3,4
X, =rsing, cos @,

Xy =7 Sing, sing, cos ¢, ;€ [O;ZH]
L ]

X, = rsing, sing,...sing,
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Then (52) with B set
plr)e Bl =15}~
S D N 5 G Tl P S o

W'(r;(,vl ;i:LZ,...S) i=1

O-(r7 Dro-ees ¢6)

7. Summary

The above process perform the next:

If the required density function is on the G function
class, then:

In the # — ocandm — o« case the processis convergent.
The continuous extension from the discrete 7, [IG:T]

(7. 1s index set) does not on the above process.

The analysed stochastics process and above process
perform the (21).

The composition of empiric probability function of
process in the examination times don’t apply because of
little examination number.

Above procedure in the little examination number case
too can describe the vertical probability of process (in
- depend quality of experiment results).

On the basis of the result of 6. chapter (32). (54)
probabilities can describe to any 4cR®set and

AcR® spherical set.
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