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Abstract

Novel aircraft configurations require re-evaluation of assumptions made in analyses made in traditional design
processes. Some uncertainties in the design simulations can combine and increase the risk on new aircraft
programs and create critical decision points, whereas others may be less consequential and relatively easy
to deal with using slight design modifications. Validation experiments aim to quantify the accuracy of the
computer simulations and improve the understanding of the simulations. Such experiments can be performed
to generate data to reduce the simulation uncertainty. However, given the cost and schedule impacts of physical
experiments, significant care must be given for selecting only the necessary ones, i.e., the experiments that
help reduce critical uncertainties. In this paper, a method for identifying and characterizing the consequences
of critical uncertainties by propagation between levels of system architecture is given using the C-5M system as
a canonical example. Proposed method should enable identification of points of entry for designing high-value
validation experiments to reduce the overall uncertainty.
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1. Introduction and Background
In the pursuit of new capabilities and missions, future military transport aircraft may look significantly
different than the tube and wing configuration used today. The physical differences are driven by
functional needs as unconventional configurations such as blended wing body aircraft provide in-
creased internal volume increasing the platform’s capabilities in terms of cargo capacity or mission
range with additional fuel capacity. In turn the physical changes create behavioral changes in the
system’s operations due to new physics responses of the system that may be different to the ones
commonly assumed to be correct for conventional configurations. The tightly coupled disciplines of
aerodynamics and structures for wing design carry over to the fuselage design as they cannot be
easily separated. Downstream components such as the tails, engine placement, landing gear inte-
gration, cargo doors and floors, fueling system, and many other systems may need to be designed
with new design processes as traditional assumptions cannot be guaranteed.
The divergence from the traditional design processes require additional prototyping and testing cy-
cles during the design of novel configurations, because the trends and historical data from previous
designs that are depended upon during the conceptual design phase stop being useful. The in-
creased reliance on physical prototyping and testing are becoming prohibitively expensive and slow
down development programs significantly. Physics-based analyses and computer simulations can
fill the role of physical testing as long as the simulations can be trusted and validated to a satis-
factory degree. Naturally, all simulations and all measurements from a physical system include an
error [8]. Earlier stages of an aircraft design process, where the information pertaining to the product
is largely not decided upon or uncertain, will introduce uncertainty to the simulation outputs. Using
physics simulations that are increasing in their fidelity over the preliminary and detail design phases,
such uncertainties are reduced. For novel concepts and the use of new technologies, however; the
uncertainties remain significant as a precedent may not exist at all.



SYSTEM-LEVEL IDENTIFICATION OF CRITICAL UNCERTAINTIES TO ENABLE VALIDATION EXPERIMENTS

Figure 1 – Overall systems engineering process for identifying critical uncertainties

