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Abstract

This paper focuses on a novel gain-scheduling state-feedback control strategy to cope with the active flutter
suppression of a smart airfoil model. Unlike other gain-scheduled control approaches in the literature, this one
allows combining the polytopic and linear fractional representations into a particular framework to increase
the degrees of freedom of a control design. The synthesis conditions have been derived using parameter-
dependent Lyapunov functions associated with a static full-block multipliers concept to obtain a less conserva-
tive condition such that all time-varying parameters of the linear system may be incorporated. The distinctive
gain-scheduled controller is established from existence linear matrix inequalities (LMIs) conditions, where the
main steps to obtain such parameter-dependent controller are given. Finally, a smart airfoil model is used to
show the effectiveness of the proposed control method in terms of variation of the airspeed.

Keywords: Gain-scheduled controller, Active flutter suppression, Smart airfoil model, LMIs.

1. Introduction
Currently, modern aircraft designs have been focused on the reduction of structural weight to improve
fuel efficiency and reduce enviromental impact [1, 2, 3]. However, the reduction of the structural
weight may lead to reduced stiffness that in turn to critical issues. For instance, the wings become
flexible and can cause undesired coupling of rigid body dynamics and elastic deformation through
aerodynamic forces and aircraft control surface resulting in a phenomenon called flutter [4]. Flutter
in aircraft is an oscillation caused by the interaction of aerodynamic forces, structural elasticity, and
inertial effects that due to increasing airflow speed, the structural damping becomes insufficient to
tolerate the high vibration caused by the aerodynamic forces [5, 6]. As a result, the flutter suppression
problem in aircraft has been a relevant research topic in the aeronautical application for decades and
many methods in control literature concerning the suppression of flutter phenomenon have been
proposed.
The active flutter suppression received great attention in the past through the Active Flexible Wing
(AFW) program [7] and Benchmark Active Controls Technology (BACT) wing, in which several control
laws as optimal control, multi-rate control, nonlinear control and robust control using performances
criteria were employed. In recent years, the literature shows that the synthesis of multivariable con-
trollers that rely on the use of linear parameter-varying (LPV) strategies have been very attractive
to solve this problem. This statement is due to the ability to adequately represent some classes of
nonlinear systems using a finite set of linear models on a convex hull. To the best of our knowl-
edge, the first contribution using LPV controllers for active flutter suppression problem was published
by [8], where a gain-scheduled controller design for active flutter suppression problem using linear
fractional representation (LFR) was proposed. It is worth mentioning here that LFR is a powerful
description to represent plants subject to nonlinearities and time-varying parameters [9, 10]. Unlike
other representations, as gridding modeling [11], the stability is guaranteed, as well as present more
general parameter dependencies and uncertainties than the polytopic approach [12, 13]. However,
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many of the proposed LPV/LFR approaches employ the concept of quadratic stability. In these ap-
proaches, a single parameter-independent Lyapunov function is used, an assumption that generally
leads to conservative results [14, 15]. Such conservative results occur because of the absence of
restrictions on how fast the parameters may vary [16, 17].Therefore, the search for methods that
allow dealing with bounded rates of parameter variation in terms of parameter-dependent Lyapunov
(PDL) functions for LFR becomes crucial. In this case, as far as the authors know, there are a few
works regarding gain-scheduled controllers design conditions using PDL functions for LFR systems.
Most of these works use sophisticated tools such as integral quadratic constraint (IQC) [18] to obtain
gain-scheduling synthesis conditions, an approach that can lead to a higher computational effort.
In this context, the paper consists in providing novel gain-scheduled state-feedback controllers to
cope with the active flutter suppression of a smart airfoil model. The synthesis conditions are formu-
lated using a generalization of the discrete-time conditions derived in [19, 20] for application in the
continuous-time domain. The main difference among the strategies is due to the difficulty in dealing
with the time-derivative problem of the PDL functions. Herein, the time-derivative Lyapunov matrix
is denoted as belonging to polytopic convex sets, in which the rates of the time-varying parameters
vector are chosen to be bounded to allow the existence of a finite LMI condition. In order to evaluate
the effectiveness of the proposed condition, the smart airfoil model developed by [21] will be used.
This model also was employed in other applications, for instance [22] in which polytopic LPV models
were developed. Taking into account the detailed mathematical modeling presented in that work, we
generalize one of these polytopic LPV models for LFR.
The remaining of this paper is given as follows. Section 2 presents the smart airfoil model in details.
Section 3 addresses the main contribution of this paper, where novel gain-scheduling state-feedback
control strategies for LPV/LFR systems are derived. Section 4 illustrates the LFR model of the smart
airfoil model, as well as the results of the proposed methods. Section 5 presents our conclusions.

