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Abstract

As the computational resources available to aerodynamicists increase, so does the number of tools with which
they can analyze their designs. The key skill of a good engineer is understanding when each tool produces
realistic results. Even if no available tool can capture all relevant physical phenomena, this knowledge allows
engineers to alter their designs to account for the missing physics. However, with the increasing use of numeri-
cal optimization for aerodynamic shape design, the opportunity for this intuition to shape the design is reduced
as the optimizer makes design decisions based purely on numerical results. This makes the choice of analysis
method critical. Previous studies have compared panel-based aerodynamic tools and RANS CFD to predict
and analyze the key aerodynamic phenomena in different flight conditions. But few, if any, have compared the
impact of proper tool selection on the optimal aerodynamic shapes. In this work we show the effect of aerody-
namic analysis method selection on the optimal aerodynamic shape and the consequences of choosing one
that does not capture the relevant flow physics. In particular, we show that modelling boundary layer transition
can produce significantly lower drag designs across almost the entire range of Reynolds numbers at which
airfoils are used in practice. Additionally, we find that the simple compressibility correction used in XFOIL is
sufficient to produce well performing airfoils for flight Mach numbers up to 0.65, after which point the ability for
the flow solver to model shock formation is critical. Our results will provide aerodynamicists with the data and
intuition to make informed decisions when selecting analysis methods for optimization.

Keywords: Airfoil Shape Optimization, Reynolds-Averaged Navier–Stokes, Viscous Panel Method, XFOIL,
ADflow, CST

1. Introduction
The computational power available to engineers has continued to increase in recent decades. This
has enabled aerodynamic tools to be used not just for analysis, but for optimization. Reynolds-
averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) has become the de-facto tool
for design calculations and much research focuses on developing the methods necessary to use
it for aerodynamic shape optimization (ASO) [27]. The key development in making RANS-based
optimization practical was the development of the adjoint method for efficiently computing derivatives
of quantities like lift and drag with respect to large numbers of design variables. The technique
was initially applied to structural optimization by Arora and Haug [1] and then pioneered in CFD by
Jameson [11]. Today, there are numerous frameworks capable of state of the art ASO with RANS
CFD, many of which are open source [19, 10, 7]. Although some works have performed ASO using
higher-fidelity large eddy simulation (LES) [13], these methods have been limited to gradient-free
optimizers with few design variables and are thus still impractical for common use.

Despite the strengths of RANS modelling, particularly for high Reynolds number, transonic flows
involving little or no flow separation, there are scenarios in which other methods produce more accu-
rate results. Drag is highly sensitive to boundary layer transition at moderate Reynolds numbers and
lift levels. At these flight conditions RANS CFD still assumes fully turbulent flow, and thus may be
outperformed by viscous panel methods that model transition, such as XFOIL [22, 2]. Although an
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experienced aerodynamicist may be able to intuitively account for these modelling errors when man-
ually designing an airfoil using RANS CFD, an optimizer cannot and will simply design the shape that
produces the best numerical result from the tool it has been given. Despite the recent demonstrations
of RANS-based ASO including transition modelling through the en method [24, 26], amplification fac-
tor transport [9], or modified turbulence models [23], these methods often require parameter tuning,
are generally more expensive than typical RANS, and are not widely available.

In this work, we compare airfoil shape optimizations performed using widely-available RANS CFD
and viscous panel codes with varying Reynolds numbers, Mach numbers and target lift coefficients.
In doing so, we demonstrate the influence of the modelled flow physics on the optimal solution and
provide a quantitative prediction of the conditions under which one tool is preferable over the other.

2. Methods
2.1 Viscous panel code: XFOIL
The panel code we will use is XFOIL, a widely used code for airfoil analysis by Drela and Youngren [5].
It uses an inviscid potential flow model coupled with a Karman–Tsien compressibility correction which
is valid up to the sonic limit and a two-equation viscous boundary layer model with transition prediction
using the en method [28].

Accurate derivatives are important to efficiently and tightly converge the optimization problem. The
existing XFOIL interface does not give access to these derivatives. We use a complex-safe version of
XFOIL, called CMPLXFOIL1 [14], which enables us to use the complex step method [21] to compute
the derivatives. This approach requires a similar computational cost as finite differencing, but provides
exact derivatives.

