
ACCURATE TWO-DIMENSIONAL STEADY-STATES FOR THE
SUPERSONIC FLOW OVER A COMPRESSION CORNER

Ricardo Santos1, Leonardo Alves1, Nicolas Cerulus2, Helio Quintanilha Jr.2 & Vassilios Theofilis2,3

1Universidade Federal Fluminense, Brazil
2University of Liverpool, UK

3Universidade de São Paulo, Brazil

Abstract

The present paper describes the numerical issues that had to be overcome in order to generate of accurate
steady-states for the supersonic flow over a compression corner. Low and high-order shock capturing schemes
for spatial discretization coupled with a nonlinearly stable explicit marching scheme for time integration were
employed to do so. The flow parameters considered in this study include a Mach number of M = 3 and a
ramp angle of θ = 10o, for different Reynolds numbers based on the leading edge to corner length, namely
Re = 2× 103, 5× 103, 10× 103 and 20× 103. Grid convergence studies indicate the existence of an apparent
grid convergence in space, which is associated with only a few orders of magnitude residue decay in time.
When employing low-order schemes, a severe grid refinement is required as the Reynolds number increases
in order to eventually obtain a residue decay in time towards machine precision. Such a Reynolds related grid
refinement constraint can be severely minimized by employing high-order schemes. This issue appears to be
caused by the reattachment shock. Since the resulting two-dimensional steady-state is linearly (modally and
non-modally) stable for this Mach number, ramp angle and Reynolds numbers, this lack of residue convergence
in time is likely due to numerical issues caused by poor spatial convergence.
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1. Introduction
Experimental studies of separation observed in shock / boundary-layer interaction (SBLI) problems
for different geometrical variations from the classical flat plate were first performed more than half a
century ago [1, 2]. Separation is one of the key phenomena associated with the laminar-turbulence
transition in high speed flows. The same can be said about its stable/unstable dynamics. Both are
very important for the identification of the laminar / transitional / turbulent regions in such supersonic
and hypersonic external flows. This is the very reason why SBLI problems are still the subject of
intensive studies today [3, 4]. In the present paper, focus is placed on the supersonic flow over a
compression corner, which is illustrated in Fig. 1.
A few classical early studies are worth mentioning here. Carter used a first-order predictor-corrector
scheme for time integration and a second-order finite-difference scheme for spatial discretization to
obtain steady-states with (Mach,Reynolds) number pairs equal to (M,Re) = (3,1.68× 104), (4,6.8×
104) and (6.06,1.5× 105), with the latter based on the leading edge to corner length, using ramp
angles of θ = 5o, 7.5o and 10o [5]. Many relevant characteristics of these flows were quantified, such
as incipient separation and bubble size, showing good agreement with experimental data [6]. Hung
and MacCormack used the second-order accurate, in both time and space, two-step MacCormack
scheme to simulate this problem with M = 14.1, Re = 1.04× 105 and θ = 15o, 18o and 24o [7] and
validate their pressure and skin friction coefficient results against experimental data [8]. They also
compared velocity profiles with inviscid theory and numerical simulations [5], showing some important
differences with respect to the former and good agreement with the latter. These two-dimensional
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Figure 1 – Illustration of the compression corner studied in this paper [5].

simulations were replicated and extended to three dimensions by Rudy et al., who compared the
performance of four different finite-difference and finite-volume based solvers [9]. All these studies
solved the compressible Navier-Stokes equations, prescribing all variables at the inflow boundary
and extrapolating all variables at the outflow boundary.

