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Abstract

The quadrotor has under-actuated dynamics, but its unique symmetrical rotor arrangement allows rapid attitude
adjustment, making it easy to design a robust controller to external disturbances such as wind. However, if
severe faults occur on one or more rotors, even hovering control is challenging to accomplish due to a reduced
set of attainable force and moment. This study proposes a design scheme to obtain an optimal fault-tolerant
controller to deal with a severe actuator fault by leveraging a meta-reinforcement learning (meta-RL) technique.
The meta-RL trains an outer-loop network to infer the faulty situation and help an inner-loop RL process to
optimize the controller quickly. A numerical simulation is provided to demonstrate the performance of the
proposed design scheme and the learnt fault-tolerant controller.
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1. Introduction
As small unmanned aerial vehicles (UAVs) begin to be actively used in various industrial fields, fault-
tolerance control (FTC) techniques that allow them to be operated safely are receiving continuous
attention [1]. Among various faults that threaten the safe operation of a quadrotor, which is one of the
widely used types of UAVs, actuator faults occurring in the rotor, assessed by a loss of effectiveness
(LoE) is one of the most common and frequent situations.
There has been a lot of studies on FTC for quadrotors to deal with LoE faults, including backstep-
ping [2,3], sliding mode controls [4–8], and linear matrix inequalities synthesis [9]. However, most of
these studies have been shown their performance under LoE faults less than about 50%. Fault cases
with severe or complete loss of rotors usually have been treated by a complete redesign of the con-
troller [10–16]. While these methods have shown surprising performances even with the complete
loss of more than one rotors, most of them heavily rely on the help of information on which rotors
failed.
Recently, the field of applying reinforcement learning (RL) for quadrotor FTC is emerging [17–19].
In [17], a set of controllers were trained using integral RL for various fault cases, and a switching rule
was designed based on a fault detection module. The integral RL has been also implemented for FTC
of a team of quadrotors in [19]. Although, the integral RL can theoretically guarantee the stability of
the learnt controller, the main drawback is the requirements of an initial stabilizing policy and a proper
set of basis functions. A robust RL has been implemented to train a supervisory level controller that
determines the final output of the low-level, inner PID controllers to attain the stability properties of the
model-based PID controllers [18]. This concept is similar to meta-reinforcement learning (meta-RL)
approaches [20–22], but has the disadvantage of requiring the model-based internal controllers.
In this study, a meta RL-based fault tolerant control method is proposed, which can be used in the
severe fault situations including the complete loss. The networks in the meta-RL architecture are
trained using a bunch set of flight data that can be gathered both from simulations and real flight tests.
After training with a large flight dataset, the embedding network encodes a small amount of flight data
into a human readable fault information and a latent vector for synthesizing initial suboptimal control
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policy that can be fine-tuned in real-time. For a fast fine-tuning, a linear policy and a linear gradient Q-
function network is required for an RL agent, and therefore, an equilibrium point, or a trim point, of the
linear control policy is set as the human readable information part of the embedding network. A linear
Q-learning method is proposed to train these networks of the RL agent and the embedding network
simultaneously, which utilizes the modified Hamilton-Jacobi-Bellman (HJB) equation. A numerical
simulation for a quadrotor under a severe fault situation demonstrates the validity of the proposed
meta-RL scheme.

2. Problem Formulation
2.1 Quadrotor Model
The quadrotor full dynamic model is given by

ṗ = v, (1)
v̇ = mge3− fT Re3 +dv (2)
Ṙ = Rω̂, (3)

ω̇ = J−1(M−ω× Jω +dω), (4)

where p = [x,y,z]T ∈ R3 and v = [vz,vy,vz]
T ∈ R3 are the position and velocity vectors in the inertial

coordinate system, respectively, R ∈ R3×3 is the rotation matrix, ω ∈ R3 denotes the angular velocity
in the body-fixed coordinate system, and ·̂ denotes the hat operator defined by x̂y= x×y for all vectors
x,y∈R3. The coordinate systems and the rotor configuration of the quadrotor model used in this study
is represented in Fig. 1. The mass and the moment of inertia of the quadrotor are denoted by m and J,
respectively, the scalar g is the gravitational constant, and e3 = [0,0,1]T . The total force and moment,
denoted by fT ∈ R and M = [M1,M2,M3]

