
  

  

 
 

STRUCTURAL ANALYSIS OF TWISTED/CURVED BEAMS USING A 
HYBRID METHOD 

 

Ali Siami1, Fred Nitzsche2
 

1Postdoctoral fellow, Carleton University, Ottawa, Canada 
2Emeritus professor, Carleton University, Ottawa, Canada 

 
Abstract 

This paper presents a numerical approach for the structural dynamic analysis of initially twisted and curved 

beams. The variational asymptotical beam sectional theory due to Hodges is used to extract the set of 

nonlinear equations associated to the two-dimensional (2D) beam cross-sectional analysis. The conventional 

analytical perturbation solution is used as a first guess for the set of nonlinear equations obtained from the 2D 

analysis. To compensate for the effect of neglecting the higher order terms, which have been eliminated in the 

perturbation solution, the Firefly algorithm (FA), an iterative solution method is introduced to the problem for 

the first time. To reduce the sensitivity of the iterative method to the initial values, the perturbation solution 

provides an initial guess for the FA. The stiffness matrix obtained from the Firefly algorithm for twisted/curved 

beam is then further used in the geometrically exact, fully intrinsic one-dimensional beam equations to analyze 

its dynamic behavior. The effect of flexible joints is introduced to the equations to consider more realistic 

boundary conditions. The accuracy of the proposed approach is evaluated by comparing the eigenfrequencies 

of an initially twisted blade with the results of a three-dimensional finite-element modal analysis performed in 

ANSYS. Finally, the Campbell diagram of an initially twisted rotating blade is extracted using the developed 

method to demonstrate that it provides a fast and accurate solution to this problem. 

 

Keywords: cross-sectional analysis, twisted/curved beam, flexible joints, firefly algorithm. 

 

1. Introduction 

The models based on three-dimensional (3D) Finite Element Analysis (FEA) possess significant 

precision advantages. However, one-dimensional (1D) models play a crucial role in structural 

analysis because they are computationally economical and provide the designer with simple tools to 

analyze various problems. One-dimensional beam models can be investigated using classical or 

refined theories in both geometrically linear and nonlinear regimes that include different levels of 

accuracy to evaluate the static and dynamic characteristics. These equations have been developed 

based on a fully intrinsic formulation. It means they do not need the displacement and rotation 

variables. Therefore, they are free of infinite-degree nonlinearities found in other types of 

formulations. 

To provide the cross-sectional properties for 1D models, the Variational-Asymptotic Method (VAM) 

due to Hodges and colleagues has received considerable interest from researchers in the field of 

dynamics. VAM is computationally more efficient than 3D FEA. It starts by considering the elastic 

energy functional based on small parameters associated with slender beams and solve general 

problems involving the minimization of this functional. Berdichevskii [1] and Hodges [2] appear to be 

the first to split a 3D geometrically nonlinear elasticity analysis of slender structures into a nonlinear 

1D analysis in the spanwise direction and a cross-sectional 2D analysis. The details about this 
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analysis can be found in [2] to [6]. The approximate solution developed for the cross-sectional 

analysis is based on an analytical perturbation method. This solution for the set of nonlinear intrinsic 

equations is presented in [7]. As it has been shown, the perturbation solution is sensitive to the high 

values of initial twist and curvatures.    

Many papers have been published on the geometrically exact beam theory; for example, see [8] 

to[12]. In [13] comprehensive review of the state-of-the art by focusing on the vibrations, dynamics 

and control aspects of rotating blade was provided. An energy-consistent Galerkin approach was 

developed by Patil and Althoff [14]. The Galerkin approach provides accurate results with fewer 

degrees of freedom as compared to a low-order finite-element formulation. This approach can 

capture the dominant nonlinearities in the system and is ideal for the use in aeroelasticity, preliminary 

and control design [15]. Forced vibration [16] and bifurcation analysis of rotating composite beams 

were also studied [17]. In [18], the intrinsic first order nonlinear equations were derived considering 

different connections between the hub and the blade and solved using an incremental method. 

In the present work, the theoretical background of the variational asymptotic beam section analysis 

and a perturbation solution for the set of nonlinear equations is presented briefly. Then, an iterative 

numerical method is used for the 2D cross-sectional analysis to increase the accuracy of the 

approximated solution obtained from the perturbation method. The Galerkin approach is used to 

solve the 1D geometrically exact intrinsic nonlinear equations. The eigenfrequencies of an initially 

twisted blade are calculated using the developed codes. The results of the proposed methodology 

are tested against a modal analysis of the 3D FEA model of the blade performed in ANSYS. Next, 

the Campbell diagram of a rotating blade subjected to rigid boundary conditions is obtained as the 

final output of the developed structural dynamics package. Flexible joints can be also considered in 

the developed formulation.     

