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Abstract 

An aircraft typically comprises millions of parts collected globally and assembled in a highly complex process. 
Its' life cycle consists of four phases, the longest being operations. This phase generates most of the statistical 
data in the aircraft life cycle, which can be used to develop statistical data processing algorithms to improve 
aircraft operations' efficiency. Aimed at efficient and cost-effective aircraft maintenance, this study presents 
analytical, numerical, and simulation methods. The models are based on probability theory and statistics, 
reliability theory, and segmented regression. In addition, the models were tested for goodness-of-fit to prove 
their accuracy. Input data was extracted from maintenance and pilot reports of a fleet of aircraft. An advantage 
of the proposed model is its simplicity, making it easy to use by personnel for planning aircraft maintenance 
activities. Furthermore, based on information provided by the models, aircraft operators can adjust their aircraft 
maintenance programs to reflect their actual requirements. The models can also be used for improving the 
design of new and existing aircraft systems, subsystems, and components 
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1. Introduction 

An aircraft typically comprises millions of parts collected globally and assembled in a highly complex 

manufacturing process, resulting in vast multi-modal data. Its operational phase generates a wealth 

of real-time data, which is collected, transferred, and processed with 70 miles of wire and 18 million 

lines of code for the avionics and flight control systems alone. These real-time operational data can 

be transformed into statistical data for developing models and algorithms for data-driven predictive 

aircraft maintenance approaches, which result in reduced maintenance costs, avoiding unnecessary 

preventive maintenance actions, and reducing unexpected failures. Operational data such as past 

aircraft faults/failures and maintenance actions can be used to estimate the probability of aircraft 

component failure and plan maintenance actions accordingly.  

The proposed data-driven methodology for optimal aircraft maintenance is carried out in two steps: 

a) reliability analysis of aircraft components, subsystems, and systems to determine reliability 

parameters and b) regression models for predicting the time moment of the occurrence of a 

fault/failure. The models and algorithms in this paper are based on probability theory and statistics, 

reliability theory, and regression models. The methodology described is applied to real-life aircraft 

operational data to validate the proposed models and prove their applicability. Historical datasets of 

pilot and maintenance records of faults/failures from aircraft operating in Nigeria are utilized. The 

results of the analysis described in this paper can provide insights into future faults/failures of aircraft 

components, sub-systems, and systems – it can supplement an existing aircraft maintenance 

strategy. This results in reduced waste which arises due to early maintenance and failure costs 

connected with late maintenance actions [1]. 

 

2. Methodology 

The proposed methodology for data-driven optimal aircraft maintenance is in two steps: 1) Reliability 

analysis [2] and 2) Regression analysis.  
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2.1  Statistical Simulation Model for Reliability Analysis 

Maintenance costs, to a large extent, depend on the reliability of aircraft components, subsystems, 
and systems. A failure probability generally measures reliability, and optimization ensures that the 
latter remains lower than the given threshold [3]. Over the last two decades, reliability analysis 
methods have been developed – these have stimulated interest for the probabilistic treatment of 
structures [4]. Reliability analysis involves the evaluation of the level of safety of a system. Given a 
probabilistic model (an n-dimensional random vector X with probability density function fX) and a 
performance model (a function g), it uses mathematical techniques to estimate the system safety level 
in the form of a failure probability [5]. Failure is generally defined as an event F= {g(X)≤0} and the 
probability of failure is defined as: 

 

 

Many mathematical definitions and probability distributions are used to perform different types of 
maintenance and reliability studies. However, the exponential distribution is the most used probability 
distribution because it is easily applied in various types of analysis of failure rates of components, 
subsystems, and systems during their useful life [6]. The exponential distribution probability density 
function is defined by 

ƒ(t) = λ𝑒−𝜆𝑡 for t ≥ 0 λ > 0                  (1) 

where t is time, ƒ(t) is the probability density function (PDF) and λ is the distribution parameter, which 
in reliability studies refers to the constant failure rate [6]. Based on the exponential distribution law of 
mean time to failure, a statistical simulation model for reliability analysis of aircraft systems and 
structures in view of effective maintenance is proposed in [2], and the algorithm is shown in Figure 1. 