T ∈ R3 respectively, are given by
fT

M1
M2
M3

=


1 1 1 1
0 −r 0 r
r 0 −r 0
−c c −c c




f1
f2
f3
f4

 , (5)

where l > 0 is the length of moment arm for each rotor thrust with respect to the center of mass, c > 0
is the anti-torque coefficient generated by each rotor, and the j-th rotor generates the thrust amount
of f j in −e3 direction in the body-fixed coordinate system. The physical specifications of the quadrotor
model are the same as [7], while the maximum thrust of each rotor is increased from about 15 N to
20 N to cope with severe faults occurred on rotors.
The lumped external disturbances and modelling uncertainties applied to the translational and rota-
tional dynamics, denoted by dv and dω , respectively, are given as

dv =−Kvv, (6)
dω =−‖ω‖Kωω, (7)

where Kv and Kω denote the drag coefficient of which the values are the same as in [7]. Due to the
hight yaw rate in near-hovering under the severe rotor fault, the rotational drag model in (7) has a
quadratic form in the magnitude of the angular velocity [12].

2.2 Fault Definition
In this study, we consider the loss of effectiveness (LoE) faults on rotors, which is one of the most
common faults for quadrotors [7]. The loss of effectiveness factor λ j ∈ [0,1] for j-th rotor can represent
the LoE fault in terms of rotor thrust as follows [1].

f j = (1−λ j) f c
j , ∀ f c

j ∈ [0, f j,max], (8)

for all j = 1,2,3,4, where f c
j denotes the commanded rotor thrust, and f j,max is the maximum thrust

of each rotor. The healthy rotor has λ j = 0, or 0% LoE, and the completely failed rotor has λ j = 1, or
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Figure 1 – Schematic of a quadrotor with the body-fixed coordinate system (xB,yB,zB) and the
inertial coordinate system (xI,yI,zI).

100% LoE. By denoting

f :=


f1
f2
f3
f4

 , fc :=


f c
1

f c
2

f c
3

f c
4

 , Λ :=


λ1

λ2
λ3

λ4

 , (9)

the equation (8) can be written as
f = (I−Λ)fc, (10)

where I ∈ R4×4 denotes the identity matrix.
Although, the fault tolerant control for quadrotor LoE faults such as (8) has been widely studied in
the past decade including linear, nonlinear, and learning-based control scheme, most of them have
focused on LoE less than 50% [7, 8, 23–25]. In this study, LoE greater than 90%, or equivalently
λ j ≥ 0.9, as well as the complete loss is considered and defined as the severe LoE. Since the severe
LoE usually involves the structural damage, the change in the mass and the moment of inertia up to
10% is also considered [25,26]. It is defined as a fault situation when LoE, mass, or moment change
occurs, and it is assumed that accurate fault information is not available during actual flight.

3. Double-Loop Control Architecture
This section propose a novel structure for the reinforcement learning-based position controller. Be-
cause the time scales of the rotational dynamics of the transform and quadrotors are well separated,
most position controllers adopt a double-loop control structure, where the outer loop controls the
position using attitude angles, and the inner-loop controller calculates the rotor thrust command to
track the attitude command using the rotational dynamics [5, 7, 11]. However, it is difficult to keep
the yaw rate at zero in severe fault situations, and therefore, a double-loop control scheme based
on relaxed hover solutions has been proposed [12, 27]. In this scheme, the outer loop controls the
position using the translational acceleration, and the inner-loop controller aligns the average angular
velocity with the acceleration using the rotor thrusts. The authors also have shown in both of sim-
ulations and experiments that a simple linear controller for the inner-loop in this scheme is robust
enough to track the position in the neighbor of the relaxed hover solution. Because a linear controller
is required for fast training of the reinforcement learning in urgent severe fault situations, we adopt this
relaxed hover solution-based double-loop control structure with suitable modifications for meta-RL.
The overall double-loop control architecture is presented in Fig. 2.
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Figure 2 – Double-loop control architecture.

3.1 Outer-Loop Position Controller
A simple proportional-integral-derivative (PID) controller is implemented for the outer-loop position
control regarding the quadrotor as a point mass of which the position is controlled by an acceleration
input. It takes the desired reference position pd ∈ R3 and the actual position p of the quadrotor, and
returns the desired average acceleration vector ad ∈ R3 to the inner loop as follows.

ad = kP(pd−p)+ kI

∫ t

0
(pd(τ)−p(τ))dτ + kD(ṗd− ṗ), (11)

where the positive scalars kP, kI, and kD denote the PID gains. Like the position vector p, the desired
acceleration vector ad is represented in the inertial coordinate system.