2. Variational Asymptotic Beam Sectional Analysis  

The papers should be prepared, if possible, using the format like this document. 

The behavior of an elastic body is completely determined by its elastic energy. First, to derive 1D 
beam theory, the 3D energy is represented using 1D quantities. This dimensional reduction is 
performed by the variational asymptotic method (VAM), a powerful mathematical tool. For rotor 
blades, VAM splits the original nonlinear 3D formulation into a 2D cross-sectional analysis and a 1D 
nonlinear beam analysis for the reference line, as seen in Figure 1. More details about this method 
can be found in Refs. [1] to [5]. 

To analyze slender structures using beam theory, the VAM, and the finite element method (FEM) are 
combined to obtain an asymptotically correct expression for the sectional strain energy based on a 
discretized warping field. In the next step, the strain energy is transformed into a form compatible with 
the generalized Timoshenko beam theory to simplify the method. In this case, the energy expressions 
are used to identify the cross-section stiffness matrices of the Timoshenko formulation. To present 
the formulations, the 1D strain measures of classical beam theory is introduced as: 

𝜖̅ = [�̅�11 �̅�1 �̅�2 �̅�3]𝑇 (1) 

where �̅�11  is the extensional strain measure, �̅�1 is the torsional strain measure, and �̅�𝛼  (for 𝛼 =
2, 3) are bending strain measures. The 2nd-order asymptotically correct sectional energy in explicit 
form can be obtained (see [6] and [7]) as: 

2𝑈 = 𝜖̅𝑇𝐴𝜖̅ + 2𝜖̅𝑇𝐵𝜖̅′ + 𝜖̅′
𝑇

𝐶𝜖̅′ + 2𝜖̅𝑇𝐷𝜖̅′′ (2) 

 The coefficient matrices are presented the above equation (𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷) can be found in Ref. [6]. 
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Figure 1 – The decomposition of a three-dimensional blade to the 2D and 1D models. 

 

The generalized Timoshenko theory is the most common beam model for the variational asymptotical 
beam sectional analysis. The sectional strain energy in the generalized Timoshenko theory is given 
by [6]: 

2𝑈 = 𝜖𝑇𝑋𝜖 + 2𝜖𝑇𝑌𝛾𝑠 + 𝛾𝑠
𝑇𝐺𝛾𝑠 (3) 

 

where 𝑋, 𝑌 and 𝐺 are the different submatrices of the stiffness matrix, which can be written as: 

𝐾𝑇 = [
𝑋 𝑌

𝑌𝑇 𝐺
] (4) 

In addition, the 1D-strain measures in a generalized Timoshenko model are defined as follows:  

𝜖 = [𝛾11 𝜅1 𝜅2 𝜅3]𝑇  , 𝛾𝑠 = [2𝛾12 2𝛾13]𝑇 (5) 

where 2𝛾12 and 2𝛾13 represent rotations of the cross-section about the 𝑥3 and 𝑥2 axes, respectively. 
In addition,  𝛾11 is the extensional strain measure, 𝜅1is the torsional strain measure, and 𝜅𝛼 (for 𝛼 =
2, 3) are bending strain measures in the Timoshenko model presentation of the sectional strain 
energy. To accomplish the desired kinematics, the 1D constitutive law and the 1D static equilibrium 
equations are combined in the next steps. It has been shown in [5] that the kinematic relationships 
between the strain measures assuming small values of 𝛾12 and 𝛾13 can be written as: 

�̅�11 = 𝛾11    ,   𝜖̅ = 𝜖 + 𝑄𝛾𝑠
′ + 𝑃𝛾𝑠 (6) 

where 

𝑄 = [

0 0
0 0
0 −1
1 0

]    ,   𝑃 = [

0 0
𝑘2 𝑘3

−𝑘1 0
0 −𝑘1

] (7) 

 

It should be noted that 𝑘1 in the above equation is the initial twist and 𝑘𝛼 (𝛼 = 2, 3) are the initial 

curvature components of the reference line about 𝑥𝛼. 