 

 
Figure 1 – Flowchart for reliability analysis based on exponential distribution. 

 

For the proposed model, the aircraft systems, structures, and powerplant were categorized per the 

ATA numbering system. Input data nT is extracted from pilot and maintenance reports of a fleet of 

aircraft. The graph of monitoring data (Figure 2) gives a visual analysis of how the faults/failures occur. 

The output F refers to the time at which the i-th fault/failure occurs, but on its own, F cannot be used 

to plot the PDFs because it is a two-dimensional array; hence Ai is formulated to extract a one-

dimensional array for plotting the PDFs. The following reliability indices are calculated using the 

resulting PDFs:  

– Fault/failure rate λ, 
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– Mean time between fault/failure (MTBF), 

– Number of faults/failures per 1000 flight hours (K1000). 

 

Figure 2 – Graph of monitoring data 
 

After the reliability analysis is carried out to determine the least reliable aircraft components and 

systems, the next phase will be the regression analysis to predict the time at which faults/failures will 

occur.  

 

2.2 Regression Analysis for Aircraft Maintenance 
Regression analysis is a simple predictive tool that investigates the relationship between 

independent and dependent variables [7]. Regression models are statistical models where we make 

a regression assumption [8]. They can be integrated to improve the prediction accuracy of 

faults/failures of aircraft components, subsystems, and systems, thereby providing valuable insights 

for maintenance planning. For the scope of this study, regression models are employed to predict 

the occurrence of faults/failures during aircraft operations in view of determining optimal 

maintenance interval for aircraft systems. Regression analysis can also be viewed as a set of data 

analytic techniques that help understand the interrelationships among variables. The relationship is 

expressed in the form of a model or an equation that connects the dependent or response variable 

and one or more explanatory or predictor variables [9]. For this study, there are no predetermined 

coefficients for the regression analysis because calculations are based on aircraft operational data. 

The nomenclature for the parameter used in the regression analysis are given in Figure 3.  

 

 

Nomenclature for the parameters and variables used in the regression analysis 

a: matrix of n 

n: sample size 

m: switching point   

ϕ: Heaviside step function which is equal to 0 before the switching point and 1 after the                   

switching point     

Ti:  time moment of malfunction/failure 

Y: predicted value i.e. optimal maintenance flight hour  

X:  ith number of failures, i   

 

  

Figure 3 – Nomenclature for parameters and variables for the regression analysis 
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After the parameters are defined, the next step is determining which regression model is optimal for 

predicting the time moment of the next failure – for this purpose, three segmented regression models 

are tested. Segmented regression models are models where two or more lines are joined at unknown 

points called the switching points representing the threshold [10]. It partitions the data into different 

regions, and a regression function is fitted to each one [9]. Segmented regression is an alternative 

variant of approximating empirical curves. Its use in aircraft operation allows for increased 

correctness for calculating extreme probability values of occurrence of faults/failures in aircraft 

components, subsystems, and systems. The segmented regression models considered are: 

– Quadratic-linear segmented regression model, 

– Linear-linear segmented regression model, 

– Quadratic-quadratic segmented regression model. 

The matrix of unknown coefficients in the segmented regression models is estimated using the 

ordinary least squares method. The vertical distances represent errors in the response, and the 

ordinary least squares method gives the line that minimizes the sum of squares of vertical distances 

from each point to the regression model function. These errors can be obtained by writing equation 

(2) for example, for linear regression model as  

 

ɛi = yi – β0 – β1xi,  i=1, 2, …n           (2) 

 

The sum of squares of these distances can be written as  

 

 

 

The values of  𝛽0̂ and 𝛽1̂ that minimize  are given by  

 

𝛽1̂ =
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

∑(𝑥𝑖 − 𝑥̅)2
 

   and  

 

 

The estimates  𝛽0̂ and 𝛽1̂ are called the ordinary least squares estimates of β0 and β1 because they 

are the solution to the ordinary least squares method [9].  

 

2.2.1 Quadratic-linear segmented regression model 
 

The quadratic-linear segmented regression model for predicting the time moment of the subsequent 

fault/failure of the aircraft system has the following form  

 

      (3) 

 

This model uses two segments joined together at the switching point m and three unknown 

coefficients β0,1, β1,1 and β2,1. Using the ordinary least square method unknown coefficients are 

calculated as follows:  

 

 

 

2.2.2 Linear-linear segmented regression model 
The functional dependence (4) for the linear-linear segmented regression model also uses two 
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segments joined together at the switching point m.  

