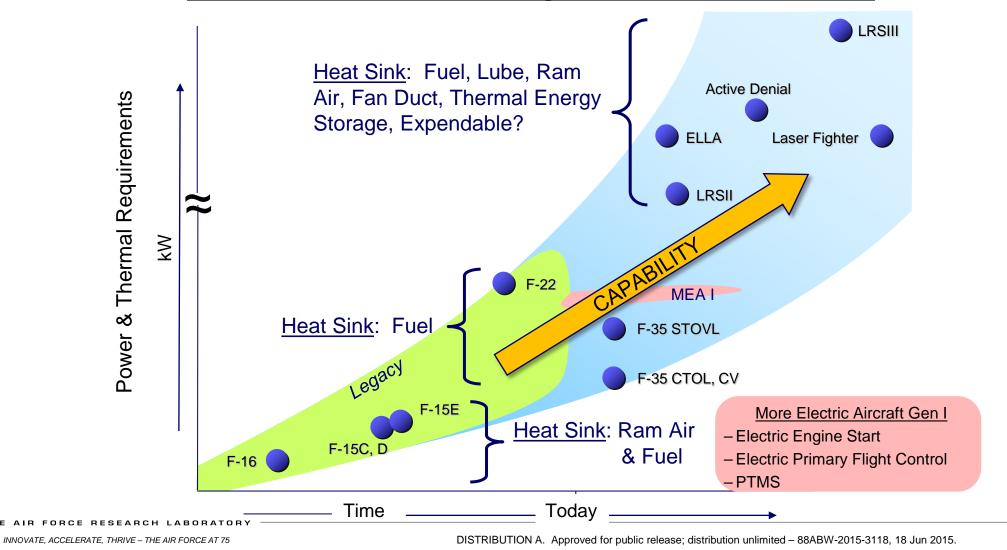


U.S. AIR FORCE

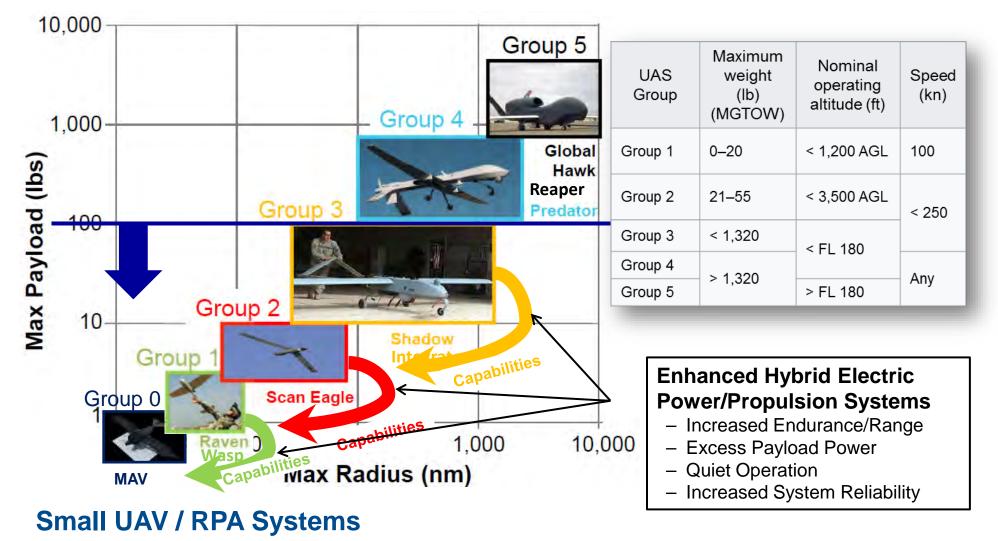
Power/Thermal 2030 Vision Air Platform Electrification

John G Nairus

Power and Control Division Aerospace Systems Directorate


Sep 2022

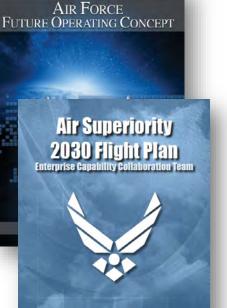
Increased Capability Drives Onboard Energy Requirements