1.1 Notation
The paper notation is mostly standard. Rn×n is the n× n dimensional Euclidean space. AT and A−1

denotes, respectively, the transpose and the inverse of matrix A. A ≻ 0 means that A is a positive-
definite matrix; similarly, A ≺ 0 means that A is a negative-definite matrix. diag{.} represents a
diagonal matrix with the specified elements and the symbol • represents the transpose elements
in the respective symmetric positions.

2. Smart airfoil model
This section closely follows the LPV modeling of a smart airfoil presented in [22]. There the linearized
airfoil model is expressed by two differential equations given by

[
m+M Mxα

Mxα Iα

][
ḧ(t)
α̈ (t)

]
+

[
Kh 0
0 Kα

][
h(t)
α (t)

]
=

[
0

mg

]
y(t)+F (t)

mÿ(t) = mgα (t)+u(t)
(1)

where the aerodynamic loading is F(t), m is the moving mass and M the airfoil mass. In this model,
we can note that the position of the mass y(t) is assumed to be a control input to airfoil mass, as well
as the variable u(t) is given as the control input to the moving mass m. These airfoil movements are
illustrated in Figure 1 . Taking into account that the aerodynamic loading F(t) is

F (t) = qacCLα

 −1
V

0
e
V

0

[
ḣ(t)
α̇ (t)

]
+

[
0 −1
0 e

][
h(t)
α (t)

] (2)

and replacing the expression (2) in (1), we obtain a full smart airfoil model. However, it is important
to keep in mind that in this study a nondimensionalized model is desired. In this case, using a simple
change of variable approach such that τ = ωαt, ē = e/b, ḡ = g/ω2

αb, h̄ = h/b, V̄ = V/ωαb, which b is
a typical section semi-chord, we get the nondimensionalized equations of motion for the smart airfoil
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Figure 1 – Configuration of the smart airfoil system [22].

model. Therefore, the smart airfoil model can be rewritten as
[

1+β x̄α

x̄α r̄2
α
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]
+
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0
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α
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0
−2V̄ 2ē
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+ r̄2

α
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h̄(τ)
α (τ)

]
=

[
0

β ḡ

]
ȳ(τ)

¨̄y(τ) = ḡα (τ)+ ū(τ)
(3)

By using some mathematical manipulations, we can transform the descriptor equations denoted in
(3) into a standard differential equation given by

[ ¨̄h(τ)
α̈ (τ)

]
+


−2r̄2

αV̄
qaµ

− −2V̄ ēx̄α

qaµ
0
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qaµ

+
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qaµ
0

[ ˙̄h(τ)
α̇ (τ)

]
+


−r̄2

αω2
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qaω2
α

ϒ
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qaω2
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Γ
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h̄(τ)
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]
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−x̄αβ ḡ

qa
(1+β )β ḡ

qa

 ȳ(τ)

¨̄y(τ) = ḡα (τ)+ ū(τ)
(4)

where the variables ϒ, Γ and q are

ϒ =
−2r̄2

αV̄ 2

qaµ
− 2V̄ 2ēx̄α

qaµ
+

r̄2
α x̄α

qa
,Γ =

2x̄αV̄ 2

qaµ
+

2V̄ 2ē(1+β )

qaµ
+

r̄2
α (1+β )

qa
,qa =−(r̄2

α(1+β )− x̄2
α) (5)

and the values of its parameters are defined as in Table 1. In this study case, it can be seen that
when the flutter phenomenon occurs, both pitching angle α and the plunging displacement h are
feedback such that the position of the mass m is properly adjusted to achieve a reduced flutter. The

Parameter Value Parameter Value
µ 152 b [m] 0.127
ē 0.35 ωα [rad.s] 64.1
x̄α 0.25 ωh [rad.s] 55.9
r̄2

α 0.388 β 0.01

Table 1 – Parameter and values of the smart airfoil model.

crucial variable to understand the flutter phenomenon is the airspeed V̄ of the smart airfoil. In this
case, as the velocity/airspeed is available in real-time, the variable under variation can be adopted as
a time-varying parameter. From [22], two time-varying parameters were considered in terms of the
airspeed given by the normalized variables V̄ and V̄ 2 such that an operation region may be built to
cope with the flutter problem. However, it is important to highlight that both time-varying parameters
are defined taking into account the same value of airspeed V̄ , in which is measured or available in
real-time. This assumption can lead to a bad use of the gain-scheduled controllers designed because

3
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we will have two controllers operating in two vertices that never will occur in the real world since the
linear combination of the airspeed relies on just two extremum points. In this case, an approximation
method to deal with the variable V̄ 2 should be adopted. Although it is clear that an LPV model can
be obtained using such approximation in terms of V̄ , we currently have some frameworks to deal
with this issue, for instance, the gridding, polytopic, polynomial, and LFR structures. Differently from
[22], we will use the LFR structure to encompass the control theory applied in this paper, as well as
a larger range of airspeed lying in the region V̄ ∈ [4 8] is adopted. This assumption can be seen in
Figure 3, where the eigenvalues evolution with increasing flow velocity is characterized.