Only very recent studies are now described in more detail, since most of the earlier ones have already
been reviewed elsewhere [3, 4]. Chuvakhov et al. obtained two and three-dimensional steady-states
using the HSFlow solver, based on a quasi-monotonic Godunov-type scheme that is second-order
accurate in both time and space, for a compression corner with M = 8, Re= 3.71×105 and θ = 15o [10].
The latter simulations modeled the effect of small bluntness elements at the leading edge, which
lead to the appearance of the stationary Görtler vortices observed in their own experimental data.
Sidharth et al. obtained two-dimensional steady-states using US3D, under an implicit Euler marching
of a second-order spatial discretization based on a modified Steger-warming fluxes using MUSCL
limiters, for a double corner with M = 5, Re = 6.8×105 and θ = 12−20o [11]. It was used in a bi-global
linear and modal stability analysis, which identified an unstable stationary mode. This implied the
existence of a three-dimensional steady-state, which was confirmed by their three-dimensional US3D
simulations. Dwivedi et al. extended these tools to include a resolvent analysis [12], applying them to
the aforementioned compression corner [10]. This allowed them to verify that the steady and three-
dimensional reattachment streaks previously attributed to a centrifugal instability were in fact caused
by baroclinic effects. They also verified that the streak spanwise wavelength was selected by the
perturbations present in both separation bubble and reattaching shear layer. Hao et al. obtained two-
dimensional steady-states using the PHAROS solver, which uses an implicit line relaxation for time
integration of a second-order spatial discretization based on a modified Steger-Warming scheme, for
a compression corner with M = 7.7, Re = 4.2× 105 and several ramp angles between θ = 11o and
15o [13]. A bi-global linear stability analysis revealed the existence of stationary modes at both small
and large spanwise wavelengths, but oscillatory modes were only found at the former. Recirculation
bubble size and disturbance amplitudes increased when increasing ramp angle and decreasing wall
temperature. These results were verified by unsteady three-dimensional simulations using a third-
order explicit strong-stability-preserving scheme to march in time a higher-order spatial discretization
based on a fifth-order WENO scheme for inviscid fluxes and a sixth-order central-difference scheme
for the viscous fluxes [14]. Exposito et al. used the same aforementioned US3D solver to evaluate
both blunt leading edge and finite span effects on three-dimensional steady-states with M = 9.66,
Re = 1.07×105 as well as θ = 10o and 20o [15], comparing it with triple deck theory. The separation
region increased when increasing bluntness. Furthermore, three-dimensional effects were confined
to the side edges, which appears to have prevented the appearance of secondary vortices.

The above review suggests that steady-states for the compression corner problem illustrated in Fig. 1
are obtained using at most second-order schemes in the spatial discretization. Hence, the goal of the
present paper is to discuss the numerical issues associated with obtaining such steady-states using
high-order schemes in both time and space instead. It is important to note that only two-dimensional
steady-states are presented and discussed here.
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2. Mathematical Model
The governing equations simulated in this work are the unsteady and two-dimensional Navier-Stokes
equations for the conservative variables and written under a generalized coordinate framework. All
fluid properties are assume constant, expect the dynamic viscosity, which follows Sutherland’s law.
The fluid is also assumed to behave as an ideal gas with a constant Prandtl number. Furthermore,
an undisturbed free-stream is assumed to reach the sharp leading edge of the flat and horizontal
plate that is upstream of the compression corner. Finally, this plate can either be adiabatic or have a
constant temperature.

3. Numerical Method
An in-house code is employed here to solve these governing equations. Called 3D4S, it has been
under development over the past few years and some preliminary results have been published [16,
17, 18, 19]. Inviscid flux discretization uses either the Roe flux-difference splitting [20] coupled with a
second-order TVD scheme with an entropy fix [21, 22] or the Lax-Friedrichs flux splitting coupled with
one of many characteristic-wise fifth-order WENO schemes [23, 24, 25, 26, 27]. The latter WENO
scheme is employed here, since it was tailored for steady-states. Viscous flux discretization uses
the classical conservative central-difference schemes with either second, fourth or sixth-order. The
second one is used here to enhance numerical stability. 3D4S can perform steady-state simulations
using dual-time-stepping [28] with an implicit Euler scheme as well as multi-step [29] and multi-
stage [30] MGM schemes. It can perform time-accurate unsteady simulations as well, using either
second, third or fourth-order strong-stability-preserving explicit Runge-Kutta schemes [31]. Implicit as
well as explicit versions are parallelized with a distributed memory framework. The third-order explicit
solver is used here, since two-dimensional compression corner steady-states are likely asymptotically
stable to two-dimensional disturbances in a linear, modal and global sense.

Finally, it is important to note that a structured grid is employed, since 3D4S uses finite difference
schemes applied on generalized coordinates. It is obtained from an elliptic grid generation procedure
that solves a Poisson-type equation, which allows grid clustering control as well as orthogonality
enforcing at pre-defined boundaries [32]. This equation is discretized with second-order central-
difference schemes, where same order biased schemes are applied at the boundaries. The resulting
nonlinear system os algebraic equations is solved using Gauss-Seidel iteration coupled with the
Successive Over-Relaxation Method. It is important to note that convergence rates of this iterative
solver usually decrease as the number of boundaries where orthogonality is enforced increases.

4. Results
The compression corner simulations presented here consider a Mach number of M = 3, a corner
angle of θ = 10o and several Reynolds numbers between Re = 104 and 3× 105. Pressure, density
and temperature free stream conditions are, respectively, p∞ = 101325Pa, ρ∞ = 1.17661kg/m3 and
T∞ = 300K. The two coefficient Sutherland’s law defines the dynamic viscosity, i.e. µ = cs T 3/2/(T +Ts)
with Ts = 383.54K and cs = 1.458 × 10−6 kg/(msK1/2). Furthermore, the specific heat at constant
pressure and the Prandtl number are fixed at CP∞

= 1005J/(kgK) and Pr = 0.72, which connects the
thermal conductivity k to Sutherland’s law.