Power & Thermal Management Requirements

Legacy UAS Power/Propulsion: Key Challenges

NATIONAL SECURITY

STRATEGY


Strategic Guidance

The Future Environment

- Wide range of intensifying threats (NSS)
- <u>Military advantage is eroding</u>...strategic competition creating complex and volatile environment (NDS)
- Many of our <u>adversaries have developed advanced technology to counter our air</u> <u>dominance</u> (AF SMP)
- Increasing speed/proliferation of technology change ... adversaries' acquisition and development of capabilities to challenge the U.S. (AF FOC)
- AF will <u>leverage operational agility</u> to adapt swiftly to any situation or enemy action (AF FOC)
- Integrated/networked capabilities as part of A2/AD strategy in highly contested environment. (AS 2030)

DoD Priorities/Requirements

- Prioritize emerging/game changing tech (NSS)
- Gaining freedom of action for the joint force in the high end conflict is our highest priority (AF SMP)
- Access remains the key challenge to US & allies as they negotiate contested global commons (AF FOC)
- Employ <u>mix of manned, remotely operated, and autonomous assets</u> to support ops in <u>contested & uncontested environments</u>. (AF FOC)

May 2016

USAF STRATEGIC MASTER PLAN

Defense Strategy

THE AIR FORCE RESEARCH LABORATORY

Strategic Guidance: S&T 2030

APRIL 2019

TIME – Operate at unrivaled speed

SPACE – Unparalleled global awareness,
reach, and effect
COMPLEXITY – Present adversary with
ever-growing number of challenges

- Three Primary Objectives
 - Develop and Deliver Transformational Strategic Capabilities
 - Reform the Way Science and Technology is Led and Managed
 - Deepen and Expand the Scientific and Technical Enterprise
- AF S&T Portfolio
 - Broad-based, Enabling Enduring Component
 - Focused Transformational Component
 - Five Strategic Capabilities, Vanguard Programs
- Five Strategic Capabilities
 - Global Persistent Awareness
 - Resilient Information Sharing
 - Rapid, Effective Decision Making
 - Complexity, Unpredictability, and Mass
 - Speed and Reach of Disruption and Lethality
 - Vanguard Programs Demo viability of leap-ahead capabilities

AFRL redefining/learning its new role within USAF & Industry

- USAF S&T 2030 Strategy Report released April 2019
 - <u>https://afresearchlab.com/events/2030/</u>
- AFWERX → Agility Prime eVTOL Electric Air Taxi

AF 2030 strategy vision to dominate: **TIME** – Operate at unrivaled speed **SPACE** – Unparalleled global awareness, reach, and effect **COMPLEXITY** – Present adversary with ever-growing number of challenges

- AFRL Power & Thermal direction:
 - Focus towards Group 5 Autonomous Collaborative Platforms
 - "Affordable" systems secondary power & thermal
 - Electrified Aircraft Propulsion primary power

Leveraging Innovation — Collaboration

THE AIR FORCE RESEARCH LABORATORY

Enabling Future Military Capabilities

Future Military Capabilities

Dramatically increased range & loiter
Effective high altitude, hot day ops
Reduced logistics footprint
Improved durability / reduced maintenance

- Greater Efficiency = More Capability
 - Increases to range/loiter
 - Increased power for mission systems
- Reduced acoustics
 - Mission and basing flexibility
- Flexible system architectures
 - Support high-power payloads while maintaining range/loiter capability
- Reduced carbon emissions
 - Future requirements in EUCOM AOR

THE AIR FORCE RESEARCH LABORATORY

Enabling Future Military Capabilities

Future Military Capabilities

Air Platforms Capability Challenge Areas

Ρ

R O

D

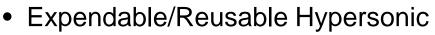
U

Č

S

F

Ö C U

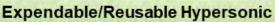

Š

AREAS

- MegaWatt Tactical Aircraft (MWTA) Med Scale Integr Prop/Power/Thermal (MSIPPT) Compact Power Generation (CPG) Silicon Carbide (SiC) Power Semiconductors
 - Aircraft Electrification/Electrified Propulsion (AEEP) Affordable Power/Thermal/Mechanical for Auton Sys Power/Thermal Tech for Hypersonic Sys Integrated Experimental Hardware-in-the-Loop (xHIL) Computational Engineering (CE) Air Vehicle Energy Management (AVEM) Advanced Thermal Lift

Power/Thermal 2030 Vision

- Autonomous ISR/Strike
 - Requirements for next gen large-class autonomous systems will stress currently available propulsion/power/thermal management solutions
 - AFRL Autonomous Collaborative Enabling Technologies (ACET) program pulling tech together to enable integr, layered networks of uncrewed sys
 - S&T Focus on integration of power/thermal mgmt tech with medium-scale engines to enable ACET relevant autonomous systems