Unfortunately, XFOIL is known to have unreliable derivatives due to its cut-cell fitted transition treat-
ment [31]. Section 3.3 further discusses this problem and our workaround.

2.2 RANS CFD: ADflow
The CFD solver we use is ADflow2, a finite-volume solver for structured multiblock and overset
meshes [19] that makes up part of the the open-source ASO framework, MACH-Aero3. ADflow
solves the compressible Euler, laminar Navier-Stokes, and RANS equations with a second-order
accurate spatial discretization. In this work, we solve the compressible RANS equations with the
QCR-200 Spalart–Allmaras turbulence model. The solver employs a variety of numerical methods
to converge to a steady-state solution, including multigrid, approximate Newton-Krylov, and Newton-
Krylov algorithms [30]. The combination of these various iterative methods makes ADflow robust and
fast. ADflow also solves the discrete adjoint equations, enabling efficient computation of derivatives
independent of the number of design variables. The solution of the discrete adjoint in ADflow relies
on the ADjoint approach, which uses algorithmic differentiation (AD) to compute partial derivatives
and a Krylov method to solve the linear system [16].

To warp the CFD mesh to account for geometry changes during optimization, we use another compo-
nent of MACH-Aero: IDWarp4 [25]. IDWarp uses an inverse-distance weighting method as proposed
by Luke et al. [18].

The mesh used in all ADflow optimizations is shown in Figure 1. The surface mesh contains 120
cells along each of the upper and lower surfaces, and 2 cells across the trailing edge (shown in
Figure 1c). We then extrude the surface mesh to a distance of 100 chordlengths using the hyperbolic
mesh generator pyHyp5. We choose a first cell height of 3×10−6c to ensure a Y+ value close to unity
at Re = 107. The resulting mesh contains 31,232 cells.

1github.com/mdolab/CMPLXFOIL
2github.com/mdolab/adflow
3github.com/mdolab/MACH-Aero
4github.com/mdolab/idwarp
5github.com/mdolab/pyhyp
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Figure 1 – Mesh on the baseline NACA 0012 geometry, used for RANS optimizations with ADflow.

2.3 Airfoil parameterization
We use a class-shape transformation (CST) parameterization [17], which provides a straightforward
way to represent an arbitrary airfoil shape with an arbitrary number of design variables. The parame-
terization is also easily differentiated, making it a good scheme for gradient-based optimization.

Our CST implementation is integrated into MACH-Aero’s open source geometry parameterization
tool: pyGeo6. By doing this, it can be used with ADflow’s existing interface.

We use four CST coefficients to parameterize each of the upper and lower surfaces. In this study, we
run over 500 optimizations to explore trends in the design space. This means we need optimizations
that converge quickly and reliably. As the number of CST coefficients increases, their conditioning
deteriorates [4]. This can cause the optimizer to drive neighboring CST coefficients to large, equal-
and-opposite values with little change to the airfoil geometry. While four CST coefficients do not
rigorously cover the entire airfoil design space, the trends we want to investigate still hold and the
conditioning is not a problem.

2.4 Optimizer: SNOPT
Gradient based optimizers are the only practical choice for optimization problems involving expen-
sive models and many design variables [20]. We use the sequential quadratic programming (SQP)

6github.com/mdolab/pygeo
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algorithm SNOPT [8] through pyOptSparse’s interface7 [29].

For the XFOIL cases, SNOPT’s optimality and feasibility are set to 10-6. This results in a decrease in
optimality of roughly five orders of magnitude. For the ADflow cases, the optimality is decreased to
10-8, giving an optimality decrease of roughly seven orders of magnitude.

2.5 Optimization problem
We use the same optimization problem formulation, shown below, throughout this work to fairly com-
pare the two aerodynamic models. The problem is a single-point drag minimization. It is subject
to a target lift coefficient constraint and geometric constraints that encourage the optimizer toward
practical airfoil shapes. We constrain the cross sectional area and leading edge radius of the airfoil to
be at least 85% of the values in the original NACA 0012 geometry. The lower bound on area ensures
that the optimizer produces airfoil sections with reasonable thickness, and by proxy structural proper-
ties. Although we are not explicitly constraining the maximum t/c of the section, which is commonly
used as a proxy for structural properties, Kaiyoom et al. [12] shows a strong correlation between the
sectional area and max t/c of the airfoils in the UIUC airfoil database. The leading edge radius con-
straint uses thickness values close to the leading edge to compute a radius value that is constrained
to avoid geometries with overly sharp leading edges. This constraint is a low-cost approach to ensur-
ing the optimizer does not drastically reduce the low-speed, high-lift performance of the airfoil. We
constrain the thickness of the airfoil to be at least 25% of the baseline NACA 0012 geometry at all
points, primarily to avoid self intersection profiles. Finally, we enforce that the first upper and lower
CST coefficients are equal and opposite to ensure C2 continuity at the leading edge.