3.2 Inner-Loop Attitude Controller
The inner-loop attitude controller takes the desired average acceleration ad , the rotation matrix R,
and the angular velocity ω, and returns the rotor force fc. The concept of a relaxed hover motion
is borrowed from [12], which is a motion consistently spinning around a fixed vector in the inertial
coordinate system. In this motion, the thrust vector averaged over the spinning period is parallel to
the angular velocity vector and the fixed vector. Hence, the fixed vector can be represented with the
desired average acceleration as ad − ge3, where ad can be considered as a constant vector in the
inner-loop controller design.
To realize the relaxed hover motion, the fixed vector in the inertial coordinate system is described in
the body-fixed coordinate system with a unit vector n = [n1,n2,n3]

T ∈ R3 defined by

n := R−1 ad−ge3

‖ad−ge3‖
, (12)

where ‖·‖ denotes the Euclidean norm. Then, the attitude dynamics in (3) gives the following dynam-
ics of n by assuming ‖ȧd‖� 1 from the time-scale separation [12].

ṅ =−ω×n. (13)

The relaxed hover motion assumes non-aggressive acceleration command, so that

n · e3 < 0. (14)

In this case, two elements of the unit vector n are enough to determine n.
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Figure 3 – Meta-training structure.

4. Meta-Reinforcement Learning Formulation
The reinforcement learning (RL) can be viewed as a method for solving optimal control problem
based on the dynamic programming. Especially, the model-free RL scheme is one of the promising
algorithms to find an optimal control law, when the dynamic model of the plant is unknown. Since the
health level of faulty rotors, or equivalently, Λ in (10), is difficult to predict and/or estimate in real-time
under urgent fault situations, it may be useful to apply the model-free RL method.
Deep neural networks for RL can effectively approximate an optimal control policy for a complex dy-
namics using only flight data. However, for different fault situations where the mass, the moment
of inertia, and LoE are different, RL requires a lot of flight data and time to train the deep neural
networks, which may be unrealistic in the urgent fault scenarios. Simple linear networks are imple-
mented for both policy and critic networks in to be trained with a linear Q-learning method, and the
deep neural network structure to represent the complex dynamics of quadrotors are implemented
in an embedding network, which infers the fault situation that the quadrotor encountered. The em-
bedding network is trained with a meta-RL scheme, and therefore, a single well-trained embedding
network is enough to cope with various fault scenarios.

4.1 Markov Decision Process Formulation
The dynamics of (R,ω) can be fully described by the dynamics of (n,ω) in (13) and (4). Since the
dynamics of vz in (2) is also determined by vz itself and R, the state tuple (vz,n,ω) and the control
input fc can be regarded as the observation x and the action u of a Markov decision process (MDP)
as follows.

x :=


vz

n1
n2
ω

 ∈X , u := fc ∈U , (15)

where only two elements of n are used as discussed above. The RL agent in Fig. 2 has a policy
π : X →U that maps an observation x to an action u.
As discussed above, the purpose of the inner-loop controller is to make ω parallel to n, which implies
ṅ = 0 in (13). It has been shown in [12] that the dynamic equations (13) and (4) have an equilibrium
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point, denoted by (ne,ωe, fe
c), and the linear quadratic regulator (LQR) designed based on the corre-

sponding linearized model can control the entire system to the relaxed hover solution, where ve
z = 0.

Therefore, the reward of the MDP is defined by the negative LQR cost as

r =−(x−xe)T Q(x−xe)− (u−ue)T R(u−ue), (16)

where Q ∈ R6×6 and R ∈ R4×4 denote the LQR gains, and xe and ue are the equilibrium defined by

xe :=


0
ne

1
ne

2
ωe

 ∈X e, ue := fe
c ∈U e, (17)

where X e ⊂X and U e ⊂ U denote the set of equilibrium observations and actions, respectively,
and ne =: [n1,n2,n3]

T .

4.2 Near-Hover Solutions
The dynamics of the observation x in (15) can be written as

ẋ = F(x)+Bu, (18)

where the function F : R6→ R6 and the matrix B ∈ R6×4 are assumed to be unknown. Given x0 and
u0, for δx := x−x0 and δu := u−u0 such that ‖δx‖ � 1 and ‖δu‖ � 1, the dynamic equation in (18)
can be approximated by

ẋ' F(x0)+Bu0 +Aδx+Bδu =: F0(x0,u0)+F1(δx,δu), (19)

where A := ∇xF(x0), the function F1 denotes the linearized part of the dynamics, and F0(x0,u0) :=
F(x0)+Bu0. Note that if a point (x0,u0) is one of the equilibrium of (18), for examples, (xe,ue) in (17),
then F0(x0,u0) = 0. These points are, indeed, the same as the relaxed hover solutions in (17).

Proposition 1. If ad ≡ 0 and F0(x0,u0) = 0, then (x0,u0) ∈X e×U e.