Validation experiments are performed to quantitatively assess the accuracy of the computer simula-
tion and observe how well they represent the real world for their intended uses [8]. They are specific
type of experiments in which the results obtained from (predominantly physical) experimentation are
not assumed to be more accurate than the results obtained from the computer simulations. Their
sole purpose is to see to what degree the tools represent the reality, in terms of physics phenomena
and the ability of generating the same outputs. Therefore, a validation experiment is fundamen-
tally different than other types of experiments such as phenomenon exploration or reliability tests. A
validation case is a specific combination of experiment conditions that produce certain physics and
measurement that are to be compared with the computer simulation. Any other combination outside
of validation cases will be a prediction.
Putting an emphasis on computer tools is essential in the case of design of non-conventional aircraft
concepts as the tools are not tried and tested. However, validating even a single tool for a wide set
of conditions that will span the entire flight envelope is simply infeasible. The goal of this work is
to support validation activity by identifying the set of critical conditions at which the uncertainty in
predictions is significant. Later, a validation experiment can be investigated in order to reduce the
associated uncertainty.
The remaining uncertainties in the simulation results are carried over to the later design stages where
solutions to them may require redesign efforts. The risks that are carried forward in the program may
dominate the program decisions and lead to cancellations as no one may be willing to “bet their
company” as Raymer suggests at the end of the preliminary design [9]. A framework is needed to
identify the critical risks in the system development caused by analysis uncertainties and trace them
to the system requirements at higher levels.
Aircraft design decisions require data from multiple analyses that are usually organized around either
design phases (conceptual, preliminary, and detail) or disciplines (aerodynamics, structures, handling
qualities, etc.). Within a design phase the analyses are coupled together and influence each other.
For example, weight calculations in conceptual design influence mission performance calculations
such as the range of the aircraft which in turn influence weight calculations due to the change in fuel
requirements. The coupling between analyses causes the uncertainty in one analysis to leak into
another. The uncertainties must be propagated through each analysis to determine the total impact
of the uncertainties in each simulation.
Some of the identified uncertainties can be reduced by replacing the offending analysis with a higher
fidelity analysis. For example, early conceptual-level analyses could be replaced by higher fidelity
analyses more appropriate at a preliminary design phase. Doing so will require increased compu-
tational resources as well as modifying the parameterization of the design to match the input/output
needs of the new analysis. A practical mechanism for such an update that follows a systems engi-
neering decomposition will be discussed.
Once the critical uncertainties are identified that cannot be reduced by higher fidelity analyses, physi-
cal experiments must be performed to reduce the uncertainties in the simulations by supporting them
with real-world data. A conceptual flowchart is given in Figure 1. Measurement data from the physical
experiments are used to validate trends and calibrate simulation results. Once the simulations are
trusted, they can be used by sweeping design variables to create trends and trade-off analyses for the
designs being worked on. The parametric trade-off environments can be used for uncertainty identi-
fication and propagation goals as well. Borrowing from a familiar design practice, this paper details
methods used and decision support environment built for a canonical example around a well-known
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Table 1 – Super Galaxy specifications[4][10]

Geometry Weights & Mission
Fuselage length 230 ft 10 in Oper. empty weight 374 000 lbf
Wing span 222 ft 8 in Max. zero-fuel weight 635 000 lbf
Wing chord root 45 ft 5 in Max. takeoff weight 837 000 lbf
Wing chord tip 15 ft 4 in Max. landing weight 635 850 lbf
Wing AR 7.75 Max. payload weight 261 000 lbf
Wing area 6 200 sqft Max. wing loading 136 lbf/sqft
Wing anhedral 5° Thrust-to-weight ratio 0.244
Wing incidence 3° Max. load factor 2.25
Wing c/4 sweep 25° Takeoff distance2 9 800 ft
Airfoils NACA0011 & 00121 Landing distance2 3 820 ft
Tail span 68 ft 8 in Max. rate of climb3 1 725 ft/s
Horz. tail area 965 sqft Service ceiling 35 750 ft
Vert. tail area 961 sqft Cruise speed 490 kn (FL250)

Stall speed 104 kn
Max. payload range 2 980 NM
Max. fuel range 5 620 NM

1 Modified from standard NACA airfoils
2 Sea level static conditions
3 Sea level

air mobility system: the Lockheed C-5M Super Galaxy.
C-5M is one of the few mobility aircraft with enough publicly available data for modeling. Some
geometric, mass, and mission data is given in Table 1 and the mission values will be used as require-
ments for the use case. To meet its requirements, the aircraft needs to be sized to complete a design
mission consisting of different phases such as take-off, cruise, descent, and landing. For each of the
design phases, different requirements may be imposed by stakeholders, e.g., “the aircraft must be
able to execute a 2.25g turn at cruise conditions when fully loaded”. These requirements carefully
define the capabilities that the final product should have.

2. Overall Approach
The multidisciplinary nature of aircraft design necessitates the use of multiple analyses in a conver-
gence loop together to the outputs are consistent. While the run times of dependable high-fidelity
simulations are typically significant on their own, arranging them in multidisciplinary analysis (MDA)
environments exacerbates the cost due to the multiple executions necessary for convergence loops.
For example, the external loads predicted by the aerodynamics calculations depend on the flight
shape of the wing which in turn depends on the stress and strain calculations after loads are applied
to the structure. Complicating matters further, the critical loading conditions (altitude, speed, weight,
etc.) needed for design are numerous. Necessary modeling and simulation environments to simu-
late critical conditions can be constructed using established principles of systems engineering traced
from the mission profile of an aircraft system.
Figure 2 shows the overall process for how the various system decompositions are leading towards a
modeling architecture determination. It is important to note that all three decompositions are needed
to construct the modeling architecture as the physical features of subsystems are as important as
the functions they serve during different parts of the mission. The resulting decompositions lead to
the modeling architecture for aerodynamics and structures shown in Figure 3. Different requirements
and different modeling disciplines will necessitate in different functional architectures and certainly
different physical architectures resulting in different selections of modeling tools. This paper investi-
gates the accuracy of modeling tools used in aeroelastic wing design. Although C-5M was selected
for this exercise, aircraft of other configurations can benefit from the same process.
In the example shown in Figure 3, the top row shows an aircraft concept with its subsystems. The
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Figure 2 – System decompositions leading to modeling architecture