Figure 2 – Eigenvalues evolution with increasing flow velocity for V̄ ∈ [4 8].

3. Results
The main concern of this section consists in presenting with relative simplicity the problem statement
and the LMI-based conditions for the synthesis of gain-scheduling state-feedback controllers using
a general class of LPV systems given by LFR. The proposed conditions rely on the use of scaling
matrices that can be reinterpreted as a full-block multipliers description to obtain stabilizing and L2
controllers.

3.1 Stabilizing problem
Consider the continuous-time LPV system given by

ẋ(t) = A (θ(t))x(t) (6)

where x(t) ∈ Rn is the states vector and the A (·) ∈ Rn×n is a fixed function of a time-varying parame-
ters vector θ (t) = [θ1 (t) , . . . ,θm (t)]T in which is available in real-time and takes values in the polytope
ΩN ∈ Rm. Among all the possible mathematical representations of the system (6), we will deal with
the LFR [23]:

Gyu :
{

ẋ(t) = Ax(t)+Bqq(t)
p(t) =Cpx(t)+Dpqq(t)

(7)

q(t) = ∆(θ(t))p(t) (8)

where the system Gyu in (7) define the linear time-invariant system and ∆(θ (t))∈∆∆∆ is the time-varying
uncertainty structure given by ∆∆∆= diag(θ1Is1 , . . . ,θ1Ism) that combined satisfy an upper linear fractional
transformation Gyu (∆(θ)) = Fu (Gyu,∆∆∆). Herein, the parameter-dependent system Gyu(∆(θ)) is de-
noted as an LTI system with the time-varying parameters present in a feedback loop as a diagonal
block, as can be seen in Figure 3. Taking into account that ∆∆∆ = ∆(θ) for all θ ∈ ΩN containing the
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Figure 3 – LFR block diagram of a time-varying parameter Gyu(∆(θ)) system.

origin, then ∆(θ) may be defined by convex combination of ∆i, i = 1, . . . ,N, such that

∆(θ) =
N

∑
i=1

ξi (t)∆i : ξi ≥ 0,
N

∑
i=1

ξi(t) = 1 (9)

be satisfied and the variable max(s1, . . . ,sm) corresponds to the LFR degree of system for p(t) and
q(t) with same dimensions (np = nq). Moreover, the representation (7)−(8) is described by appro-
priate matrices A ∈ Rn×n, Bq ∈ Rn×nq , Cp ∈ Rnp×n and Dpq ∈ Rnp×nq , where the well-posed condition
det(I −Dpq∆(θ)) ̸= 0 for all θ ∈ ΩN is ensured. In this case, the system Gyu(∆(θ)) can be rewritten as

Gyu (∆∆∆) :
{

ẋ(t) = Ax(t)+Bq∆∆∆p(t)
p(t) =Cpx(t)+Dpq∆∆∆p(t)

(10)

In order to properly address the state-feedback synthesis condition for this class of system, let us first
introduce a stability condition based on parameter-dependent Lyapunov function. A novel stability
condition for (10) may be given as follows.

Lemma 1 (Stability condition) Consider the LFR system in (10). If there exist symmetric positive
definite matrices P(∆∆∆) ∈ Rn×n and matrix Π ∈ Rnp×(n+np) such that the following LMI hold:

ΨP +Φ
T
∆ΠP +Π

T
PΦ∆ ≺ 0 (11)

where the matrices ΨP, Φ∆ with appropriate dimensions are given by

ΨP =

[
AT P(∆∆∆)+P(∆∆∆)A+P

(
∆̇∆∆
)

P(∆∆∆)Bq∆∆∆

• 0

]
, Φ∆ =

[
Cp −I +(Dpq∆∆∆)

]
(12)

then system (10) is asymptotically stable for all θ ∈ ΩN .