 

      (4) 

 

The unknown coefficients β0,2, β1,2 and β2,2. are calculated as follows 

 

 

 

2.2.3 Quadratic-quadratic segmented regression model 
The quadratic-quadratic segmented regression model for predicting the time moment of the next 

failure of the aircraft system has the following form 

 

     (5) 

The five unknown coefficients β0,3, β1,3,  β2,3, β3,3  and β4,3. are calculated as follows 

 

 

 

In step three, the value of the optimal switching point m is selected for each model based on the 

corresponding least value of standard deviation 𝜎. 

 

 

 

where l is the degree of freedom for each of each selected model, 𝑌 ̂corresponds to the response 

variable for each of the segmented regression models i.e., Y1(X), Y2(X) and Y3(X).  

 

From the observations of m and σ,  the optimal values of the switching point for the three segmented 

regression models are calculated. The segmented regression model with the least value of m is 

considered the optimal model for predicting the flight hour at which a fault/failure is likely to occur in 

the observed system.  

 

3. Analysis and Results 
To test the models, input data for the simulation was extracted from pilot and maintenance reports 

of a fleet of aircraft in Nigeria. A basic sample of statistical data was generated from a fleet of  aircraft 

over an operational period of four years [11]. As shown in Table 1, the fault/failure information of 

each system, structure, and powerplant was grouped according to the ATA numbering system. In 

the table, nT refers to the total number of faults/failures observed by pilots and maintenance 

personnel for the time interval. 
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Table 1 – Faults/failures information of aircraft systems and structures 

 

ATA № nT ATA № nT ATA № nT ATA № nT 

21 11 31 31 53 165 73 48 

22 104 32 211 55 13 74 1 

23 39 33 76 56 4 75 54 

24 57 34 173 65 192 76 5 

25 27 39 9 66 37 77 8 

26 15 45 17 67 76 78 4 

28 9 51 70 71 24 79 48 

29 46 52 53 72 20 80 15 

 

 

 

The simulation for the reliability analysis is performed using the algorithm in Figure 1 for 10000 

iterations, and the probability density functions (PDFs) are plotted based on the output. A sample 

PDF (ATA 34) is shown in Figure 4 – The blue line proves that the simulation results coincide with 

the theoretical distribution. For this study, the reliability parameters of the top-most failing ATA 

chapters are  analyzed i.e., ATAs chapter 22, 24, 32, 33, 34, 53, 65, 67 and 75  

 

 
Figure 4 – Probability density function for observed time between failures of the navigation system 

(ATA 34) 
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Table 2 – Reliability indices based on the PDFs 

 

ATA № ATA Chapter Name MTBFcalc λcalc K1000 calc 

22 Auto flight 285.20 0.004 4 

24 Electrical power 580.45 0.002 2 

32 Landing gear 136.75 0.007 7 

33 Lights 361.91 0.003 3 

34 Navigation 164.52 0.006 6 

53 Fuselage 173.14 0.006 6 

65 Tail rotor drives 151.76 0.007 7 

67 Rotors flight control 409.80 0.002 2 

75 Engine air 506.60 0.002 2 

 

To predict the time moment at which an aircraft fault/failure will occur, three segmented models were 

previously developed in this study. To determine which of the segmented regression models gives 

the most prediction accuracy, all models will be tested using real-life aircraft operational data [11]. 

The selected aircraft system (ATA 34)  is further transformed for the analysis (Table 3.) 