map of phenomena observed on the subsystems creates a link to what physics need to be captured
in the simulation environment. For any design study, a fit-for-purpose simulation environment must
be selected or developed if existing environments do not covert the modeling architecture. The
physics can then be mapped to specific theories and potential models that make them executable on
computers. In the study detailed in this paper, only grey boxes were actively used; the white boxes
are given as further examples that were not investigated.
The main function of modeling and simulation in design is predicting the system’s performance to
a desired accuracy level for making decisions. At this stage, the final system has not taken shape
yet. In fact, using the results of the simulations, it is expected to evolve to increase the stakehold-
ers’ confidence that the final design will meet its requirements. While the design matures, it passes
through multiple tollgates such as preliminary and critical design reviews at which the technical fea-
sibility and economic viability is assessed. Because details about the final design have not been
decided upon and high-fidelity analyses require many parameters, early design decisions are made
under significant uncertainty with low-fidelity analyses while having large influence over the system’s
design.
Ideally, the accuracy would be perfect throughout the design process; however, there are practical
limitations on model preparation and execution times. Lower-fidelity models can provide rough esti-
mates that may be enough to make early design decisions without being slowed down by the detailed
physics calculations and the explosion of model variables they need to be run. Given that in the early
phase the design does not have enough geometric fidelity, most of the detailed variables are un-
known, e.g., a parametric study to define the planform will not have the same geometric resolution
that is demanded by a Computational Fluid Dynamics (CFD) study. The reverse is also not feasible
as the high-level of geometric fidelity will not be usable by a conceptual phase, high-level design anal-
ysis. Focusing on the physics fidelity to answer questions posed by the requirements, the demands
may be different as well. For example, a drag performance determination for fuel burn studies will
require a fairly high-fidelity CFD executions; however, a structural loading and stress calculations will
mostly be interested in lift generation and drag fidelity is not necessary making vortex-lattice calcu-
lations acceptable. Each design phase demands a different level of accuracy from the quantitative
analyses. Low and high fidelity analyses can be used in conjunction to achieve the design goals.
An aircraft is a complex system, that consists of many subsystem. The modeling of such systems
often require analyses in more than one discipline. Unfortunately, most computational tools work with
a single discipline. Therefore, the interactions arising from other disciplines necessitate them being
carried over as external inputs and/or boundary conditions. Consistent solutions are usually found
through iteration between different disciplines. A Design Structure Matrix (DSM) is typically used
to describe the multidisciplinary analyses (MDA) framework. Feedback and feed forward loops are
defined in DSM as well as how and which disciplinary analyses are connected.
The problem of interest in this work is the aero-structures analysis of an aircraft wing. Rapid Airframe
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Figure 3 – Modeling architecture from an aerodynamics and structures perspective.

Design Environment (RADE) [2], an aero-structures design toolkit, was used to facilitate the MDA
framework. The analyses used in the RADE toolbox for this work are:

• OpenVSP[6] for geometry generation

• Athena Vortex Lattice (AVL)[3] for aerodynamic analyses

• NASTRAN[7] for structural analyses

• HyperSizer[1] for sizing the internal structure thicknesses

Because the purpose of this study is to quantify the impacts of uncertainty in physics modeling and
parameter uncertainty on the results of the design activity, selected tools form an appropriate set to
demonstrate the process. For another purpose, higher fidelity tools can be implemented in the same
manner albeit at a higher computational cost.