Now, the target is to find expression for matrices 𝑋, 𝑌 and 𝐺 by using the presented equations. To 
obtain the Timoshenko-like stiffness matrix, the following relations can be written by equating Eq. (2) 
and Eq. (3) (see Ref. [9]): 

𝑋 = 𝑋𝐴 + 𝑋𝐵 + 𝑋𝐶 + 𝑋𝐷 

𝑌 = 𝑌𝐴 + 𝑌𝐵 + 𝑌𝐶 + 𝑌𝐷 

𝐺 = 𝐺𝐴 + 𝐺𝐵 + 𝐺𝐶 + 𝐺𝐷 

(8) 

where the subscript indicates the matrix source of the contribution. For example, 𝑌𝐴 indicates the 
contribution to 𝑌  from the stiffness matrix 𝐴 .  These individual contributions are presented in 

Appendix. Based on the presented equations, the problem becomes finding 𝑋, 𝑌 and 𝐺 that satisfies 
Eq. (8). The resulting system of equations are a set of nonlinear equations in 𝑋, 𝑌 and 𝐺. In this work, 
these equations are solved using an analytical perturbation and a numerical iterative method.  
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3. The solution methods for the 2D cross-sectional analysis  

3.1 Perturbation solution  
The generalized Timoshenko stiffness presented by Eq. (8) can be obtained using perturbation 

methods with accuracy up to second order with respect to 𝑘𝑖 (𝑖 = 1, 2, 3). The detail of this solution 

for the cross-sectional analysis are found in [7]. The solution of the nonlinear equations presented 

in Eq. (8) up to the zeroth order with respect to 𝑘𝑖 is shown in Eq. (9). The corresponding first and 

second-order solutions can be found in [7].  

𝐺0 = [𝑄𝑇𝐴−1(𝐶 − 𝐵𝑇𝐴−1𝐵)𝐴−1𝑄]−1 

𝑌0 = 𝐵𝑇𝐴−1𝑄𝐺0 

𝑋0 = 𝐴 + 𝑌0𝐺0
−1𝑌0

𝑇 

(9) 

3.2 Numerical solution algorithm 

The firefly algorithm (FA) was introduced based on the behavior of fireflies and their flashing pattern 

to attract each other. The algorithm can be summarized in the following three steps [21]: 

1) A firefly can attract other fireflies without considering their sex: fireflies are unisex. 

2) For each two flashing fireflies, the brighter one will attract the less bright towards itself. If 

there is no brighter than a particular firefly, it will move randomly. 

3) The brightness of a firefly is determined by the objective function.  

It should be noticed that the attractiveness of each firefly is directly proportional to its light intensity. 

The variation of attractiveness, 𝛽𝑓 can be defined as: 

𝛽𝑓 = 𝛽0
𝑓

𝑒−𝛾𝑓𝑟2
 (10) 

where 𝑟 is the distance between two adjacent fireflies, 𝛽0
𝑓
 is the attractiveness at 𝑟 = 0, and 𝛾𝑓 is a 

constant named light absorption coefficient that controls the speed of the FA convergence. The 

movement of a firefly 𝑖 towards position of a brighter (higher attractive) one is determined as follows: 

𝑋𝑓𝑖
𝑘+1 = 𝑋𝑓𝑖

𝑘 + 𝛽0
𝑓

 𝑒−𝛾𝑓𝑟𝑖𝑗
2

(𝑋𝑓𝑗
𝑘 − 𝑋𝑓𝑖

𝑘) + 𝛼𝑘𝜖𝑖
𝑘 (11) 

where 𝛼𝑘 is randomization parameter and 𝜖𝑖
𝑘 is a vector of random number drawn from Gaussian 

distribution at the time step 𝑘, and 𝑟𝑖𝑗is distance between fireflies 𝑖 and 𝑗. In each loop, the distances 

of each pair of fireflies are updated. For applying the algorithm, the population of fireflies 𝑁𝐺 and 

number of iterations 𝑁𝐼 should be first specified. It should be noted that 𝛼𝑘 controls the diversity of 

solutions and it can vary with the iteration counter 𝑘. Generally, for most applications, it is chosen as 

𝛼𝑘 ∈ [0,1]. Introducing 𝐿𝑓 as the average scale of the problem of interest, 𝛾𝑓 can be made 1 √𝐿𝑓⁄ . 

However, it should be considered that the cost of the FA computation is 𝑂(𝑁𝐺
2𝑁𝐼). Therefore, the use 

of larger numbers of generations in order to improve the results of the algorithm is limited [21].  

3.3 Hybrid solution algorithm 

In this work, the hybrid solution is introduced to solve the set of nonlinear equations presented in Eq. 