4.1 Low-Order Scheme
Before any results can be analyzed, it is important to verify spatial grid convergence. This is done for
both low and high-order schemes. Low-order here means the second-order TVD scheme for inviscid
fluxes and the second-order central schemes for viscous fluxes. High-order, on the other hand,
means the fifth-order steady-state tailored WENO scheme for inviscid fluxes and the fourth-order
central scheme for viscous fluxes. One example of such an analysis is shown in Fig. 2, where the
results were obtained using the low-order scheme with a prescribed wall temperature of TW = 300K.
It presents the density (left) and vertical velocity (right) profiles in the wall normal direction measured
at the corner for different Reynolds number, namely Re = 2× 103 (top), Re = 5× 103 (middle) and
Re = 10×103 (bottom). As the number of grid points in the stream wise, i.e. NX , and wall normal, i.e.
NY , directions increase, these low-order results for both density and vertical velocity profiles appear

3
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to spatially grid converge for approximately (NX ,NY ) = (3601,1201), (4201,1401) and (4801,1601),
respectively. Both Euclidean and maximum residue convergence in time towards machine precision
in the former case, which represents approximately 10 orders of magnitude. However, only 2 to 3
orders of magnitude convergence in time is observed for these residues in the latter case. Hence, the
solution obtained for Re = 10×103 is not a disturbance free steady-state. It is instead a steady-state
disturbed by undamped temporal content. One should note that the middle case residue convergence
in time behaves like the latter (former) for the two smaller (four larger) grid sizes.
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Fig. C.2: Perfis verticais do escoamento na posição x = L.
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Fig. C.3: Convergência do resíduo sob norma L2 e L1.

Apêndice C. Rampa Supersônica 164

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.0009  0.001  0.0011  0.0012  0.0013

y/
L

ρ

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

(a) Massa Específica.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 65  70  75  80  85  90  95  100  105

y/
L

P

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

(b) Pressão.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500  600  700  800  900 1000

y/
L

u

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

 0.43
 0.44
 0.45
 0.46
 0.47
 0.48
 0.49

(c) Velocidade u.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80
y/

L
v

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

(d) Velocidade v.

Fig. C.2: Perfis verticais do escoamento na posição x = L.

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

 0  0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

L
2
 R

e
s

Tempo

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

10-12

10-10

10-8

10-6

10-4

10-2

100

102

 0  0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

L
∞

 R
e

s

Tempo

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

Fig. C.3: Convergência do resíduo sob norma L2 e L1.

Apêndice C. Rampa Supersônica 167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.0009  0.001  0.0011  0.0012

y/
L

ρ

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

 0.0009  0.001

(a) Massa Específica.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 65  70  75  80  85  90  95  100  105

y/
L

P

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

 70  75  80  85  90

(b) Pressão.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500  600  700  800  900 1000

y/
L

u

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

 0.43
 0.435
 0.44

 0.445
 0.45

 0.455
 0.46

(c) Velocidade u.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80

y/
L

v

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

(d) Velocidade v.
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Fig. C.9: Estrutura espacial do modo com menor taxa de decaimento com 4201£1401
pontos.
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Figure 2 – Low-order scheme results for a prescribed temperature of TW = 300K showing density
(left) and vertical velocity (right) profiles in the wall normal direction measured at the corner at

different Reynolds numbers Re = 2×103 (top), Re = 5×103 (middle) and Re = 10×103 (bottom).

Density and vertical velocity isocontours for the particular case with a prescribed temperature of
TW = 300K and a Reynolds number of Re = 104 obtained with (NX ,NY ) = (4801,1601) are shown in
Fig. 3. Their respective residue has only converged 2 to 3 orders of magnitude in time. It should be
noted that the bubble size is small at this Reynolds number, so separation and reattachment shocks
are not clearly distinguishable from each other.
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(a) Massa Específica. (b) Temperatura.

(c) Velocidade u. (d) Velocidade v.

Fig. 5.59: Solução para M a = 3 e Re = 10000 com 4801£1601 pontos.