2.1 The Geometry Model
In order to calculate the aerodynamic loads, a geometry model of the Lockheed C-5M is needed.
Because the entire geometry is not publicly available, was drafted in OpenVSP with some assump-
tions. The empennage was modeled solely for trim purposes, as the scope of this work is limited to
the aero-structures analysis of the wing only. The geometry of the four engines of the aircraft is not
model but they are represented as point masses and thrust vector in the analyses. It is critical to note
these abstractions as they will have a significant impact on the results.
The wing box structure and mesh used to model are given in Figure 5. Single part spars, ribs and
skin are located along the wing. The structural models were created using computer scripts. The
internal structure, constrained by the outer mold line was represented in the OpenVSP model, and
information such as the number of ribs has based on available drawings. The mid spar was removed
from the analysis models to reduce the complexity of the analysis.
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Figure 4 – OpenVSP model of the Lockheed C-5M

Figure 5 – Internal structure of the wing.
a. box layout b. Mesh used for structural analyses of the wing box

6



SYSTEM-LEVEL IDENTIFICATION OF CRITICAL UNCERTAINTIES TO ENABLE VALIDATION EXPERIMENTS

2.2 Design Structure Matrix
A Design Structure Matrix (DSM) provides the visual overview of multi-disciplinary design and opti-
mization processes. Since most MDA workflows include feedback and feed forward structures, most
DSM methods list the analyses on the diagonal, and the coupling attributes on off-diagonal elements.
Traditionally, feed forward couplings appear in the upper triangle and the feedback couplings on the
lower-triangle. Extended DSMs (xDSM) have been recently developed and present advantages over
traditional DSMs such as the ability to describe the information regarding parameters passed be-
tween analyses, execution order, loops, optimization schemes and other outer-loop applications [5].
Different workflows will be described by different xDSMs. Because the calculation methodology is
different, the outputs of the simulations will be different as well. In order to represent two different
levels of fidelity in physics modeling, two different coupling strategies between aerodynamics and
structure analyses are used in this work. These two strategies are illustrated in Figure 6. In the top
xDSM, the two analyses are uncoupled, as in the displacements obtained from the structural analyses
do not update the geometry in the aerodynamic analyses. In the bottom xDSM, the geometry used
in aerodynamic analyses are updated, resulting in a better representation of the problem of interest
at a more computational cost.
The xDSMs representing the MDA workflows used in this work are given in Figure 6. The difference
between the two MDA environments is that they represent a step change in the modeling com-
plexity. The Design of Experiments (DoE) process labeled as #1 defines the sampled points to be
represented as the uncertainty in the modeling parameters. Then, aerodynamic coefficients are cal-
culated for a specific flight condition. Based on the accuracy of the aerodynamics model, there will
be an amount of uncertainty in the estimates. These coefficients are then used to calculate the aero-
dynamic loads acting on the wing, and they are passed to the structural analysis. Because the exact
properties of the internal structures are not known, a sizing operation must be performed to estimate
a realistic wingbox. The dimensions of the ribs and spars are determined by the aircraft’s response to
the critical flight conditions. The sizing loop terminates when the thicknesses of the internal structures
converge and the loads are consistent with the external conditions. The uncertainty in the structures
analysis will be fed back into the aerodynamics, potentially increasing the initial aerodynamics model
uncertainties. The output of this process, the wingbox weight, will include the impact of previously
introduced uncertainties. In the coupled aero-structures analysis, there is an additional MDA loop to
feed the output of the structures analysis back to the aerodynamics analysis. As such, the geometry
is modified according to the structural loads and a new aerodynamic load distribution is calculated.
This loop continues until the loads converge. Having an extra set of iterations introduces a significant
computational cost but the calculations represent an increase in the model complexity that is closer
to the real phenomenon.
Decisions made in MDA problem to be solved result in different workflows leading to different xDSMs.
To be clear, in the example shown on Figure 6, the component analysis tools are the same; however,
the overall MDA is changing. Even if the inputs to both MDAs are exactly the same, due to the con-
vergence loops changing, the inputs for the component analyses will be different. The selection of
different component disciplinary analysis tools as well as how such component analyses are con-
nected leads to different overall models and different solution architectures. The differences can be
regarded as different abstractions of the same problem in interest and different MDA configurations
will result in different model uncertainties.
In the top xDSM on Figure 6, the two analyses are uncoupled, as in the displacements obtained
from the structural analyses do not update the geometry in the aerodynamic analyses. In the bottom
xDSM, the geometry used in aerodynamic analyses are updated, resulting in a better representation
of the problem of interest at a more computational cost. The impact of two different analysis coupling
configurations will be studied in this work representing the physics fidelity.
The other uncertainty that will be considered is the parameter uncertainty in the inputs used to the
analyses. For example, the real values of the properties of the material used in the construction of
the aircraft may not be known or may be known to within a bounded range. A part of this uncertainty
may be irreducible sample by sample aleatory uncertainty resulting from production or environmental
conditions. Parameter uncertainties will be studied using Monte Carlo simulations on the inputs to
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Figure 6 – Two different xDSM approaches for aeroelastic analyses. Decoupled aero-structures
(top) and coupled analyses (bottom)