Proof 1 Consider the following parameter-dependent Lyapunov function

V (x,∆∆∆) = x(t)T P(∆∆∆)x(t) (13)

then the system (10) is asymptotically stable if there exist symmetric matrices P(∆∆∆)≻ 0 such that the
time-derivative of the Lyapunov function V̇ (x,∆∆∆) ≺ 0 along the state trajectory of the system is given
by

[Ax(t)+Bq∆∆∆p(t)]T P(∆∆∆)x(t)+ xT (t)P(∆∆∆) [Ax(t)+Bq∆∆∆p(t)]+ xT (t)P
(
∆̇∆∆
)

x(t)≺ 0 (14)

which is equivalent to[
x(t)
p(t)

]T [ AT P(∆∆∆)+P(∆∆∆)A+P
(
∆̇∆∆
)

P(∆∆∆)Bq∆∆∆

∆∆∆
T BT

q P(∆∆∆) 0

][
x(t)
p(t)

]
≺ 0. (15)

Now adopting the conventional scaling technique in terms of full-block multipliers introduced by [13,
12], for any real matrices G∆ and H∆ of compatible dimensions, we get

xT (t)G∆ p(t) = xT (t)G∆Cpx(t)+ xT (t)G∆(Dpq∆∆∆)p(t)

pT (t)H∆ p(t) = pT (t)H∆Cpx(t)+ pT (t)H∆(Dpq∆∆∆)p(t)
(16)
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whereby using symmetric matrices properties, the expression (16) can be recast as[
x(t)
p(t)

]T [ G∆Cp +CT
p GT

∆
G∆(Dpq∆∆∆)−G∆ +CT

p HT
∆

(Dpq∆∆∆)TGT
∆
−GT

∆
+H∆Cp H∆(Dpq∆∆∆)+(Dpq∆∆∆)THT

∆
−H∆ −HT

∆

][
x(t)
p(t)

]
= 0 (17)

Combining the constraints in (15) and (17) into a single stability condition, such that one can ob-
tain the inequation (11) for ΠP =

[
GT

∆
HT

∆

]
as a static multiplier description. Hence, the proof is

concluded.

It can be seen that this characterization for the stability condition of continuous-time LPV/LFR systems
has some particularities in terms of computational complexity to deal with the time-derivative of the
Lyapunov function. To solve such a problem, we will address later some concepts about the variation
rates of the parameters θ(t) to achieve the stabilizing control conditions. By making use of these
approaches, novel existence conditions to obtain gain-scheduled controllers for LPV/LFR systems
may be established.

3.1.1 LMI-based conditions for state-feedback controllers
Given Lemma 1, it is possible to obtain an equivalent dual condition. It is well-known that LFR
systems can be transformed using the duality property, such that certain issues can be solved using
more suitable formulations. The dual stability condition of Lemma 1 is denoted as follows.

Corollary 1 (Dual Stability condition) Consider the LFR system in (10). If there exist symmetric
positive definite matrices W (∆∆∆) ∈ Rn×n and matrix Π ∈ Rnq×(n+nq) such that the following LMI hold:

ΨW +Φ
T
∆ΠW +Π

T
W Φ∆ ≺ 0 (18)

where the matrices ΨW , Φ∆ with appropriate dimensions are given by

ΨW =

[
AW (∆∆∆)+W (∆∆∆)AT −W

(
∆̇∆∆
)

W (∆∆∆)CT
p

• 0

]
, Φ∆ =

[
(Bq∆∆∆)T −I +(Dpq∆∆∆)T ]

(19)

then system (10) is asymptotically stable for all θ ∈ ΩN .

As this paper deals with the active flutter suppression of a smart airfoil, a stabilizing condition in terms
of a state-feedback strategy can be posed. Therefore, consider the following LFR system

ẋ(t) = Ax(t)+Bq∆∆∆p(t)+Buu(t)
p(t) =Cpx(t)+Dpq∆∆∆p(t)+Dpuu(t)

(20)

where Bu ∈ Rn×nu and Dpu ∈ Rnp×nu allow describing the parameter-dependent input matrix B(∆∆∆) in
terms of fixed matrices. Now adopting the state-feedback control law u(t) = Kx(∆∆∆)x(t) for the system
(20), the closed-loop system may be described by

Gx (∆∆∆) :
{

ẋ(t) = (A+BuKx (∆∆∆))x(t)+Bq∆∆∆p(t)
p(t) = (Cp +DpuKx (∆∆∆))x(t)+Dpq∆∆∆p(t)

(21)

We can notice that to obtain a stabilizing state-feedback condition for the system (20), a simple
change of variable can be used. However, even doing such mathematical manipulation, the time-
derivative problem of the parameter-dependent matrix W is still an unsolved problem. In this case,
we resort to variation rates of the parameter θ(t) to solve this issue. Therefore, taking into account
that