minimize Cd

with respect to CST coefficients

Angle of attack

subject to Cl =Cl,desired

A
Ainitial

≥ 0.85
RLE

RLE, init
≥ 0.85

t
tinitial

≥ 0.25

First upper CST coefficient = first lower CST coefficient

It should be noted that single-point ASO generally produces geometries with very narrow operating
windows that exhibit worse performance than human-generated designs in off-design conditions [6,
15], and is therefore of little use for practical design tasks. However, using multi-point optimizations
would lessen our ability to draw conclusions on which analysis tool is most suitable in a specific flight
condition, which is the primary goal of this paper.

2.6 Optimization Studies
There are two physical phenomena that are particularly interesting for this application: boundary layer
transition and shocks in transonic flight conditions.

XFOIL models boundary layer transition from laminar to turbulent, whereas ADflow assumes fully
turbulent flow. This enables XFOIL to design an airfoil shape that delays the boundary layer transition,
reducing drag. For a given airfoil, a higher Reynolds number causes the boundary layer to transition
closer to the leading edge. The expectation is that there is some Reynolds number above which the
boundary layer will transition so close to the leading edge that XFOIL and ADflow will give a similar
result. Below that Reynolds number, the XFOIL optimization is expected to return lower drag airfoils
compared to the ADflow optimization by delaying transition. To investigate this behavior, we run a

7github.com/mdolab/pyoptsparse
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series of optimizations at a range of Reynolds numbers from 4×105 to 1×108, which spans a large
range of applications from RC aircraft (1–5×105) through commercial transport aircraft (5–20×106)
to naval propulsors (108) [3]. The optimized designs from each tool are analyzed in XFOIL to fairly
compare the drag and boundary layer transition behavior.

ADflow accurately predicts transonic flow, including shocks, using the compressible RANS equations,
while XFOIL’s compressibility correction is incapable of this. We expect this to give the ADflow op-
timization a substantial advantage over the XFOIL optimization in transonic flight conditions where
compressibility effects become important. To quantify the impact of ignoring shocks in transonic op-
timizations, we run a sweep of optimizations at Mach numbers ranging from 0.1 to 0.8 with all else
held constant. The optimized designs are both analyzed in ADflow and XFOIL to compare drag and
inspect the impact of shocks on the airfoils.

To view the relevant flow features, we visualize the airfoils as shown in Figure 2. The airfoil shape
is colored by skin friction coefficient, C f . The colormap is centered at a skin friction coefficient of
zero; red indicates a positive value and blue indicates a negative value. The pressure coefficient,
Cp, is displayed with regions around the airfoil’s surface. The magnitude of the pressure coefficient is
proportional to the distance the region extends normal to the airfoil’s surface. Red regions indicate the
pressure coefficient is positive (higher than freestream pressure) and blue regions are negative (lower
than freestream pressure). Through this visualization, we can identify boundary layer transition,

cp

+cp cf

separation ( cf)

boundary layer
transition

Figure 2 – To show the flow features around the airfoil, we plot the airfoil shape colored by the skin
friction coefficient. Pressure coefficient is displayed in regions around the airfoil surface where the

height of the region normal to the surface represents the pressure coefficient magnitude. This
enables easy identification of flow separation, boundary layer transition, and shocks.

shocks, and flow separation. Boundary layer transition manifests as a sudden increase in skin friction
coefficient and slight increase in pressure. Shocks appear as sudden, large increases in pressure.
Separation is shown as negative (blue) skin friction because it is associated with flow reversal.