the MDAs.

3. Uncertainty Propagation
Typically, The computer simulations used in most engineering applications are deterministic. How-
ever, underlying calculations and solution approaches almost never exactly represent the reality of
interest. Even in the case where a close-enough representation can be assumed, the parameters
used in these computations are subject to real-world parameter uncertainties. Such uncertainties
can be mathematically represented by sampling values from a probability distribution that defines the
likelihood of parameter values. The effect of parameter uncertainties can be observed by collecting
the set of outputs obtained by sampling different values from the aforementioned probability distribu-
tions. For this work ,the parameter uncertainties are propagated from a component level to the wing
subsystem level and aircraft system level to quantify propagated system-level uncertainties. Investi-
gating the statistics of system-level system response quantities (SRQs) will enable quantification of
uncertainties raising from different parameters. As such, each factor can be considered as critical
or trivial, depending on their impact on the system-level probability distribution. Designing validation
experiments to fix accurate values for the trivial uncertainties will be a waste of time and effort. The
critical uncertainties on the other hand, will have significant impact on the desired SRQ, which will
make tuning the parameters in worth the effort.

3.1 Design of Experiments
Due to the practical computational budget limitations, surrogate models needed to be created and
used as described earlier. In both MDAs, the processes numbered #2 and onward were used to
create surrogate models by running DoEs. The surrogate models were executed in Monte Carlo
simulations for uncertainty parameter sampling were then performed on these surrogate models.
Running the computationally intensive analyses with limited DoEs that minimize the effort to extract
trends instead of direct Monte Carlo sampling reduces the time needed for the study. For this work,
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Figure 7 – DoEs used to sample uncertainty factors. A. Central Composite Design b. Full Factorial
Design with a center point

parameter uncertainty factors are sampled from uniform probability density functions, representing
the values in the selected range to be equally likely to be the true value. Depending on the parameter
and the SME input, uniform distributions can be replaced with more appropriate distribution shapes.
Six variables have been found to have more impact on the SRQs: gross weight, engine weight,
aerodynamic loads, Young’s modulus, Poisson’s ratio and material density. These variables are
sampled from two different DoEs at each run. The first three of these variables are sampled from
a Central Composite Design and Minimum Potential DoEs. Material properties could not be varied
continuously due the limitations of the analysis software. Therefore, the remaining three variables
are sampled from a two-level Full Factorial Design with an additional center point. Two sets of DoEs
were Cartesian-joined, and sampled points are used for creating surrogate models. The DoEs are
illustrated in Figure 7 Because the run time for a single, convergent case was about a few hours,
having more sample points was a bottleneck. 225 cases were executed in total, on four desktop
computers in eight separate parallel threads in total. With a higher computational budget, more
points could have been used, or surrogating the analyses could have been skipped altogether.

3.2 Quantification of Uncertainties at the Level of Consequence
The impact of uncertainty factors (i.e., sampled parameter values around a baseline) on higher level
metrics are given in Figure 8. The figure illustrates the results from the analyses directly, without
employing surrogate models. This chart appears noisy because it is a marginal plot. For example,
in the first column of Figure 8, points have different sampled values from not just one but multiple
uncertainty variables’ probability distributions. In other words, they are the results of the simulations
of varying engine weights, loads, and material properties simultaneously but plotted using only one
of those variables. The limitation is due to the inability of plotting multiple dimensions effectively on a
2-D surface. Because the fine details cannot be observed, such charts are only useful in identifying
strong dependencies.
Observing the trend of the fitted splines, it is seen that the impact of gross weight uncertainty is seen
to be significantly larger compared to other uncertainty factors. However, gross weight uncertainty
is more related to the unknowns in the early design rather than simulation uncertainty caused by
unknown parameters. This fact puts an emphasis on the accuracy of the earlier design-related as-
sumptions if one aims to reduce variability in simulation results. Furthermore, the overall impact of
the uncertainty factors given in Figure 8 are as expected. Increasing material density increases the
wing weight whereas an increase in Young’s Modulus decreases the total weight of the aircraft as
less material would be needed. Combinations of different values of design parameters create the
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Figure 8 – Impact of uncertainty factors on mission-level metrics