∆̇∆∆ =
M

∑
j=1

λ j (t)h j : λ j ≥ 0,
M

∑
j=1

λ j (t) = 1 (22)

as a result, we get

W
(
∆̇∆∆
)
=

N

∑
i=1

ξ̇i (t)Wi =
N

∑
i=1

M

∑
j=1

µ j (t)h j
i Wi =W (h j) (23)
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where more details on this representation can be found in [24]. We can see that ∆̇∆∆= ∆̇(θ(t)) exists and
satisfies the differential inclusion θ̇(t)∈ΩM, such that ΩM is also a convex polytope set co{h1, . . . ,hM}.
Moreover, it is important to point out that the vectors used to define ΩM can not be chosen arbitrar-
ily. In this sense, such vectors can be built from the bounded rate of parameter variation, i.e. the
magnitude of the time-derivative of θ̇(t).
As a result, a finite LMI-based condition for state-feedback control of continuous-time LPV/LFR sys-
tems can be derived. It can also be seen that combining both LFR and polytopic representations
may lead to powerful and straightforward synthesis conditions. The following theorem addresses the
resulting combination between the LFR and polytopic frameworks.

Theorem 1 (Gain-scheduling control condition) Consider the LFR system in (20). If there exist
symmetric positive definite matrices Wi ∈ Rn×n and matrices Zi ∈ Rnu×n, Π ∈ Rnq×(n+nq) such that the
following LMI hold:

ΨWi, j +Φ∆
T
i ΠW +Π

T
W Φ∆i ≺ 0 (24)

where the matrices ΨWi, j , Φ∆i with appropriate dimensions given by

ΨWi, j =

[
AWi +WiAT +BuZi +ZT

i BT
u −W (h j) WiCT

p +ZT
i DT

pu
• 0

]
, Φ∆ =

[
(Bq∆i)

T −I +(Dpq∆i)
T ]

(25)

for all i = 1, . . . ,N and j = 1, . . . ,M then system (20) is asymptotically stabilized by a gain-scheduled
controller Kxi = ZiW−1

i for all θ ∈ ΩN and θ̇ ∈ ΩM.

Proof 2 Using the dual form for stability condition given in Corollary 1 and applying a change of
variables Z(∆∆∆)=Kx(∆∆∆)W (∆∆∆) in order to avoid the coupling among the variables, we prove the sufficient
of the condition. Hence, the proof is complete.

Since a stabilizing condition was provided, a straightforward contribution consists of deriving LMI-
based conditions subject to a given performance index. In this case, an appropriate criterion is the
induced L2 performance, once it is desired to tolerate disturbances and noises in the active flutter
suppression design.

3.2 Induced L2 performance
Consider the closed-loop LPV system given by

Tzω :


ẋ(t) = Ax(t)+Bqq(t)+Bωω(t)
p(t) =Cpx(t)+Dpqq(t)+Dpωω(t)
z(t) =Czx(t)+Dzqq(t)+Dzωω(t)

(26)

q(t) = ∆(θ(t))p(t), (27)

where A∈Rn×n, Bq ∈Rn×nq , Bω ∈Rn×nω , Cp ∈Rnp×n, Dpq ∈Rnp×nq , Dpω ∈Rnp×nω ,Cz ∈Rnz×n, Dzq ∈Rnz×nq

and Dzu ∈ Rnz×nω . Herein the signals z(t) and ω(t) correspond to exogenous outputs and exogenous
inputs, such that the integers may be defined as mp = n+np +nω and mq = n+nq +nz. In this case,
analogously to stabilizing problem section, we can represent the closed-loop LFR system in terms of
a block diagram, as can be seen in Figure 4.
Therefore, using the well-known Bounded Real Lemma (BRL) for LPV systems, we can ensure that
the closed-loop system (26) and (27) is asymptotically stable and satisfy the induced L2 norm for all
θ ∈ ΩN and θ̇ ∈ ΩM. In this sense, an appropriate description for closed-loop system should be posed
to facility the comprehension. Following the early section, the Tzω(∆(θ)) system can be rewritten as

Tzω (∆∆∆) :


ẋ(t) = Ax(t)+Bq∆∆∆p(t)+Bωω(t)
p(t) =Cpx(t)+Dpq∆∆∆p(t)+Dpωω(t)
z(t) =Czx(t)+Dzq∆∆∆p(t)+Dzωω(t)

(28)

7
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Figure 4 – LFR block diagram of a closed-loop Tzω(∆(θ)) system.

and a novel induced L2 performance condition for LPV/LFR systems may be established. Differently
from the other conditions, such a condition allows coping with the time-derivative Lyapunov function
from the bounded rate of parameter variation knowledge in polytopic representation. Thus the novel
induced L2 norm condition for (28) may be given as follows.