3. Results
3.1 Reynolds number
We first investigate the impact of boundary layer transition modelling on airfoil optimization by optimiz-
ing with both solvers at a range of Reynolds numbers with all else constant. We choose a freestream
Mach number of 0.3 to avoid significant compressibility effects and thus isolate the effect of viscous
drag. The target lift coefficient is 0.5. The XFOIL optimization is expected to have an advantage for
the low to mid Reynolds numbers because it can design an airfoil to delay boundary layer transition.
ADflow assumes the boundary layer is fully turbulent, so it cannot give the optimizer the needed in-
formation to maintain a laminar boundary layer. As the Reynolds number increases, we expect the
transition location on the optimized airfoils to move forward, eventually reaching the leading edge.
Once XFOIL is fully turbulent, we expect its airfoil to approach ADflow’s because the boundary layers
then share similar properties. We have also included a second XFOIL optimization where the bound-
ary layer is tripped at the leading edge. This fully turbulent boundary layer allows XFOIL to simulate
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similar conditions to ADflow. We therefore expect the airfoils optimized with turbulent XFOIL to be
more similar to the ADflow optimized designs in both shape and drag coefficient.

Figure 3 plots the drag coefficients of the airfoils optimized with the three solvers, computed with the
free-transition version of XFOIL. The shape, pressure distribution, and skin-friction distribution are
also plotted for a small selection of the cases. The airfoils that were not optimized with this solver are
re-trimmed to the correct lift level to ensure a fair comparison. When both are analyzed in XFOIL,
there is a consistent 20–25 drag count difference between airfoils optimized with XFOIL and ADflow,
with the XFOIL optimized designs having lower drag.
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Figure 3 – When both are analyzed in XFOIL, airfoils optimized with XFOIL consistently achieve
20–25 lower drag counts than those optimized with ADflow.

Optimized in XFOIL
analyzed in XFOIL

Optimized in ADflow
analyzed in XFOIL

4 × 105

Optimized in turbulent XFOIL
analyzed in XFOIL

106 4 × 106 107 4 × 107 108

Reynolds number

Figure 4 – Airfoils from the Reynolds number sweep analyzed in XFOIL. The airfoils optimized with
XFOIL avoid separation and delay transition, but are impractically thick at high Reynolds numbers.

When optimizing with XFOIL, the optimizer appears to design the airfoil shape primarily with transition
delay in mind. The ADflow and XFOIL optimized designs are most similar at the lowest studied
Reynolds numbers (≤106). At these points, XFOIL can easily achieve a fully laminar boundary.
ADFlow, as always, is fully turbulent, meaning that these airfoil geometries are not altered significantly
to delay transition. The difference between the designs at these Reynolds numbers is that the XFOIL
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designs have a flatter upper surface pressure distribution as the laminar boundary layer is more
susceptible to separation. In ADflow, the fully turbulent boundary layer can tolerate a stronger adverse
pressure gradient, but when analyzed in XFOIL they transition, and thus have higher drag. As the
Reynolds number increases, the airfoils optimized in XFOIL display increasingly extreme geometric
features designed to delay transition. Specifically, the location of maximum thickness shifts backward
and the maximum thickness increases to the point where the minimum area constraint is inactive
for most of the XFOIL-optimized airfoils. Both of these changes are aimed at maintaining a strongly
favourable pressure gradient over as large a portion of the airfoil as possible to delay transition.

For most Reynolds numbers studied, the airfoils optimized with the fully turbulent version of XFOIL
are similar in both shape and performance to those optimized with ADflow.

Although one interpretation of these results is that modelling transition is important for shape opti-
mization at all studied Reynolds numbers, we believe a more practical recommendation would be
that it is of most importance at Reynolds numbers up to 107. Above this level, the greatly increased
thickness of designs optimized with XFOIL would likely lead to separation and increased drag not
captured by XFOIL.

3.2 Mach number
Next, we investigate the applicability of each flow solver to airfoil optimization at different Mach num-
bers. Our hypothesis is that, because it cannot model shock formation, optimization with XFOIL will
produce airfoils that delay separation, but ignore the impact of shocks in transonic conditions. Con-
versely, ADflow should be able to create designs that reduce the strength of shocks or eliminate them
altogether, vastly reducing the drag compared to the XFOIL designs. To test this hypothesis, we per-
form optimizations with XFOIL and ADflow at Mach numbers from 0.1 to 0.8, holding the Reynolds
number at 10 million and the target lift coefficient at 0.5.