- Future high speed weapons and vehicles will extend mission duration/range, speed and/or payload capabilities
- Alignment with AFRL Hypersonic Strategy
- Active S&T programs will provide continuous system power for long duration hypersonic missions

Powering Autonomous Systems and Hypersonics

Autonomous ISR / Strike • 20X power/thermal for DEW, ISR & EW • 30% reduction in mission fuel use • Attritable loyal wingman for denied area ops

Reduced mission support & remote area ops

- Strike/ISR and reusable high-speed systems
- Increased range, speed and payload capabilities
- Effective operation in A2AD



Pivot to 2030 Power & Thermal

Megawatt Tactical Aircraft (MWTA)

Medium-Scale Integrated Propulsion, Power, Thermal

Group 5 Uncrewed Air Systems (UAS)

2030+ More Electric Aircraft

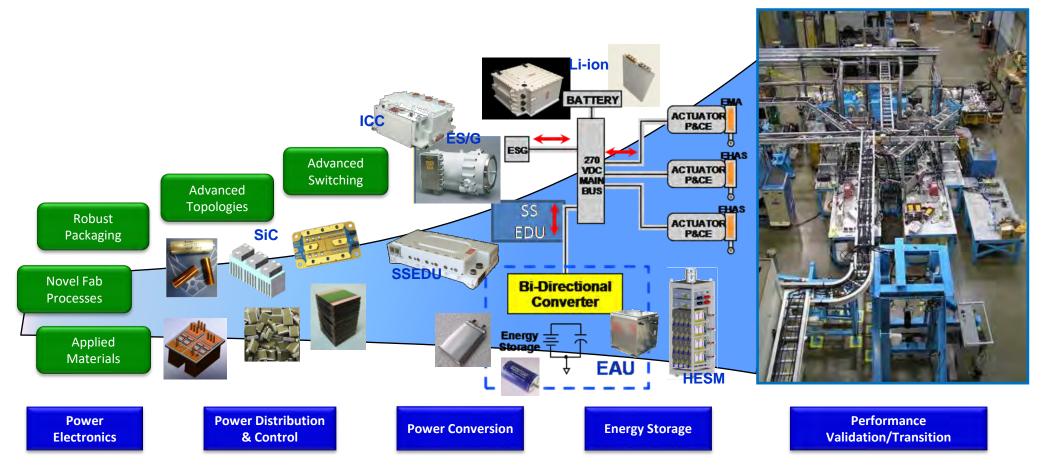
• Turbine Engine Primary Propulsion or Power ??

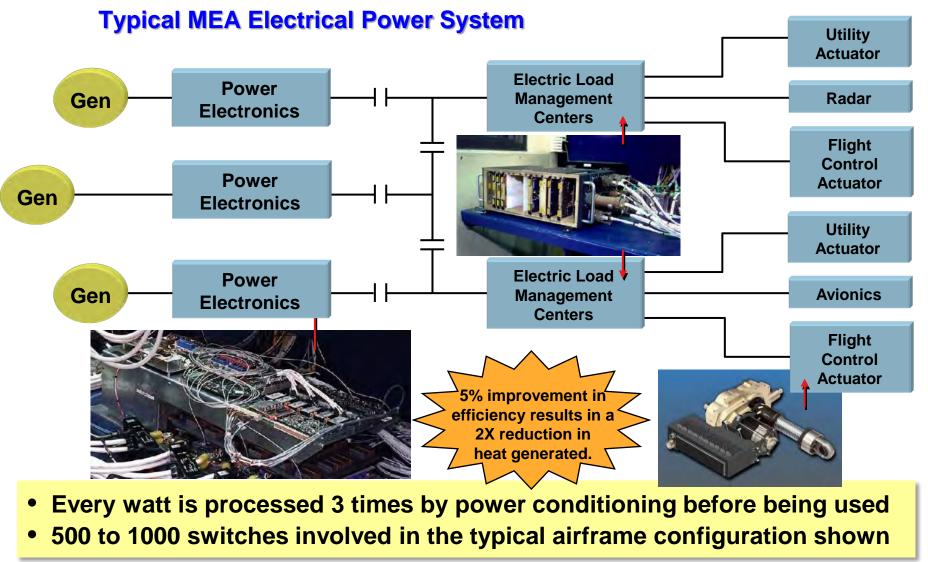
- Near-term advances... adaptive engine fans, hybrid PTMS and dual-spool power extraction
- Mid-term concepts...include MW power systems, adaptive engine cores, and wide-temperature PTMS (250kW modules)
- Far-term concepts?...Trending toward continued electrification, distributed propulsion, and highspeed concepts (MW modules)