Lemma 2 (Induced L2 norm condition) Consider the closed-loop LFR system in (28). If there exist
symmetric positive definite matrices P(∆∆∆) ∈ Rn×n and matrix Π ∈ Rnp×mp such that the following LMI
hold: {

min
P

γ, subject to

ΨP +ΦT
∆

ΠΞ+ΞT ΠT Φ∆ ≺ 0
(29)

where the matrices ΨP, Φ∆ and Ξ with appropriate dimensions are given by

ΨP =


AT P(∆∆∆)+P(∆∆∆)A+P

(
∆̇∆∆
)

P(∆)Bq∆∆∆ P(∆∆∆)Bω CT
z

• 0 0 DT
zq∆∆∆

• • −γI DT
zω

• • • −γI

 ,Ξ =
[

I 0
]

Φ∆ =
[

Cp −I +Dpq∆∆∆ Dpω 0
]
,

(30)

then system (28) is asymptotically stable and L2 upper bound can be found from

∥Tzω(∆∆∆)∥i,2 ≤ infγ (31)

Proof 3 The induced L2 performance for LPV systems may be found from the bounded real lemma,

V̇ (x,∆∆∆)+ γ
−1zT (t)z(t)− γω

T (t)ω (t)≺ 0 (32)

where the time-derivative of the Lyapunov function is given by (13) and γ the upper bound for the L2
norm. Developing the expression in (32), we obtain

ẋT (t)P(∆∆∆)x(t)+ xT (t)P
(
∆̇∆∆
)

x(t)+ xT (t)P(∆∆∆) ẋ(t)+ γ
−1zT (t)z(t)− γω

T (t)ω (t)≺ 0 (33)

which it can be recast in a matricial form, such that x(t)
p(t)
ω (t)

T


AT P(∆∆∆)+P(∆∆∆)A+P
(
∆̇∆∆
)

P(∆∆∆)Bq∆∆∆ P(∆∆∆)Bω CT
z

(Bq∆∆∆)T P(∆∆∆) 0 0 DT
zq∆∆∆

BT
ωP(∆∆∆) 0 −γI DT

zω

Cz Dzq∆∆∆ Dzω −γI


 x(t)

p(t)
ω (t)

≺ 0. (34)

By using the same description presented in the previous section for the time-varying parameters, in
which for any real matrices G∆ ∈ Rn×np , H∆ ∈ Rnp×np and J∆ ∈ Rnp×nω , one can deduce from [12] the
following conditions:

xT (t)G∆ p(t)− xT (t)G∆ (Cpx(t)+(Dpq∆∆∆) p(t)+Dpωω(t))≡ 0

pT (t)H∆ p(t)−
(

xT (t)CT
p + pT (t)(Dpq∆∆∆)T +ωT (t)DT

pω

)
H∆ p(t)≡ 0

pT (t)J∆ω(t)−
(

xT (t)CT
p + pT (t)(Dpq∆∆∆)T +ωT (t)DT

pω

)
J∆ω(t)≡ 0

(35)

Now stacking the vectors x, p and ω in (35) in order to combine with (34), it is possible to compose (29)
into a single condition taking into account that Π =

[
GT

∆
H∆ J∆

]
is a general full-block multiplier.

Hence, the bounded real lemma for continuous-time LPV/LFR systems is achieved and the proof is
complete.
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As aforementioned in the early section, the goal here consists in providing existence LMI conditions
for the synthesis of gain-scheduled state-feedback controllers. In this case, an augmented plant with
the exogenous signals ω and z with an appropriate control law should be addressed. As a result, it
follows the LPV system

Gzω :


ẋ(t) = Ax(t)+Bqq(t)+Buu(t)+Bωω(t)
p(t) =Cpx(t)+Dpqq(t)+Dpuu(t)+Dpωω(k)
z(t) =Czx(t)+Dzqq(t)+Dzuu(t)+Dzωω(t)

(36)

q(t) = ∆(θ(t))p(t) (37)

under a determined state-feedback control law u(t) =Kx(∆∆∆)x(t) with Kx(∆∆∆)∈Rnu×n being a parameter-
dependent gain. As a consequence, the closed-loop system Tzω(∆∆∆) may be recast by

x(t) =(A+BuKx(∆∆∆))x(t)+Bq∆∆∆(t)p(t)+Bωω(t)

p(t) =(Cp +DpuKx(∆∆∆))x(t)+Dpq∆∆∆(t)p(t)+Dpωω(t)

z(t) =(Cz +DzuKx(∆∆∆))x(t)+Dzq∆∆∆(t)p(t)+Dzωω(t)