vertical scatter of the results.
Figure 10 illustrates the deflection of the wing box for different load factors: -1g and 2.5g; and two
different types of analyses, coupled and uncoupled. The two different types of analyses represent an
increase in analysis fidelity as previously presented in 6. As expected, the wing deflections are higher
in the coupled aeroelastic analyses that take the local angle of attack change into account. Plotting
the impact of uncertainties on geometries with real physical meaning may provide more insight as to
what uncertainty or modeling choice have local impacts on the results that are probably not captured
by the aggregated, higher-level metrics.
Sensitivity analyses are needed to find the impact of parameters on consequential mission-level
metrics. Therefore, surrogate models are generated from the results obtained from 225 cases. In this
study, polynomial regressions with up to 5th order terms are used. To reduce the needed information,
a step-wise regression process was used where starting with the mean, only the most significant next
term was added iteratively until a balance between fit error and regression parameter uncertainty is
found. The uncertainty in the regression parameters is not related to the model parameter uncertainty.
For this work, uniform probability distributions are used to sample the surrogate model. If a priori
knowledge exists about the form of the possible uncertainty distribution, practitioners can use other
forms of probability density functions. This part of the process is one of the critical points where
information from the literature and subject matter expertise can into play to change how uncertainty
probability distributions and bounds.
The prediction profilers given in Figure 11 are plotted using these surrogate models. Each plot shows
their trend, as well as their relative importance. The blue bands around these plots indicate the in-
herent surrogate model uncertainty and not physics model parameter uncertainty. The polynomial
fit error is slightly heteroscedastic, i.e., its variance is changing over the parameter space. As ex-
pected, the surrogate model predicts the results well in the middle region parameter space but less
well near the extremes. As expected, the error bands are different for different parameters or their
combinations.
Up to this point, aforementioned uncertainty parameters were related to the wing-level analyses.
They can be combined with the aircraft-level analysis to complete the uncertainty propagation to
the top, mission-level metrics. A similar DoE study was performed using FLOPS to determine the
criticality of parameter uncertainties at the aircraft level. Among these parameters, specifically the
wing weight terms can now be connected to the appropriate weight uncertainties obtained using
the wing structural sizing MDA. The workflow presented in this study demonstrates the relationship
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Figure 9 – Impact of wing structure material uncertainty factors on the overall wing weight

Figure 10 – Wing box deflection due to aerodynamic loads Top row: Load Factor = –1g, Bottom row:
Load Factor = +2.25g. Left column: Decoupled Analysis, Right column: Coupled Analysis
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Figure 11 – Prediction profiler for parameter uncertainties (decoupled analysis in orange, aeroelastic
analysis in blue)

between how uncertainties at different analyses levels can be handled, propagated and be treated.
To connect additional parameters, different analyses would be needed such as ones related to CFD
for the lift dependent and independent drag factors.