Autonomous ISR/Strike

- Strategic focus on speed, operational agility
 - Mix of assets to support contested and uncontested environ.
 - Ability to present adversaries with varied options

Autonomous ISR / Strike


- 20X power/thermal for DEW, ISR & EW
- 30% reduction in mission fuel use
- Attritable loyal wingman for denied area ops
- Reduced mission support & remote area ops
- Current efforts across RQ/AFRL/Industry exploring this space
 - Low Cost Attritable Systems, Cost-Optimized/Limited Life Engines, Small/Medium-Scale Propulsion, Distributed Propulsion
 - AFRL Autonomous Collaborative Enabling Technology (ACET) program pulling technology together to enable integrated, layered networks of unmanned systems
- Power/Thermal management key to maximizing platform capabilities
 - Power/Thermal considerations need to be considered up-front
 - Electrified aircraft architectures have potential to revolutionize capabilities


Electrical Power Systems (EPS)

AFRL/RQQ Works the Full Spectrum of Electrical Power Technology

MEA Power System for a Generic Fighter Aircraft

Affordable Power/Thermal/Mechanical for Autonomous Systems

Description:

Study, develop, and test affordable technologies for affordable aircraft

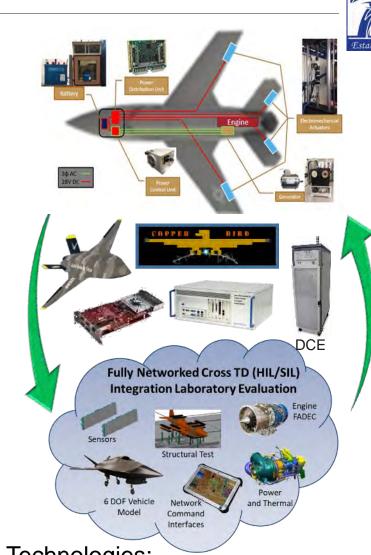
High-level approach:

- Buy or develop, and test technologies with affordability being a primary consideration •
 - Must meet performance, weight, volume, etc metrics
 - Demonstrate the potential of approaches too risky or novel for industry
 - Leverage COTS tech in unique or novel ways
 - Novel manufacturing, non-traditional vendors
 - Combining LRUs into a single tech solution
 - Consider 2nd order effects of the cost of the integrated system
 - Reduce component failures, reduce mission failure
 - Increase safety, stability, robustness, and general applicability (one size fits more)
 - Leverage In-house testing capabilities and expertise for home grown solutions

Leveraging lower cost sources to put capable technologies **On-the-Shelf**

Technologies:

- AC/DC and DC/DC converters
- WBG Technologies
- Energy Storage and Management, Reconfiguration
- Digital Engineering, M&S, HIL and Testbeds
- Accurate, Dynamic Torque measurement
- Controls, AI/ML