(8). First, the perturbation solution up to the second order with respect to small parameters related 

to the beam initial twist/curvatures is used to solve the Timoshenko stiffness equations. Then, this 

perturbation solution is considered as an initial guess for the iterative method. Therefore, the initial 

fireflies’ generation is defined based on the perturbation solution in order to limit the searching 

domain of the iterative solution to a narrow region around the perturbation solution. It was observed 

that the present hybrid method allows for keeping the positive aspects of both the perturbation and 

iterative methods as the main problem related to the iterative method is its sensitivity to the initial 

guess. This issue is here eliminated by using the solution of perturbation method as the initial value 

for the iterative one. Most importantly, by using the firefly algorithm for solving the set of nonlinear 

equations presented in Eq. (8), the results of the perturbation solution can be improved. 

For the iterative method, the following rearrangement of Eq. (8) is introduced: 

𝐹𝑋 = 𝑋𝐴 + 𝑋𝐵 + 𝑋𝐶 + 𝑋𝐷 − 𝑋 = 0 

𝐹𝑌 = 𝑌𝐴 + 𝑌𝐵 + 𝑌𝐶 + 𝑌𝐷 − 𝑌 = 0 
(12) 
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𝐹𝑌 = 𝐺𝐴 + 𝐺𝐵 + 𝐺𝐶 + 𝐺𝐷 − 𝐺 = 0 

Using Eq. (12), the target function (in vector form) of the Firefly algorithm is defined as: 

𝐹𝑚𝑖𝑛
𝑣𝑒𝑐 = [𝐹𝑋

𝑣𝑒𝑐 , 𝐹𝑌
𝑣𝑒𝑐 , 𝐹𝐺

𝑣𝑒𝑐]𝑇 (13) 

where  

𝐹𝑋
𝑣𝑒𝑐 = [𝐹𝑋(1,1: 4), 𝐹𝑋(2,2: 4), 𝐹𝑋(3,3: 4), 𝐹𝑋(4,4: 4)]𝑇 

𝐹𝑌
𝑣𝑒𝑐 = [𝐹𝑌(1,1: 2), 𝐹𝑌(2,1: 2), 𝐹𝑌(3,1: 2), 𝐹𝑌(4,1: 2)]𝑇 

𝐹𝐺
𝑣𝑒𝑐 = [𝐹𝐺(1,1: 2), 𝐹𝐺(2,2: 2)]𝑇 

(14) 

where in the above equations the first index inside the parentheses specifies the row of the matrix 

and the second and third indices show the starting and ending columns inside of the corresponding 

matrix. For example, 𝐹𝑋(1,1: 4) represents the first raw of matrix 𝐹𝑋. Based on Eqs. (13) and (14), 

the target function for the minimization problem becomes a vector with 21 elements after considering 

the symmetry of the submatrices 𝑋 and 𝐺 in the stiffness matrix presented in Eq. (4). 

4. One- dimensional intrinsic beam equations 

The intrinsic equations governing the dynamics of a general, non-uniform, twisted, curved, 

anisotropic beam undergoing large deformation are given as follows (see [20])[1]: 

𝐹′ + (�̃� + �̃�)𝐹 + 𝑓𝑒𝑥𝑡 = �̇� + Ω̃𝑃 (15) 

𝑀′ + (�̃� + �̃�)𝑀 + (�̃�1 + �̃�)𝐹 + 𝑚𝑒𝑥𝑡 = �̇� + Ω̃𝐻 + �̃�𝑃 (16) 

𝑉′ + (�̃� + �̃�)𝑉 + (�̃�1 + �̃�)Ω = �̇� (17) 

Ω′ + (�̃� + �̃�)Ω = �̇� (18) 

where ( )′ denotes the derivative with respect to the beam reference line and ( )̇ is the absolute time 

derivative. 𝐹(𝑥, 𝑡) and 𝑀(𝑥, 𝑡) denote the inertial force and moment vector, 𝑃(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) are 

the linear and angular momentum vectors, 𝛤(𝑥, 𝑡)  and 𝐾(𝑥, 𝑡)  are the beam strain and local 

curvatures. In addition, 𝑉(𝑥, 𝑡) and Ω(𝑥, 𝑡) are the linear and angular velocities. The external force 

and moment caused by aerodynamic effects, for example, are denoted by 𝑓𝑒𝑥𝑡(𝑥, 𝑡)  and 𝑚𝑒𝑥𝑡(𝑥, 𝑡) , 

respectively. The initial curvature and twist of the beam are grouped in the vector 𝑘 = [𝑘1 𝑘2 𝑘3]𝑇  

and 𝑒1 = [1 0 0]𝑇 is the unit vector in the axial direction, 𝑥1 according to Figure 1. It should be 

noted that the tilde transforms the vector cross operation 𝑦 ×  into its matrix multiplication 

equivalent, �̃�. 