(38)

Similarly to stabilizing problem, a dual condition for the induced L2 norm condition provided in Lemma
2 can be derived. Concerning the brevity of the contributions of this work, we choose to omit this
extended condition to present directly the application of the dual condition to obtain the L2 gain-
scheduled state-feedback controller synthesis. In this condition, the same assumptions regarding
the time-derivative problem of the parameter-dependent matrix W will be employed. Therefore, the
bounded rate of the parameter variation knowledge is crucial to reach feasible solutions. Then the
formulation given in (23) to deal with the time-derivative Lyapunov function is addressed. In this
sense, it follows the L2 gain-scheduling control condition in Theorem 2.

Theorem 2 (L2 gain-scheduling control condition) Consider the LFR system in (38). If there exist
symmetric positive definite matrices Wi ∈ Rn×n and matrices Zi ∈ Rnu×n, Π ∈ Rnq×mq such that the
following LMI hold: {

min
Wi, j,Zi

γ, subject to

ΨWi, j +ΦT
∆i

ΠΞ+ΞT ΠT Φ∆i ≺ 0
(39)

where the matrices ΨWi, j , Φ∆i and Ξ with appropriate dimensions are given by

ΨWi, j =


WiAT +AWi +BuZi +ZT

i BT
u −W (h j) WiCT

p +ZT
i DT

pu WiCT
z +ZT

i DT
zu Bω

• 0 0 Dpω

• • −γI Dzω

• • • −γI

 ,Ξ =
[

I 0
]

Φ∆i =
[
(Bq∆i)

T −I +(Dpq∆i)
T (Dzq∆i)

T 0
]

(40)
for all i = 1, . . . ,N and j = 1, . . . ,M then system (38) is asymptotically stabilized with guaranteed L2
norm by a gain-scheduled controller Kxi = ZiW−1

i for all θ ∈ ΩN and θ̇ ∈ ΩM. The L2 upper bound can
be found from

∥Tzω(∆∆∆)∥i,2 ≤ infγ (41)

Proof 4 The proof follows the application of the change of variables Z(∆∆∆) = Kx(∆∆∆)W (∆∆∆) into the dual
L2 condition that can be easily obtained from the condition (39) for the system (28).

It is important to keep in mind that the proposed method makes use of parameter-dependent Lya-
punov functions in combination with scaling techniques to obtain less conservative results, as well
as incorporates a time-varying input matrix in its formulation without additional pre-compensators for
the gain-scheduling control strategy. This strategy will be addressed in the next section for the active
flutter suppression problem of a smart airfoil model.
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4. Design and Results
In this section, two active flutter suppression designs addressed by gain-scheduled controller syn-
theses are provided to illustrate the effectiveness of the proposed method. The first one deals with
the stabilization problem by Theorem 1, while the second design handles induced L2 performance
denoted by Theorem 2. Both syntheses were implemented using the following software suites:
MATLAB® software, version 9.9.0 R2022b, Yalmip [25] and SeDuMi [26]. As a consequence, an
appropriate formulation of the smart airfoil in the LFR should be built. Therefore, the smart airfoil
model can be described as

G(∆∆∆) :


ẋ(t) = Ax(t)+Bqq(t)+Buu(t)

p(t) =Cpx(t)+Dpqq(t)+Dpuu(t) with x ∈
[

h̄ α
˙̄h α̇ ȳ ˙̄y

]T

y(t) =Cyx(t)+Dyqq(t)+Dyuu(t) and x0 =
[

4×10−3 0 0 0 0.2 0
]T

(42)

q(t) = ∆(θ(t))p(t) (43)

where the state-space representation of this system class is given by

 ẋ(t)
p(t)
y(t)

=



0 −0.0531 0 0 0 −0.9986 0 0
0.0552 0 −0.8942 0 0.8281 0 −0.1484 0

0 0.9986 0 0 0 −0.0531 0 0
0 0 0.5780 0 −1.8670 0 0.1882 0
0 0 0 1 0 0 0 0
0 0 0 0 0.0188 0 0 1
0 0.1280 0 0 1.4084 0 0 0
0 0 0 0 0 1 0 0



 x(t)
q(t)
u(t)

 (44)

in which the time-varying uncertainty structure is ∆∆∆ = θ(t) with 4 ≤ θ (t) ≤ 8 and the bounded rate
of variation as

∣∣θ̇ (t)
∣∣ ≤ 4. Moreover, for this numerical example, the variation of the airspeed V̄ was

choose to be V̄ = 2sin(2τ)+6 in order to evaluate the effectiveness of the proposed conditions, even
knowing that in practical experiments a smooth variation of the airspeed is recommended. In Figure
5, the behavior of the airspeed variation and its respective bounded rate of variation is presented.

