

1

Toward a Community Noise Assessment of Single-Aisle Aircraft with Hybrid-Electric Propulsion

Mehdi R. Khorrami NASA Langley Research Center

33rd International Council of Aeronautical Societies Conference September 4-9, 2022, Stockholm, Sweden

This material is work of the U.S. Government and is not subject to copyright protection in the United States

Outline

□ Background

Development of surrogate turbofan engine

- Direct drive
- Geared drive
 - > Hybrid-electric
- **Development of surrogate airframe**
- Acoustic assessment
- Anticipated challenges
- Concluding remarks

Background

Motivation

- Advanced propulsion and airframe concepts are being matured that could yield substantial reductions in fuel consumption and emissions to foster sustainable aviation
- A need exists for an accurate, complementary but separate, physics-based acoustic assessment of these novel aircraft configurations

Goal

 To conduct a high-fidelity, simulation-based, acoustic evaluation of an aircraft equipped with hybrid-electric engines

Background

Total Aircraft Noise with Electrified Propulsion (TANEP)

- Sponsored by Electrified Powertrain Flight Demonstrator project
- Task started during Spring of 2021
- All simulations conducted with Dassault Systèmes PowerFLOW

Small, enthusiastic team

Part-time involvement for all members

Team members

- NASA: Mehdi Khorrami, Ed Envia, and Scott Brynildsen
- Dassault Systèmes: Andre Ribeiro, Benedikt König, Ryan Ferris, and Davide Cerizza
- AVEC, Inc: Patricio Ravetta

□ Full-scale engine attributes

- Nonproprietary geometry
- Address fan and core jet noise
- Combustor noise not considered
- Provides desired thrust, FPR, and BPR

Source Diagnostic Testbed (SDT)

- Starting point for baseline
- Original model has no provision for core flow

□ Full-scale direct-drive engine

- Scaled-up SDT geometry
- Reduced number of fan blades by two
- Introduced core flow (jet)
- Introduced inlet droop

SDT Model					
Fan blades	Fan blade diameter Stator vanes		Core flow	Inlet droop	
22	22 inches	54	No	None	

□ Full-scale direct-drive engine (continued)

- Preliminary high-fidelity simulations for engine fine-tuning
 - Eliminate flow separation at core inlet
 - Ensure proper fan loading and blade tip conditions
 - \circ $\;$ Supersonic tip region, shocks at/near tip

Further Development

Added realistic engine pylon

□ Full-scale geared-drive engine

- Direct-drive engine as starting geometry
- Increased fan blade diameter
- Reduced number of stators by six
- Shortened rotor-stator distance
- Added stator sweep

Preliminary high-fidelity simulations

- Will commence soon
- Evaluate and fine-tune engine conditions
- Will include liner geometry in nacelle walls

Target geared-drive engine conditions					
Core exhaust Temp	Total thrust	Core exhaust thrust	BPR	FPR	
800K–900K	26k–27k lbf	??	12.0 –12.3	1.3 –1.35	

Full-scale geared-drive turbofan					
Fan blades	Fan blade diameter	Stator vanes	Stator sweep	Core flow	Inlet droop
20	81 inches	48	28°	yes	4°

Engine Inlet

Low Pressure

Shaft Connection

Gas Turbine

Solitter

High Pressure Shaft

Connection

Gas Turbine

LP -

Power

Converter

LP - M/G

Cable

□ Full-scale hybrid-electric engine

- Parallel-hybrid architecture
 - To be finalized soon
- 1-MW class electric system
- Start from geared-drive engine
- Boost during climb
- Reduction in core size
- Most fuel-efficient climb profile

Preliminary high-fidelity simulations

Iterate on engine conditions

Target hybrid-electric engine conditions					
Core exhaust Temp	Total thrust	Core exhaust thrust	BPR	FPR	
800K–900K	26k–27k lbf	??	??	1.3 –1.35	

Full-scale hybrid-electric turbofan					
Fan blades	Fan blade diameter	Stator vanes	Stator sweep	Core flow	Inlet droop
20	??	48	28°	yes	4 °

Bypass Air Flow

Fuel Injection

High Pressure Shaft

Low Pressure Shaft

HP - M/G

Cable

HP

Power

Turbine

HV DC Bu

Secondary Nozzle

Nozzle

Turbin

Batter

Georgia Aerospace Systems Tech Design Laboratory

Development of Surrogate Airframe

□ Full-scale airframe attributes

- Representative of single-aisle, 150-160 passengers
- Nonproprietary geometry
- Address all prominent airframe noise sources

□ NASA Common Research Model (CRM)

- Starting point for airframe
- Representative of twin-aisle, long range, large aircraft (M_{cruise} = 0.85)

Development of Surrogate Airframe

Initial airframe simulations

- Ensure acceptable cruise performance
- Tailor and fine-tune high-lift components
- Evaluate effects of slat and flap brackets

□ Propulsion-airframe integration

- Direct-drive engine mated with airframe
- Simulations to fine-tune wing-pylon juncture are ongoing

Surface pressure

Surrogate Aircraft with Direct-Drive Engine

Galaxie Full-scale, complete Aircraft

Acoustic Assessment

□ Approach

- Single-microphone certification points and standards (FAA, ICAO)
- Focus on takeoff points
- Area-based evaluation criteria

Diagnostic acoustic analysis

- Separate airframe from propulsion noise sources
- Breakdown of engine sources and their directivity
- Installation effects (e.g., jet-flap)

Acoustic Assessment

SPL [dB] 60.3

> 58.3 56.3

54.3

52.3

50.3

48.3

1,250 Hz (1/12th OB)

□ Isolated direct-drive engine

- Exploratory, coarse-resolution simulations
 - Ensure proper capture of engine sources and noise trends
- Establish spatial resolution effects

Anticipated Challenges

□ Hybrid-electric engine

- Noise signature of large electric motors
 - > Tonal, broadband, or both
- Core resizing and its implications for fan size and engine thrust
- Determination of optimal climb path

Computational

- Balance between spatial resolution needs and simulation cost
- Need to resolve an adequate portion of the far-field spectrum
- Resolved spectrum to provide near-convergence of PNLT and EPNL values

- An ambitious effort to predict total aircraft noise from high-fidelity simulations has commenced
- □ Simulation-based predictions target single-aisle, 150-160 pax aircraft equipped with geared turbofans (baseline) and hybrid-electric engines
- □ Good progress made in the development of realistic, full-scale, surrogate airframe and propulsion systems
- Acoustic assessment of a complete aircraft with direct-drive and geared-drive engines to begin shortly