Since ne is a unit vector parallel to ωe, and from the constraint in (14), a relaxed hover solution can
be fully represented by

he := (ωe,ue) (20)

which is defined as a near-hover solution. The proposed meta-RL scheme trains the embedding
network and the RL agent to find a near-hover solution appropriate to the current fault situation.

4.3 Task Definition
In each fault scenario, the quadrotor may have different dynamics, which makes it plausible to assign
a task to each fault case. However, the linearized model in (19) is accurate only in a small neighbor-
hood of the linearization point (x0,u0) ∈X ×U , and therefore, the space X ×U should be divided
into several regions, and each region should be defined as a single task combined with the fault.
An i-th task is denoted by Ti ∈T , where T is a set of all tasks, as in the meta-learning literature. For
each task Ti, the quadrotor may have different linearized dynamics as discussed above, but a set of
transitions Ξi := {ξi}, where the transition is defined by

ξi(t) :=

x(t)
u(t)
ẋ(t)

 , (21)

may contain enough information of the linear model of task Ti.
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4.4 Embedding Network
The embedding network infers the task and can give some information to the inner RL agent to
have a (sub-)optimal policy immediately. This information is encoded with a latent variable z. The
probabilistic embeddings for actor-critic RL (PEARL) [21], where z is a probabilistic variable, has
been widely used for meta-RL synthesis, because it has shown superior performances in general
dynamic systems. Unlike the original PEARL method, the embedding network in this study returns z
deterministically, because the fault scenario is uncertain but less probabilistic.
The embedding network µ is a deep neural network with parameter φ , which infers z as follows.

z'

x0
u0
e

= µ(Ci;φ), (22)

where e denotes the embedding vector which will be discussed in the next section. The context Ci is
a matrix defined by

Ci =

x(t1) · · · x(tN)
u(t1) · · · u(tN)
ẋ(t1) · · · ẋ(tN)

=
[
ξi(t1) · · · ξi(tN)

]
, (23)

with randomly sampled transitions {ξi} ⊂ Ξi.

5. Training Algorithms
5.1 Meta-Training
The policy of the RL agent is designed as the following linear feedback control law.

π(x,z) = u0−K(e;ψ)(x−x0), (24)

where K is a function of the embedding vector e and the policy network parameter ψ such that
K(e;ψ) ∈ R4×6. The objective of meta-RL is to infer a tuple (x0,u0) ∈X ×U such that F0(x0,u0) = 0,
which implies that the tuple is a relaxed hover solution, as well as to estimate an optimal gain K(e;ψ).
Therefore, the synthesized meta-RL can be viewed as an automatic gain scheduling method where
the scheduling variable is the latent variable z which encodes the information of task Ti.
The optimal policy π can be obtained through an off-policy RL method which is modified for linear
systems to ensure the stability of the policy using a Q-function, denoted by Q. Restricting the struc-
ture of the Q-function to have a quadratic form of (x,u), a linear network can represent the gradient
of the Q-function as follows.

∇Q(x,u,z) :=
[

∇xQ(x,u,z)
∇uQ(x,u,z)

]
' H(e;θ)T

[
x−x0
u−u0

]
, (25)

where H is a function of the embedding vector e and the critic parameter θ such that H(e;θ)∈R10×10.
We propose a learning framework called a linear Q-learning to train the above linear networks for
the policy and the gradient Q-function using the following modified Hamilton-Jacobi-Bellman (HJB)
equation.

0 = [∇Q(x,u,z)]T
[

ẋ
−Kẋ− s(u−π(x,z))

]
+R(δx,δu) =: H (ξ ,z), (26)

0 = ∇uQ(x,π,z), (27)

where the scalar s > 0 is the design parameters of the linear Q-learning. The quadratic cost function
R is given by

R(δx,δu) := δxT Qδx+δuT Rδu, (28)

where Q and R are the positive semi-definite and positive definite symmetric matrices, respectively.
The critic and actor losses for a task Ti are defined as follows.

L Ti
critic(φ ,θ) = |H (ξ ,z)|+max(‖e‖−1, 0), (29)

L Ti
actor(ψ) = ‖∇uQ(x,π,z)‖2, (30)
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Figure 4 – Traning history of meta-RL.