The intrinsic beam equations provide four vector equations for eight vector unknowns, 

(𝐹, 𝑀, 𝑃, 𝐻, 𝛤, 𝐾, 𝑉, Ω). Therefore, four more vector equations are needed. Two equations relate the 

generalized forces (𝐹, 𝑀) and the generalized strains (𝛤, K) via the beam cross-section stiffness 

matrix. The relationships between the generalized momenta (𝑃, 𝐻) and the generalized velocities 

(𝑉, Ω) can be built using the beam cross-section inertia matrix. These additional equations are (see 

[2] and [3]): 

{
𝐹
𝑀

} = [
𝕌 𝕍

𝕍𝑇 𝕎
] {

𝛤
𝐾

} (19) 

{
𝑃
𝐻

} = [
𝔾 𝕂

𝕂𝑇 𝕀
] {

𝑉
Ω

} (20) 

where 𝕌, 𝕍 and 𝕎 are the stiffness submatrices obtained from the cross-sectional analysis. The 

inertia-related matrices take the form: 

𝔾 = 𝜇𝐼 = [
𝜇 0 0
0 𝜇 0
0 0 𝜇

],        𝕂 = [

0 𝜇𝜉3̅ −𝜇𝜉2̅

−𝜇𝜉3̅ 0 0

𝜇𝜉2̅ 0 0

], 

𝕀 = [

𝕚2 + 𝕚3 0 0
0 𝕚2 𝕚23

0 𝕚23 𝕚3

] 

(21) 

where 𝜇, 𝜉2̅ , 𝜉3̅ and 𝕚2, 𝕚3 and 𝕚23 are the mass per unit length, offsets from the reference line of the 

cross-sectional mass centroid, and the two cross-sectional mass momenta and the product of inertia 

per unit length, respectively. These values are calculated in the cross-sectional analysis.  
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To solve Eqs. (15) to (20), a variable order finite element method is used (see [20]). The blade is 

discretized into 𝑛 elements along the span as shown in Figure 2. The shifted Legendre polynomials 

are used here as the independent trial functions. Assuming uniform structural properties along each 

element, the discretized equations can be obtained from Eq. (15) to (20). The details and the 

derivations can be found in [20], where the 1D beam nonlinear equation is demonstrated to assume 

the following form: 

𝐴𝑘𝑗�̇�𝑗(𝑡) +  𝐵𝑘𝑗𝑞𝑗(𝑡) +  𝐶𝑘𝑗𝑟𝑞𝑗(𝑡)𝑞𝑟(𝑡) +  𝐷𝑘 + 𝐹𝑘
𝑒𝑥𝑡(𝑡) + 𝑀𝑘

𝑒𝑥𝑡(𝑡) = 0 (22) 

where 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 = 1,2, … 𝑚 and 𝑚 indicates the number of modes used in the variable order finite 

element method. Considering 𝑛 as the number of elements for the discretization, the total variable 

vector is 𝑞(𝑡) = [𝑞1(𝑡), 𝑞2(𝑡) , … , 𝑞𝑛(𝑡)]𝑇, and 𝑞𝑖(𝑡) is the time dependent component of the unknown 

variables at each element: 

𝑞𝑖(𝑡) = [ 𝑣1
𝑖 (𝑡), 𝜔1

𝑖 (𝑡), 𝛾1
𝑖 (𝑡), 𝜅1

𝑖 (𝑡), … , 𝑣𝑚
𝑖 (𝑡), 𝜔𝑚

𝑖 (𝑡), 𝛾𝑚
𝑖 (𝑡), 𝜅𝑚

𝑖 (𝑡)]
𝑇
 (23) 

where 𝑣, 𝜔, 𝛾 and 𝜅 represent the time variable parts of velocity (𝑉), angular velocity (𝛺), strain (𝛤) 

and curvature (𝐾), respectively. These variables have been introduced to the problem after the 

separation of variables in time and space domains (see Ref. [20]). In addition,  𝐹𝑘
𝑒𝑥𝑡(𝑡)  and 

𝑀𝑘
𝑒𝑥𝑡(𝑡) are the terms related to external loads that appear in the equations if external distributed 

loads are applied to the elements. It should be noted that the coefficients matrices (𝐴𝑘𝑗, 𝐵𝑘𝑗, 𝐶𝑘𝑗𝑟 and 

𝐷𝑘) appeared in Eq. (22) can be found in Ref. [20]. 

 
Figure 2 – A blade divided to n-element along the span [20]. 