 

Table 3. Statistical data generated from aircraft operations  

Failure i  

Time 
between 
failures Failure i  

Time 
between 
failures Failure i  

Time 
between 
failures Failure i  

Time 
between 
failures 

1 0 19 1.5000 37 2.5000 55 24.9501 

2 510.9672 20 3.3333 38 0.1000 56 32.6334 

3 17.0833 21 6.3833 39 2.5000 57 2.4500 

4 0.0833 22 0.4000 40 2.5000 58 44.7332 

5 20.2667 23 0.4000 41 4.3000 59 5.0333 

6 4.336 24 0.4000 42 1.8333 60 10.3833 

7 54.6334 25 0.0833 43 1.8333 61 13.3600 

8 90.8332 26 0.0833 44 1.8333 62 0.1333 

9 161.7500 27 33.2168 45 1.8333 63 0.1333 

10 0.5000 28 48.7167 46 1.8333 64 0.6167 

11 4.1667 29 5.6667 47 1.8333 65 0.3334 

12 4.1667 30 2.4833 48 20.9167 66 2.6667 

13 56.0999 31 78.2099 49 2.4167 67 83.8634 

14 56.0999 32 4.3333 50 1.5667 68 22.4334 

15 330.5002 33 1.5000 51 8.2334 69 11.3999 

16 111.7334 34 8.8166 52 18.9332 70 3.0666 

17 42.7768 35 0.1000 53 18.9332 

 18 1.5000 36 0.1000 54 53.1834 

 

The transformed statistical data (Table 3) is a matrix A and is the input data for the simulation. Each 

proposed segmented model is tested using the input data, and the graphs plotted to check the fitting  

(Figure 5, 6, 7). Each model's matrix of unknown coefficients is calculated using the ordinary least 

square method.  
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Figure 5 – Quadratic-linear segmented model 

 

Figure 6 – Linear-linear segmented model 
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Figure 7 – Quadratic-quadratic segmented model 

Designing an accurate predictive model involves fitting it to a set of training data and then adjusting 

its parameters such that this model will be able to make reliable predictions on new untrained data. 

Overfitting or underfitting is a common concern when designing a predictive model and it is possible 

to create a complex structure when fitting the regression model which results in poor performance 

[12]. Figure 8 illustrates this problem, and we compare it to Figure 5-7 to confirm that the three 

proposed regression models can be used to forecast time moments of faults/failures of aircraft 

component, subsystems, or system.  

 

Figure 8 – Pictorial representation of over- and underfitting in regression [12] 

 

To determine which of the three models gives the most precise prediction and at which optimal 

switching point m, an analysis of the values of standard deviation σ for each value of m=15…30 is 

carried out. The results are given in Table 4 – Y1, Y2 and Y3 respectively refer to quadratic-linear 

segmented model, linear-linear segmented model, and quadratic-quadratic segmented model. 
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Table 4. Values of standard deviation σ for each value of m=15-30 

m 

σ 

m 

σ 

Y1 Y2 Y3 Y1 Y2 Y3 

15 115.084 74.426 51.332 23 80.537 84.681 72.787 

16 108.777 67.825 47.939 24 79.201 89.517 73.757 

17 102.827 64.736 50.674 25 78.425 94.120 74.199 

18 97.404 64.643 55.727 26 78.127 98.415 74.243 

19 92.615 66.781 60.859 27 78.232 102.525 74.104 

20 88.523 70.386 65.227 28 78.683 106.613 73.949 

21 85.154 74.862 68.655 29 79.434 110.618 73.780 

22 82.503 79.730 71.137 30 80.435 114.485 73.599 

 

According to Table 4, the least value of standard deviation σ is observed with the quadratic-quadratic 

segmented model when m=16. Therefore, this model is considered the most precise of the three 

proposed regression models for predicting the fault/failure of an aircraft component, subsystem, or 

system. The matrix of coefficients of the quadratic-quadratic segmented model are 

 

 

4. Conclusion 
In this study, a two-step methodology for data-driven optimal aircraft maintenance was developed. 

In the first step, a reliability analysis is carried out using an algorithm based on the exponential 

distribution law of mean time to failure. In the second stage, the flight hour at which a fault/failure will 

occur is predicted using segmented regression models. The simulation results using real-life 

operational aircraft data show that the quadratic-quadratic segmented regression model is the most 

optimal for the prediction.  

The findings presented in this paper can be used for determining and optimizing maintenance during 

the first three phases of the aircraft life cycle. It can also supplement an existing aircraft maintenance 

strategy and decrease waste due to early maintenance and failure costs connected with late 

maintenance actions. An advantage of the proposed method is its simplicity, making it easy to use 

by airline personnel for planning maintenance tasks. 
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