Following optimization, we analyze all XFOIL optimized designs in ADflow, re-trimmed to the target
lift coefficient, to analyze their performance in fully compressible flow. Figure 5 compares the drag
coefficients of the airfoils optimized with each solver, computed using the same solver. The top
plot shows the drag values computed in ADflow, and the bottom in XFOIL. Figure 6 compares the
airfoil shapes, pressure distributions, and friction coefficient distributions for all four combinations of
optimization and analysis solvers at a selection of Mach numbers.

Comparing the results computed by ADflow, the point at which it is critical to consider transonic flow
conditions is clear. In Figure 5, the drag of the XFOIL optimized designs diverges above Mach 0.65
as strong shocks begin to appear in their pressure distributions. At Mach 0.8 the drag of the XFOIL
optimized design is more than four times greater than the airfoil designed in ADflow, which remains
shock-free.

Another reason that XFOIL may not be suitable for optimization at Mach numbers greater than 0.65
is that wings designed to fly at these speeds are likely swept. Swept wing boundary layers often
transition due to crossflow instabilities rather than via linear instabilities related to Tollmien-Schlichting
wave growth. The latter is the only mechanism through which XFOIL predicts transition. This is
particularly the case under the kind of strong favourable pressure gradients that XFOIL-optimized
airfoils tend to exhibit in order to suppress linear instability transition.

7
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Figure 5 – Because XFOIL cannot model shocks, it produces similar optimum designs at varying
Mach numbers. This results in wave drag and shock-induced separation above Mach 0.65 and over

four times the drag of ADflow’s design at Mach 0.8.
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Figure 6 – Optimization in XFOIL is able to delay transition at lower Mach numbers, but pays a wave
drag penalty in the transonic regime.

3.3 Multimodality in XFOIL
When running optimizations, we observe multimodal behavior in XFOIL. Initializing the optimization
with the same shape but at two different angles of attack produces two different optimal designs.

To investigate this behavior, we run two optimizations: one starting from an angle of attack of 4
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degrees, the other from an angle of attack of 5 degrees. They both start from a NACA 0012 (using
four CST coefficients on either surface) and are run at Mach 0.3, a Reynolds number of 1 million, and
a target lift coefficient of 0.5. Both optimizations converge successfully, decreasing the optimality by
six orders of magnitude and achieving feasibilities on the order of 10-13 (as defined by SNOPT). We
then draw a line in the nine-dimensional design space between the two optimums and evaluate the
drag in XFOIL along that line.

Figure 7 shows the result of this procedure. This behavior hurts the performance of a gradient
based optimizer because it creates fictitious optima, which are the source of the multimodal behavior
we observe. Furthermore, the derivatives often do not point in the true downhill direction. There
is a clear pattern in the objective function between the two optima that results from the transition
treatment. Every dip corresponds to the transition location moving across one panel. By increasing
the number of panels, the wavelength of this pattern decreases.
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Figure 7 – Because of XFOIL’s transition treatment, the objective function is not smooth. To make it
as smooth as possible while keeping source code changes to a minimum, we increase the number

of panels to CMPLXFOIL’s maximum of 284.

In an attempt to limit this problem without making substantial changes to the CMPLXFOIL source
code, we use 284 panels—the maximum number possible in CMPLXFOIL. We also initialize the
XFOIL optimizations from the optimized ADflow shape to ensure consistent and fair results. In the
cases where initializing from the ADflow result causes discontinuities in the trend of airfoil designs,
we initialize the XFOIL optimizations from a neighboring XFOIL optimization.

4. Conclusions
For aerodynamic shape optimization to produce useful results, the aerodynamic model used must
capture the relevant flow physics. In this paper we compare optimal airfoil designs produced using
XFOIL, a viscous panel code, and ADflow, a compressible RANS finite volume code, to identify which
produces better designs in different flight regimes. Specifically, we investigated at which Reynolds
numbers the ability to model transition is critical and at which Mach numbers it is critical to be able to
model shock formation.
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We find that above Mach 0.65, the drag coefficients of the XFOIL and ADflow optimized results
diverge due to wave drag that cannot be modelled by XFOIL. Below Mach 0.65 and at moderate
Reynolds numbers of 5–10 million, the XFOIL result delays separation far more than ADflow’s airfoil,
which affords it 30% drag savings (as measured by XFOIL). At Reynolds numbers below 5 mil-
lion, XFOIL’s boundary layer model allows it to avoid separation (and separation-induced transition).
Above Reynolds numbers of 10 million, optimization in XFOIL produces impractical results with high
thickness to chord ratios.
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