For the subsequent modal analysis, the system of equations needs to be linearized around a steady-

state solution. The steady-state solution of Eq. (22) can be determined by solving the following 

equations: 

𝐵𝑘𝑖𝑞𝑖
0 + 𝐶𝑘𝑖𝑗𝑞𝑖

0𝑞𝑗
0 + �̅�𝑘= 0 (24) 

where 𝑞0 refers to the desired steady-state solution due to the steady-state forcing provided in �̅�. 

The solution is found using Newton-Raphson iterations, where the required Jacobian is obtained 

taking the derivatives of Eq. (24) with respect to 𝑞0: 

𝒥(𝑞) =  𝐵𝑘𝑖 + 𝐶𝑘𝑗𝑖𝑞𝑖
0 + 𝐶𝑘𝑖𝑗𝑞𝑗

0 (25) 

To formulate the eigenvalue problem, the 1D beam equations seen in Eq. (22) are next linearized. 

The general solution of the nonlinear system of equations is represented as:  

𝑞(𝑡) =  𝑞0 +  𝑞∗(𝑡) (26) 

where 𝑞∗(𝑡) is a small perturbation about the steady-state solution. After linearization, the natural 

frequencies and corresponding mode shapes can be calculated from: 

�̂�𝑘𝑖�̇�𝑖
∗ + �̂�𝑘𝑖𝑞𝑖

∗ = 0 (27) 

where 

�̂�𝑘𝑖 = 𝐴𝑘𝑖  ,  �̂�𝑘𝑖 = 𝐵𝑘𝑖 +  (𝐶𝑘𝑖𝑗 +  𝐶𝑘𝑗𝑖)𝑞𝑗
0 (28) 

5. Results  

In this part, the results from the asymptotically correct cross-sectional analysis code developed in 
MATLAB are presented. The developed code can take different type of grids and their combinations, 
including triangular (linear and quadratic) and quadrilateral elements (linear and quadratic) as input. 
In addition, the developed package can deal with anisotropic materials.  

In this work, the results of the package for a blade with initial twist (𝑘1 = 0.6283 𝑟𝑎𝑑/𝑚)  and a 
NACA0012 airfoil cross section is presented. The geometrical and material properties of this blade 
are given in Table 1. The cross section of the blade generated using quadrilateral elements is plotted 
in Figure 3. In Table 2, selected elements of the obtained stiffness matrix are tabulated. The values 
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presented in the first row of Table 2 correspond to the Euclidian norm of the target function given by 
Eq. (13) divided by the norm of the vector defined by the 21 elements of the stiffness matrix obtained 
from the perturbation solution, to give an indication of the convergence of the proposed method. For 
the Firefly algorithm results presented in Table 2 the values 𝑁𝐺 = 100 and 𝑁𝐼 = 100 were taken. It 
can be seen from these values that the hybrid method (analytical perturbation combined with the 
numerical Firefly Algorithm) minimizes the target function better that the corresponding results 
obtained with the perturbation solution alone. This is an indication that the proposed hybrid method 
increases the accuracy of the solution considerably.  

 

Table 1 – Properties of initially twisted blade. 

Geometrical properties 

Airfoil  NACA0012 

Chord length 0.135 [𝑚] 

Length of blade 2 [𝑚] 

Initial twist 0.6283 [𝑟𝑎𝑑 𝑚⁄ ] 

Material properties 

Young’s Modulus (𝐸) 7.1 × 1010 [𝑃𝑎] 

Shear Modulus (𝐺) 2.6692 × 1010 [𝑃𝑎] 

Poisson’s ratio (𝜈) 2770 [𝑘𝑔 𝑚3⁄ ] 

Density (𝜌) 0.33 

 

 
Figure 3 – The cross-section of airfoil (NACA0012) with quadrilateral elements 

 

 
Figure 4 – Blade with initial twist. 

 

To further compare the accuracy of the calculated cross-sectional properties (i.e., from the stiffness 
and mass matrices), the eigenfrequencies of the blade with clamped-free boundary conditions are 
compared with the corresponding results of a modal analysis performed in ANSYS. These results are 
obtained for a twisted blade with 2 𝑚 length. The eigenfrequencies of the blade are calculated solving 
the eigenvalue problem presented in Eq. (27). Table 3 shows the fifteen first eigen-frequencies of the 
blade using the stiffness matrices calculated from the perturbation solution alone and the Firefly 
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Algorithm hybrid method, respectively. The table shows that the calculated frequencies are very 
similar to the ones obtained from the modal analysis with the complete FEA 3D model in ANSYS. It 
should be noted that for the cross-sectional analysis of the blade 1167 nodes have been used and for 
the 1D model of the blade only 21 nodes along the span of blade were utilized. It was observed that 
this number of nodes provides results that they are no longer sensitive to the discretization.  