10-4

10-3

10-2

10-1

100

101

102

103

104

 0  0.005  0.01  0.015  0.02

L
2
 R

e
s

Tempo

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 0  0.005  0.01  0.015  0.02

L
∞

 R
e

s

Tempo

Nx=1801, Ny=601
Nx=2401, Ny=801

Nx=3001, Ny=1001
Nx=3601, Ny=1201
Nx=4201, Ny=1401
Nx=4801, Ny=1601

Fig. 5.60: Convergência do resíduo sob norma L2 (esquerda) e L1 (direita).

e M a = 3 ser modalmente estável para número de onda zero. Também na Fig. 5.3.3

(direita) são apresentadas regressões diferentes para 2£104 ∑ Re ∑ 8£104 e 1£105 ∑

Re ∑ 3£105, sendo esses melhores ajustes para as taxas de crescimento, o que pode

indicar uma mudança no modo dominante.
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Figure 3 – Low-order scheme results obtained with (NX ,NY ) = (4801,1601) for a prescribed
temperature of TW = 300K and Reynolds numbers of Re = 104 are shown for the density (top) and

vertical velocity (bottom) isocontours.

Reynolds numbers typically studied in the relevant literature, however, are significantly larger. This
presents a serious difficulty for simulations using low-order spatial schemes, since increasingly larger
grid sizes are required to generate disturbance free two-dimensional steady-states as the Reynolds
number increases. Disturbance free in the present scenario means the spatial grid is refined enough
to allow the residue to converge in time as well. Similar compression corner simulations performed
with second-order schemes found in the literature have used (NX ,NY ) = (900,300) [10], (525,200) [11],
(577,349) [12] and (1600,600) [13]. Such grid sizes are all smaller than the ones used here even
though their respective studies considered significantly higher Reynolds numbers than the ones con-
sidered here. However, none of these studies provided such residue convergence histories.

4.2 High-Order Scheme
One alternative to minimize these issues is to use high-order schemes instead. For this reason,
another example of a grid convergence analysis is shown in Fig. 4, but now for the high-order scheme
with an adiabatic wall and a Reynolds number of Re = 20× 103. It presents the same type of data
shown in Fig. 2. In this case, however, density grid convergence is observed at (NX ,NY ) = (1801,601).
Once again, the maximum density residue temporal behavior confirms this observation, which is
qualitatively similar to the one observed in the middle case of Fig. 2. Only a two orders of magnitude
residue decay in time is achieved for the two smaller grids, but this number changes to ten orders of
magnitude for the larger grid. These results indicate that high-order schemes are necessary for grid
convergence because of the computational cost reduction they provide by allowing an appropriate
residue decay in time to be obtained for much smaller grids.
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Apêndice C. Rampa Supersônica 170

(a) Massa Específica. (b) Pressão.

(c) Velocidade u. (d) Velocidade v.

Fig. C.13: Perfis verticais do escoamento na posição x = L.

(a) Massa Específica. (b) Temperatura.

(c) Velocidade u. (d) Velocidade v.

Fig. C.14: Estrutura espacial do modo com menor taxa de decaimento com 1801£601
pontos.
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Figure 4 – Same as Fig. 2, but for the high-order scheme with Re = 20×103 and an adiabatic wall.

Finally, density and vertical velocity isocontours for the particular case with an adiabatic wall and
a Reynolds number of Re = 2× 104 obtained with (NX ,NY ) = (1801,601) are shown in Fig. 5. Their
respective residue has converged approximately 10 orders of magnitude in time. Bubble size is larger
at this Reynolds number, so separation and reattachment shocks can be clearly distinguished from
each other. These preliminary results indicate that the reattachment shock region is responsible for
the dominant errors in the residue calculation over time.

Apêndice C. Rampa Supersônica 169

C.2 Parede Adiabática

C.2.1 ¡= 10, M a = 3 e Re = 20000

(a) Massa Específica. (b) Temperatura.

(c) Velocidade u. (d) Velocidade v.

Fig. C.11: Solução para M a = 3 e Re = 20000 com 1801£601 pontos.

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105

 0  10  20  30  40  50  60  70

L
2
 R

e
s

t

Nx=601, Ny=201
Nx=901, Ny=301

Nx=1801, Ny=601

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

 0  10  20  30  40  50  60  70

L
∞

 R
e

s

t

Nx=601, Ny=201
Nx=901, Ny=301

Nx=1801, Ny=601

Fig. C.12: Convergência do resíduo sob norma L2 (esquerda) e L1 (direita).
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Figure 5 – Same as Fig. 3, but for the high-order scheme with Re = 20×103 and an adiabatic wall.
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5. Conclusions
The present paper provided results for the two-dimensional flow over a compression corner at a
Mach number of M = 3 and a corner angle of θ = 10o for several different Reynolds numbers. These
results indicate that low-order numerical simulations require a prohibitive computational cost at small
to moderate Reynolds numbers. Given these constraints, it is quite difficult to obtain steady-states
free of temporal content with such solvers. Grid converged high-order numerical simulations, on the
other hand, can generate such steady-states at much smaller computation costs. They are currently
being used for a linear, modal and global two-dimensional stability analysis. These results will appear
in a future publication by this same research group.
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