4. Results & Recommendations
Some uncertainties in the design simulations can combine and increase the risk on new aircraft pro-
grams and create critical decision points, whereas others may be less consequential and relatively
easy to deal with using slight design modifications. To reduce the critical uncertainties, physical exper-
iments and demonstrations can be performed to gather real-life data to fix or calibrate the simulations.
Once a reasonable modeling architecture to capture the necessary physics to calculate the high-level
metrics defined in the requirements is set, the modeling components are built and integrated into a
multi-disciplinary analysis. Each component’s input and output in the modeling architecture can be
investigated for their uncertainty. With such a process, questions such as “what are the implications
of predicting wing weight wrong at the conceptual level?” can be answered during design with design
analyses and tools without further physical experiments, leading to the identification of critical un-
certainties. The uncertainties can be further decomposed into smaller physical/design elements with
successive multi-level analysis activities. The uncertainties in the lower-level variables can be prop-
agated upstream with the modeling infrastructure built earlier as well as using surrogate models that
can be built from the models in case their execution times are slow. Trends and other visualizations
are highlighted as useful for identifying uncertainties.
Once the critical uncertainties are identified, physical experiments targeting their reduction can be
designed and executed that provide the best uncertainty reduction per unit cost. Identifying critical
uncertainties in design will enable the formulation of targeted validation experiments. If the validation
is against another computational model (i.e., code validation), increasing the model fidelity to gain
information about a parameter is expected to reduce the high-level uncertainties in the design goals.
At the vehicle level, utilized computational tools have considerable inaccuracies due to factors such
as inexact parameters, geometry abstraction, and inaccurate or uncaptured physical phenomena. In
this work, the uncertainty in parameter related to the wing box weight in system-level analyses are
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Figure 12 – Uncertainty propagation results for the two modeling scenarios with different physics
fidelities
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Figure 13 – Ordered critical uncertainties, left: decoupled analysis, right: coupled analysis

further decomposed and they are analyzed via higher fidelity physics-based analyses. Decomposed
uncertainty can be propagated up to system-level metrics to reshape—and hopefully narrow—the
uncertainty distributions. The results of this propagation for a single mission level metric are given in
Figure 12. Although simple uniform probability distribution functions are used to sample parameter
values, using two different approaches result in distinct mission level probability distributions. It is
seen that both the means and the variability of the two different cases are quite different. This
example can be treated as an example having two different sets of modeling assumptions in modeling
and simulation environments, in this case different levels of abstraction.
Another impact of having different modeling assumptions for analyses is the ranking of the uncertainty
parameters of interest. For example, the impact of previously identified uncertainty factors on the
range of the aircraft are given in Figure 13. The relative importance of the gross weight uncertainty
decreases as coupling between structural analyses and aerodynamic load calculations is introduced.
Conversely, the parameters related to the elasticity of the material have more relative importance in
coupled aero-structures analyses.
The same process used to generate the propagation in Figure 12 can be used simultaneously with
other mission-level metrics. Linking the surrogate models used for wing-level analyses and surrogate
models used for system-level analysis enables the propagation of uncertainty from lower levels to
high-level metrics. A prediction profiler demonstrating this propagation is given in Figure 14. The
distributions obtained by a specific combination of uncertainty factors can be seen in the right-most
column, which can be used for comparatively assessing the impact of parameter uncertainties. It
is important to pay attention to the ranges on the vertical axes. For example, the variations in the
field lengths are insignificant and their trends may be misleading. However, aircraft range and fuel
uncertainties are quite significant with the uncertainty parameter ranges used for the study.
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Figure 14 – Multi-level uncertainty propagation to the system-level using surrogate models

With updated data obtained from higher fidelity simulations, it might be possible to see the impact of
bringing in carefully tailored validation experiments to reduce the uncertainty associated with certain
parameters or models. However, it is not possible to do this for every single parameter uncertainty
or abstraction used in the design, especially higher fidelity models that can capture various physi-
cal phenomena require thousands of parameters. Therefore, the capability developed in this paper
should enable the program managers to identify the points of entry to design validation experiments.
To reiterate, the purpose of a validation experiment is not to find a better design but to quantify the
uncertainties pertaining to the model as well as understanding its limitations. Hence, the input set at
which they need to be run need not to be similar to the design mission of the aircraft.
The framework described and demonstrated in this paper acts as a guidance from a utilitarian per-
spective. In almost no application, the expected physics phenomena are fully known, nor are their
constituents, whose combinations describe a physics phenomenon. Following this model-driven
framework will lead the process considering the capabilities of the candidate models and which
operational conditions can be captured. The capability of this framework to identify high-value ex-
periments that will help in reduction of overall uncertainty was demonstrated in this paper. A potential
benefit of this approach is to enable and incorporate some validation experiments earlier in the de-
sign, allowing for establishing more trust in computational tools and the results they generate. More
reliable and accurate results will result in time and cost savings as the likelihood of the results being
scrapped out due to a requirement violation would be lower.
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