Table 2 – Stiffness of the blade (NACA0012 airfoil) with initial twist (𝑘1 = 0.6283 𝑟𝑎𝑑 𝑚⁄ ). 

Target function 
and stiffness 

values 

Cross-sectional analysis 

(perturbation solution 
alone) 

Cross-sectional 
analysis 

(hybrid method) 

‖𝐹𝑚𝑖𝑛‖/‖𝐾𝑝
𝑣𝑒𝑐‖ 0.0113 0.0035 

𝑋11, [𝑁] 1.0562 × 108 1.0545 × 108 

𝑋22, [𝑁. 𝑚2] 2.6970 × 103 2.6870 × 103 

𝑋33, [𝑁. 𝑚2] 1.6029 × 103 1.596 × 103 

𝑋44, [𝑁. 𝑚2] 1.1851 × 105 1.1815 × 105 

𝑋21, [𝑁. 𝑚] 7.6240 × 104 7.305 × 104 

𝑋41, [𝑁. 𝑚] −1.1898 × 106 −1.1955 × 106 

𝐺11, [𝑁] 3.4401 × 107 3.4690 × 107 

𝐺22, [𝑁] 1.1212 × 107 1.0493 × 107 

𝑌12, [𝑁] −2.5679 × 104 −1.8747 × 104 

𝑌22, [𝑁. 𝑚] 4.6588 × 104 3.0633 × 104 

𝑌31, [𝑁. 𝑚] 1.7512 × 103 1.06748 × 103 

 

Based on the presented formulation, the developed package can provide the Campbell diagrams for 
different types of boundary conditions, including fix or flexible joints at the ends of the blade. In Figure 
5, the Campbell diagram for the ten first modes the initially twisted blade within the specified rotational 
speed range is presented.  

Table 3 – Comparing the eigenfrequencies for the blade (NACA0012 airfoil) with initial twist (𝑘1 =
0.6283 𝑟𝑎𝑑 𝑚⁄ ). 

Mode 
number 

Eigenfrequency (Hz) 

Stiffness matrix 
obtained with the 
perturbation 
solution alone 

Stiffness 
matrix 
obtained with 
the proposed 
hybrid 
method 

ANSYS 

modal 
analysis with 
a full 3D FEA 
model 

1 2.807 2.799 2.805 

2 10.512 10.478 10.507 

3 34.516 34.377 34.411 

4 44.196 44.0325 44.167 

5 88.334 88.0479 88.317 

6 95.291 96.805 96.892 

7 141.838 141.293 141.70 

8 171.494 170.746 171.26 

9 225.886 225.058 225.98 

10 285.883 290.398 290.64 

11 316.717 315.502 316.98 

12 397.158 395.375 397.21 

13 430.489 428.694 430.10 
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14 477.5149 484.9013 484.95 

15 545.157 542.638 543.04 

 

 

 
Figure 5 – Campbell diagram for the blade with rigid connections at the hub (solid lines are the 

calculated eigenfrequencies, black dashed lines are the harmonics of the nominal rotational speed). 

6. Conclusion  
The results of a complete package for the structural dynamic analysis of initially twisted/curved slender 
beams based on the variational asymptotic beam sectional analysis using a new approach have been 
presented. The approach introduces a novel hybrid strategy for the solution of the set of nonlinear 
equations to obtain the cross-sectional Timoshenko stiffness matrix. It is seen that the proposed 
approach can improve the results of the sectional analysis of the beam in the presence of relatively 
large initial twist and curvatures. The package includes both the 2D cross-sectional and the 1D 
nonlinear beam analyses. Therefore, it can be used as a self-contained computational tool for 
evaluation of the dynamic behavior of twisted and curved rotating blades having anisotropic material 
properties. The results of the hybrid approach for the cross-sectional analysis were presented for an 
initially twisted blade. The accuracy of the cross-sectional matrices was evaluated by comparing the 
eigenfrequencies calculated using the linearized 1D equations with the results of a full 3D FEA model 
done in ANSYS. In addition, the new package can evaluate the effect of flexible end joints in the beam 
dynamic analysis, which is useful for many applications, such as wind turbines having complex blade 
supports.   
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Appendix: The stiffness matrix of the Timoshenko uniform beam model 

The individual contributions of different terms in Eq. (8) can be presented as follows (see Ref. [9]) 

𝑋𝐴 = (∆4×4 − 𝑄[𝑍]21)𝑇𝐴(∆4×4 − 𝑄[𝑍]21) 

𝑋𝐵 = 2(∆4×4 − 𝑄[𝑍]21)𝑇𝐵(𝑄[𝑍2]21 − [𝑍]11 − 𝑃[𝑍]21) 