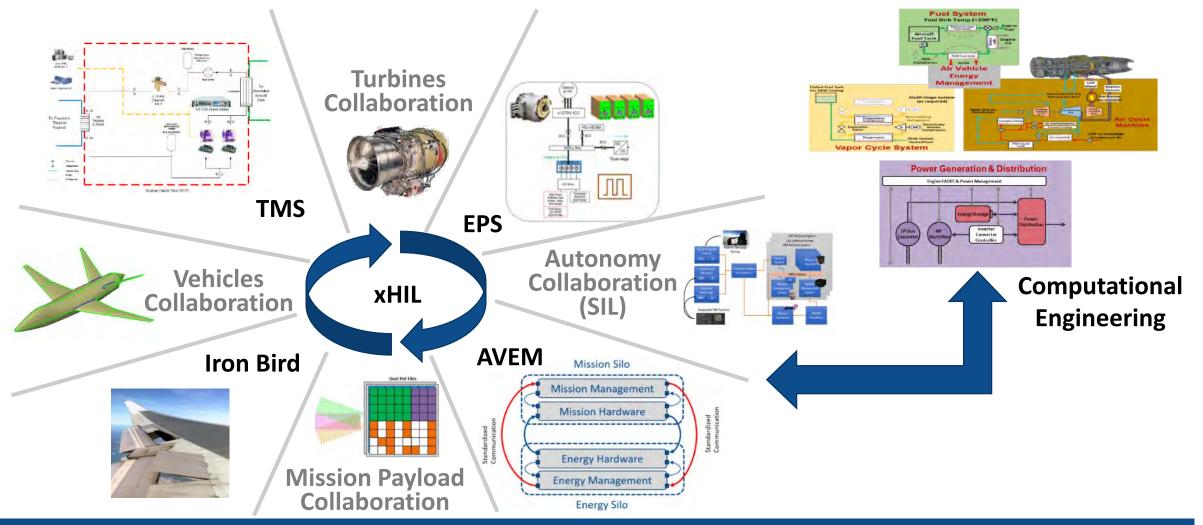

Experimental Hardware-in-the-Loop

Description:

xHIL optimally leverages, integrates, and develops both physical and digital representations to virtually "fly" a vehicle configuration before it's built

High-level approach:

- Faithfully integrate physical hardware where available (true response)
- Emulate boundary conditions around UUT as accurately as possible (High-Bandwidth)
- When possible, utilize models informed by hardware
- Push TRL, testing is a conduit from the lab to commercial tech.
 - Demonstrate feasibility of high risk approaches
- Generate air worthiness artifacts, evidence based advice for lower-risk flight test
 - Test it before you fly it.
- Use in-house capabilities to integrated and test home-grown approaches, components, and capabilities
 - Architectures, LRUs, Controls, etc.
 - Utilize M&S & xHIL to fly-it before you build-it
 - Identify Power and Thermal Technology Gaps in an integrated digital/analog environment


Technologies:

- HIL representation of study platforms
- Experimental Digital Twin for Aerospace Utility Subsystems
- Integrated, Detailed Emulation
- Real-Time Switching

Experimental Hardware-in-the-Loop & Digital Twin

Leverage hardware where possible, parallel to M&S, to move better tech out faster to integrated systems.

THE AIR FORCE RESEARCH LABORATORY

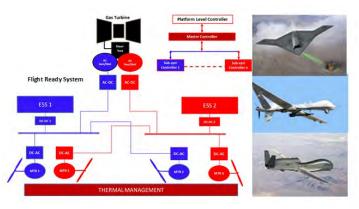
Aircraft Electrification/Electrified Propulsion

(Current)

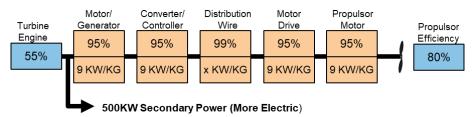
Partner Investments

Long Endurance UAS

MegaWatt Power/Thermal



(2024 - 2026)


- Engine/Power/Thermal Integration
- Mature Electrical Comp Tech
 - Electrical Machines, High-V Distribution
- Integrated TMS Approaches
 - Conformal, Additive HTX
- Scaled Hybrid Demo
 - Controls, Operability, Alt Flight Modes
 - Scaled Grp-5 Relevant Architectures

(2027 - 2030)

- Targeted Application Focus
- Integrated Architecture Demo

Medium-Scale Integrated Propulsion, Power, Thermal (MSIPPT)

18

On High Electric Power, Electrified Aircraft Propulsion Systems

- Better Mission/Segment Requirements
 - More than designs and claims for just one power at one speed
 - System-level design—e.g. thermal systems, EMI/EMC, PD, etc.
- Understanding component life beyond just insulation temperature and reliability
- Exhaustive testing more than checkout, then claim success. Test, fix, fund/develop some more, repeat.
- Available facilities suitable for relevant power, speed, altitude/environment, voltage, etc.
- A broader understanding/appreciation of motor/generator nameplate ratings and their true capabilities
- How to distribute findings to broader audience?

- Upcoming "Affordable Power Generation" (name is TBD) AFWERX Challenge Program
 - Process to crowd source ideas, solutions, requirements with key stakeholders for secondary power (with electrified aircraft propulsion relevance & secondary benefits)
 - Contracting to ease burden for non-traditional government contractors (Commercial Solutions Offering)
 - Result of challenge is AFRL contract
 - To be announced before end of year

Challenges

QUESTIONS?

THE AIR FORCE RESEARCH LABORATORY -INNOVATE, ACCELERATE, THRIVE - THE AIR FORCE AT 75

20