Figure 5 – Time-varying parameters results.

Considering the information about the time-varying parameter θ and its bounded rate variation, the
convex sets ΩN and ΩM can be built, as well as the convex combinations of the vectors h j for j =
1, . . . ,M. Following [24] the derivative of θ(t) with respect to time, denoted by θ̇(t) ∈ RN exists and
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belongs to the convex set such that

ΩM =

{
δ ∈ RN : δ = co{h1, . . . ,hM},

N

∑
i=1

h j
i = 0, j = 1, . . . ,M

}
. (45)

Therefore, a feasible vector representation of the bounded rate variation θ̇(t)≤ 4 may be given by

H = [h1 | h2 ] =

[
4 −4
−4 4

]
∈ ΩM, (46)

in which the sum of the lines of h j is null. As a result, both LMI-based conditions derived in Theorems
1 and 2 can be solved, yielding two gain-scheduled state-feedback controllers to tolerate the flutter
phenomenon in a smart airfoil system. Each one of the controllers designed has its objective. The
first parameter-dependent controller tackles the stabilization of the airfoil system while the second
ensures the induced L2 performance. Nevertheless, both controller’s structures are the same and
can be described as

Kx (∆(θ)) =
2

∑
i=1

ξi (t)Kxi (47)

for all θ ∈ΩN and θ̇ ∈ΩM. In this sense, by using the Theorem 1, the vertices Kxi of the gain-scheduled
controller used to deal with the stabilization problem are given by

Kx1 =
[

2.6902 63.9108 22.1527 36.4104 −16.5064 −2.1995
]

(48)

Kx2 =
[

2.8750 91.5221 49.4587 104.9901 7.7203 −2.5142
]

(49)

It can be seen that both plunging displacement and pitching angle were stabilized, as well as the
moving mass (Figure 6). However, the settling time for the variables h̄ and α has presented a little
long (around 50s). Unfortunately, this control design does not allow accomplishing the improvement
of the results in terms of performance, only a stabilizing solution. In this case, resorting to Theorem
2, a gain-scheduled controller subject to L2 performance can be found. For this design, we use the
matrices Bw =

[
0 0 100 100 0 100

]T , Cz =
[

0 0 0 0 0 2×10−5 ]
and Dpw =Dzw =Dzq =

0. Therefore, following the previous approach, the vertices Kxi of the L2 controller obtained were

Kx1 =
[

4.9358 474.3635 235.9008 320.0055 −69.6902 −8.1378
]

(50)

Kx2 =
[

4.4965 530.3966 425.5310 783.4239 202.8148 −10.4644
]

(51)

Using this theorem, we obtain an upper bound for closed-loop system ∥Tzω(∆∆∆)∥i,2 ≤ 0.3689 and an
improvement regarding the settling time for the plunging displacement and pitching angle, keeping
almost the same control effort as used for the stabilization design. These comparison results may be
verified from Figure 7. Finally, to evaluate the conservatism of the proposed conditions, we compare
the result obtained for L2 performance with the conditions proposed by [12], in which quadratic
methods are derived. Using the quadratic approach, i.e. adopting the matrix W in (39) as constant, we
get an upper bound for the closed-loop system ∥Tzω(∆∆∆)∥i,2 ≤ 0.5914. Hence, the proposed conditions
provide better and less conservative results than existing conditions in the control literature.

5. Conclusion
This paper presented new gain-scheduling control strategies for continuous-time LPV/LFR systems.
The importance of these strategies arises as alternative methods in terms of a lack of works on this
topic. The distinctive formulation of the proposed controller designs is given by using the combina-
tion of the polytopic and LFR descriptions, which allowed encompassing the parameter-dependent
Lyapunov functions and static full-block multipliers structures in its characterization. As the LFR
framework denotes the LPV system through fixed matrices interconnected to a time-varying diag-
onal matrix, the association between the polytopic Lyapunov matrices and the state-space repre-
sentation allowed to become the problem feasible. This fact can be useful in the control literature
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Figure 6 – Time response for the stabilization
control design.

Figure 7 – Time response for the L2 control
design.

since time-varying parameters in all linear system can be addressed without workarounds like pre-
compensators. These properties are specifically significant due to real-world applications and the
dependency of the time-varying parameters on dynamic system matrices that lead to nonconvex
problems. Moreover, it can be seen that the simulation results showed the advantages and effective-
ness of the proposed LPV control technique for flutter suppression in a smart airfoil model.
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