Figure 5 – The latent variable from the trained embedding network represented using t-SNE.

where the second term in (29) penalizes the embedding vector of which the norm is greater than 1.
Note that the embedding network parameter φ is updated using the critic loss L Ti

critic, because L Ti
critic≡

0 implies that F0(x0,u0)≡ 0. Therefore, if the meta-RL networks are trained completely for a set of all
tasks T and the optimal parameters (φ ∗,θ ∗,ψ∗) are found that satisfy the following equations

ETi∼T

[
L Ti

critic(φ ,θ)
]
= 0, (31)

ETi∼T

[
L Ti

actor(ψ)
]
= 0, (32)

the embedding network will return the optimal latent vector z∗ in (22), which can be used to obtain
the human readable near-hover equilibrium (xe,ue) and the optimal gain K∗ for the encountered task.
In the meta-training stage, a large set of tasks should be collected. Due to the nature of embedding
network and model-free RL, both simulation and real flight data can be used. Using this task set, all
the parameters of the embedding network as well as the networks of RL agent are trained offline.

5.2 Fine-Tuning
After the meta-training, the networks will be implemented into the flight control computer of the
quadrotor, and the fine-tuning will be performed in online. Using a small amount of transition data ob-
tained during the flight, the trained embedding network infers the near-hover equilibrium (x0,u0) and
the embedding vector e corresponding to the current situation. The policy and the gradient Q-function
are modified as

π(x; K̂) = u0− K̂(x−x0), (33)

∇Q(x,u; Ĥ) = ĤT
[

x−x0
u−u0

]
, (34)
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Figure 6 – State and control input responses for the task with 95% LoE on the rotor 4.

and the parameters K̂ and Ĥ are initialized with the trained models and the embedding vector as
follows.

K̂ = K(e;ψ), Ĥ = H(e;θ). (35)

Then, the parameters are trained online with the modified HJB equation in (26). This training process
is fast and data-efficient since it is an off-policy algorithm. Moreover, the stability of the learnt policy
can be guaranteed in the neighborhood of the near-hover equilibrium.

6. Numerical Simulation
This setion demonstrates the validity of the proposd meta-RL basd FTC for a quadrotor through a
numerical simulation. The simulation time step is 0.001 seconds, and the derivative ẋ is obtained
from two subsequent observations and the Euler method, while the simulation itself uses Runge-
Kutta 4th-order method for integration. A task dataset is prepared for meta-training stage with 100
randomly generated tasks and 1,500 transitions for each task. A task is defined with a random
λ j ∈ [0.8,1] occurred in a random rotor single rotor j and random losses in mass and moment of
inertia up to 5%. To ensure all the transitions for each task are contained in a small region which
posesses an equilibrium point of the task, one relaxed hover solution is first obtained by assuming
the faulty rotor of the task is completely failed, and the transitions near the relaxed hover solution will
only be stored.
In the meta-training stage, the networks are updated using Adam optimizer [28] with a learning rate
0.001. The embedding network has four fully connected linear layers of (64, 128, 128, 64) neurons
and the batch normalization and the ReLU activation functions are used for each layers, except for
the output layer. The dimenstion of the embedding vector is set to 50, and also 50 transitions are
randomly sampled from the transition set of each task to construct the context Ci. The LQR gain
matrices Q and R and the design parameter s for the modified HJB equation in (26) are set to

Q = diag(1,20,20,0,0,0), R = I4, s = 1. (36)

The critic loss and the actor loss during the meta-training stage is presented in Fig. 4, where the
average and the standard deviation are obtained from 10 runs. It can be seen that losses decrease
consistently during the training.
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Figure 7 – State and control input responses for the task with 83% LoE on the rotor 2.

After the meta-training stage, the output latent variable of the embedding network is demonstrated in
Fig. 5, where t-SNE is used for downsizing the dimenstion from 60 to 2. Different colors indicate the
different faulty rotors. Since various equilibriums exist for each rotor fault case, the latent variable is
distributed in some range. The transparent scatter points in Fig. 5 imply the near-hover solutions not
using the opposite rotor of the faulty rotor, and therefore, it can be seen that for the opposite faulty
rotors have latent variables located close to each other.
In the fine-tuning stage, only 1,000 transitions are used to train the final control policy, which can be
gathered in 1 second in this setup. Two different tasks that have different faulty rotors are tested with
a single meta-training result to show the performance of the proposed meta RL-based FTC. The state
and control input responses for these tasks are shown in Fig. 6 and 7.

7. Conclusion
A fault-tolerant control architecture for a quadrotor is proposed using a meta-RL framework. An em-
bedding network and a linear Q-learning agent is trained using a modifed Hamilton-Jacobi-Bellman
equation with a bunch set of tasks. Once the networks are trained, it can infer a near-hover solution
appropriate to the current state of the quadrotor, and the inner RL agent with a linear policy can
be fine-tuned quickly in online. The effectiveness of the proposed framework is demonstrated by a
numerical simulation.
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