NATO AVT-297 DEVELOPMENT OF A FRAMEWORK FOR VALIDATION OF COMPUTATIONAL TOOLS FOR ANALYSIS OF AIR VEHICLES ICAS2022 0933 [Presentation Only]

Joseph Morrison NASA Langley Research Center

Melike Nikbay Istanbul Technical University

Eric Walker NASA Langley Research Center

PROBLEM DEFINITION

33RD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES STOCKHOLM, SWEDEN, 4-9 SEPTEMBER, 2022

Drag Prediction Workshop

ICA5 2022

- What experimental validation data is required to validate a computational code:
 - To enable Certification by Analysis?
 - To predict a new design with unknown physical phenomena?
 - To make validation investment decisions by connecting validation level data to vehicle platforms?

DESIGNING A NEW CONFIGURATION WITH NEW TECHNOLOGIES

DESIGNING WITH NEW TECHNOLOGIES – HIGH LIFT

DESIGNING WITH NEW TECHNOLOGIES – VTOL

DESIGNING WITH NEW TECHNOLOGIES – ALTERNATE ENGINE TECH.

DESIGNING WITH NEW TECHNOLOGIES – ADDITIVE MANUFACTURING

- 1. How do we demonstrate to Certification/Qualification authority that results of our analyses are equivalent to a flight test?
- 2. How do we ensure that our analyses don't miss any key system behavior and the actual system will respond like the simulation across full envelope?
 - E.g., emergent behavior from a complex system or key physics
- 3. How do we choose to apply resources time, human, funding to key tests to meet Objectives 1 and 2 when the systems, sub-systems, and disciplines have competing requirements?

APPROACH

33RD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES STOCKHOLM, SWEDEN, 4-9 SEPTEMBER, 2022

Concept for Validation Hierarchy

After AIAA, 1998

- Formed 4 Teams working Interdisciplinary Problems
 - Missile Team 1
 - Missile Team 2
 - Presentation 1.6.2
 - Mobility Team 1
 - Mobility Team 2
 - Presentation 1.6.3

12

MISSILE TEAM 1: FUNCTIONAL DECOMPOSITION

SSRD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES STOCKHOLM, SWEDEN, 4-9 SEPTEMBER, 2022

MISSILE TEAM 2: SYSTEM AND PHYSICS VALIDATION HIERARCHY

Luckring, Shaw, Oberkampf, and Graves, 2022

SRD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES OF THE AERONAUTICAL SCIENCES

MOBILITY TEAM 1: SYSTEM AND PHYSICS VALIDATION HIERARCHY

Krumbein, 2022

MOBILITY TEAM 2: FUNCTIONAL, PHYSICAL, AND MODELING FRAMEWORK

Mavris, Bagdatli, Yarbasi, and Taylor, 2022

ISRD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AREONAUTICAL SCENCES STDCKHOLM, SWEDEN, 4-9 SEPTEMBER, 2022 Session

1.6.2: A Model Validation Hierarchy for Connecting System Design and Simulation Capabilities

1.6.3: System Level Identification of Critical Uncertainties to Enable Validation Experiments

1.6.4: Open Panel Discussion

33RD CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES STOCKHOLM, SWEDEN, 4-9 SEPTEMBER, 2022