𝑋𝐶 = (𝑄[𝑍2]21 − [𝑍]11 − 𝑃[𝑍]21)𝑇𝐶(𝑄[𝑍2]21 − [𝑍]11 − 𝑃[𝑍]21) 

𝑋𝐷 = 2(∆4×4 − 𝑄[𝑍]21)𝑇𝐷([𝑍2]11 − 𝑄[𝑍3]21 + 𝑃[𝑍2]21) 

(29) 

 

𝑌𝐴 = (∆4×4 − 𝑄[𝑍]21)𝑇𝐴(𝑃 − 𝑄[𝑍]22) 

𝑌𝐵 = (∆4×4 − 𝑄[𝑍]21)𝑇𝐵(𝑄[𝑍2]22 − [𝑍]12 − 𝑃[𝑍]22)
+        ([𝑍]11 − 𝑄[𝑍2]21 + 𝑃[𝑍]21)𝑇𝐵𝑇(𝑄[𝑍]22 − 𝑃) 

𝑌𝐶 = (𝑄[𝑍2]21 − [𝑍]11 − 𝑃[𝑍]21)𝑇𝐶(𝑄[𝑍2]22 − [𝑍]12 − 𝑃[𝑍]22) 

𝑌𝐷 = (∆4×4 − 𝑄[𝑍]21)𝑇𝐷([𝑍2]12 − 𝑄[𝑍3]22 + 𝑃[𝑍2]22)
+         (𝑄[𝑍3]21 − [𝑍2]11 − 𝑃[𝑍2]21)𝑇𝐷𝑇(𝑄[𝑍]22 − 𝑃) 

(30) 

and 

𝐺𝐴 = (𝑃 − 𝑄[𝑍]22)𝑇𝐴(𝑃 − 𝑄[𝑍]22) 

𝐺𝐵 = 2(𝑃 − 𝑄[𝑍]22)𝑇𝐵(𝑄[𝑍2]22 − [𝑍]12 − 𝑃[𝑍]22) 

𝐺𝐶 = (𝑄[𝑍2]22 − [𝑍]12 − 𝑃[𝑍]22)𝑇𝐶(𝑄[𝑍2]22 − [𝑍]12 − 𝑃[𝑍]22) 

𝐺𝐷 = 2(𝑃 − 𝑄[𝑍]22)𝑇𝐷([𝑍2]12 − 𝑄[𝑍3]22 + 𝑃[𝑍2]22) 

(31) 

where ∆4×4 indicates the identity matrix of dimension four, and the matrices presented by 𝑃 and 𝑄 are given in 

Eq. (7). In addition, 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 are the coefficient matrices of the 2nd-order asymptotically correct 

sectional energy presented by Eq. (2) and they can be found in Ref. [6]. The matrices are partitioned such 

that subscript 11 refers to the partition occupying rows 1 to 4 and columns 1 to 4, subscript 12 refers to the 

partition occupying rows 1 to 4 and columns 5 to 6. This notation is extended to the other subscripts. It means 

subscript 21 points to the partition placing at rows 5 to 6 and columns 1 to 4 and subscript 22 indicates the 

partition occupying rows 5 to 6 and columns 5 to 6, respectively. As such, these partitions produce the following 

result. 

[𝑍] = [
[𝑍]11 [𝑍]12

[𝑍]21 [𝑍]22
]   ,   [𝑍2] = [

[𝑍2]11 [𝑍2]12

[𝑍2]21 [𝑍2]22
]   ,  [𝑍3] = [

[𝑍3]11 [𝑍3]12

[𝑍3]21 [𝑍3]22
]    (32) 

Explicit expressions for matrices [𝑍], [𝑍]′ and [𝑍]′′ can be written as: 

[𝑍] = [ �̅� 𝑆̅

𝑆̅ 𝑇 �̅�
] ([

𝐷3 𝐷4

𝐷2 𝐷1
] [

𝑋 𝑌
𝑌𝑇 𝐺

]) 

[𝑍]′ = [𝑍]2 

[𝑍]′′ = [𝑍]3 

(33) 

where 

𝐷1 = [
0 −𝑘1

𝑘1 0
]  ,  𝐷2 = [

𝑘3 0 0 0
−𝑘2 0 0 0

]  ,  𝐷3 = [

0 0 0 0
0 0 −𝑘3 𝑘2

0 𝑘3 0 −𝑘1

0 −𝑘2 𝑘1 0

] and 

𝐷4 = 𝑄 − 𝐷2
𝑇 

(34) 

 


